Skip to main content
Erschienen in: Journal of Materials Science 12/2011

01.06.2011 | IIB 2010

A review of some elements in the history of grain boundaries, centered on Georges Friedel, the coincident ‘site’ lattice and the twin index

verfasst von: O. B. M. Hardouin Duparc

Erschienen in: Journal of Materials Science | Ausgabe 12/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

I trace the origin of the inverse density of coincident lattice sites to Georges Friedel in 1904 (Études sur les groupements cristallins). Georges Friedel (1865–1933), son of the Chemist and Mineralogist Charles Friedel, called this parameter the twin (macle) index and defined it as the ratio of the total number of nodes of the primitive lattice to the number of coincident nodes restored by the twin operation. Friedel’s 1904 ‘multiple lattice’ is our Coincident Site Lattice. Georges Friedel introduced the Σ symbol in 1920 (Contribution à l’étude géométrique des macles) as the ratio of the volume of a (not necessarily primitive) multiple cell to the volume of the primitive cell. G. Friedel provides his reader with several formulae which, in the cubic case, give Σ = h 2 + k 2 + l 2 (h, k and l being the indices of the twin plane) and a twin index I equal to Σ if Σ is odd, equal to Σ/2 if Σ is even. All these definitions and formulae are included in the 1926 version of his celebrated textbook ‘Leçons de Cristallographie’. Georges Friedel was also concerned with the ‘material lattice’ (the crystal structure) behind the mathematical lattice, but besides his contributions to the study of liquid crystals, Georges Friedel was mainly interested in Mineralogy and not in Metallurgy. This may explain why Walter Rosenhain apparently never knew of Friedel’s work and why Kronberg and Wilson had to re-discover the importance of the density of coincidence sites, at the atomistic level, in 1949 in copper. Georges Friedel’s grandson, Jacques Friedel, made the first numerical estimate of interface energies using interatomic potentials that same year but only published these results in 1953. Knowledge of these past events may help us to better understand the present theories and, hopefully, to develop our future understanding more efficiently.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In French, Georges is spelt with a silent final s.
 
2
A process called ‘hydrothermal synthesis’. Robert Bunsen used glass vessels in 1839.
 
3
In 1893, in parallel with Henri Moissan, he even thought he might have succeeded in synthesizing diamond.
 
4
Charles Friedel had studied at the University and was not a ‘Polytechnicien’. Conversely, the French University always refused to grant Georges Friedel a salary when he taught at Strasbourg University after 1919. This dual French school system still exists today.
 
5
Having spent his youth in an apartment in the building of the School of Mines, where his parents lived since his father also was the curator of the mineralogical collection, Georges had first expressed the wish to specialize in a quite different field, namely Naval Architecture, after the École Polytechnique. Yet, being rated first, he was not free to choose.
 
6
G. Friedel strongly objected to the inappropriate term ‘liquid crystal’ (Otto Lehmann’s Fliessende Krystalle) but this appellation remained.
 
7
First noted by Nicolas Steno, or Nils Stensen [‘Son of Stone’], (1638–1686), an outstanding anatomist who also layed down the fundamental principles of stratigraphy, and thus of geology. Steno later ruined his health in Catholic missionary work. He was beatified in 1988. His ‘preamble about solids naturally contained within solids’ (De solido intra solidum naturaliter contento dissertationis prodromus, that is, an attempt to explain the formation of fossils), published in Florence in 1669, remained largely unknown. To give full support to the law of constancy of inter-facial angles for minerals of the same species, the technical invention of the contact goniometer by Arnould Carangeot, Romé de l’Isle’s assistant, was essential. About goniometers, see [22].
 
8
Note the variability of the orthography: crystaux, cristaux, cristallen, Krystalle, Kristalle. The Greek root ‘krustallos’ meant ‘solidified by cold’ (kruos: see cryogenics). In ancient times quartz was believed to be a permanently solidified form of ice. Robert Boyle was the first to use the word crystal in a general sense, not restricting it to rock crystal, in The Sceptical Chymist (1661). The German word Quarz is presumed to be of Slavic origin, although its exact meaning is not known.
 
9
With the common etymology of zwei and two, akin to duo, double, duplex, dyad, as well as deux in French. Macle was also used in English, for instance by Lord Kelvin of Largs, in a Robert Boyle Lecture delivered at the Oxford University Junior Scientific Club, on the evening of May 16, 1893 (and reproduced as Appendix H in the Baltimore Lectures): ‘Coming back to quartz, we can now understand perfectly the two kinds of macling which are well known to mineralogists …’.
 
10
The French also use the name ‘joint de grains’ = grain boundary (Korngrenze). For the etymology of macle, Webster’s dictionary gives the heraldry term mascle which corresponds to an empty lozenge, from the middle-old Dutch mask and maesche, which also gave mesh (= Maesche = maille). Hence, sometimes, a circumflex on the a: mâcle (for instance Pierre Curie in 1900, [17]). Recent comprehensive French dictionaries like Le Grand Robert (1985) and the Trésor de la langue française (CNRS & INLF Nancy, 1985) give the same etymology. The Trésor writes both macle and mâcle (mâcler).
 
11
As a Teacher of Grammar at the Cardinal Lemoine College in Paris, René-Just Haüy got acquainted with Charles Lhomond, a famous grammarian who was very keen in botany. In order to please his Friend, René-Just learned the names of hundreds of plants and this certainly later helped him name crystals and groupings of crystals. René-Just Haüy had no inherent taste for Botany, but his walks with Charles Lhomond in the Jardin du Roy, adjoining their College led him to attend the lectures of Louis-Jean-Marie Daubenton who also taught Mineralogy.
 
12
But from a purely aesthetical view point, I am sure that all would have been delighted at the sight of a drawing by Albrecht Dürer in his manual on measurement of lines, areas and solids by compass and ruler [27]. This drawing looks like a (double) five-fold twin, almost quasiperiodic (a size-limited approximant in fact), see [28] and [29]. Figure 2.3, by Eric Lord, Alan Mackay and S. Ranganathan, has a perfect pentagonal shape, much akin to the characteristic hexagonal shape of multiple twinning in aragonite. It is a pity that multiple-twinning led Linus Pauling (1901–1994) to reject the discovery of quasicrystals in 1985 [30]. Yet that challenge was not illogical and certainly stimulated refinement of the arguments in favour (the pigeons pro eventually won versus the contra cat, see [31]). Linus Pauling tried to contact with Danny Shechtman but unfortunately no satisfactory agreement was reached before Pauling’s death (D. Shechtman, personal communication, July 2010).
 
13
Even if his father was a proponent of the existence of atoms, as was his mentor Adolphe Wurtz (1817–1884), it was clear that little was known about their actual organization within a crystal until the advent of X-ray diffraction in 1912. It is worth noting that ‘Friedel’s law’ in X-ray crystallography was established by Georges Friedel as early as 1913. [32]. This law states that the intensities of the Laue-Bragg diffractions I(Q) and I(-Q) are equal under normal conditions. That is, the information obtained by diffraction is centro-symmetric and cannot establish whether the real-space atomic distribution is centro-symmetric (with a point of inversion) or not. This also means that diffraction spots appear in pairs which have recently been called ‘Friedel pairs’: Friedel pairs are key to both the efficiency and accuracy of X-ray diffraction contrast tomography, which permits non-destructive mapping of grain shape and crystal orientation in polycrystals. [33].
 
14
With the rejection of many chance crystal groupings that may look like twins at first sight but are actually aberrant twins (‘macles aberrantes’). For instance, ‘specimens noted I and III [in quartz] by Zyndel would be [according to Zyndel] twinned according to the La Gardette law (Japanese law). It suffices here to look at the sample with the naked eye, without any measuring and just having its faces glance, to realize that such is not the case’. [34].
 
15
Many German scientists also contributed to the descriptions and analyses of twins: Christian Samuel Weiss, Friedrich Mohs, Carl Friedrich Naumann, Gustav Rose, Friedrich Eduard Reusch, Heinrich Adolf Baumhauer, Otto Mügge, Gustav Tschermack, Victor Moritz Goldschmidt, Jakob Beckenkamp, not to name all. Georges Friedel opposed many of them, but not because France had lost in Sedan in 1870: Georges Friedel also opposed his compatriot Frédéric Wallerant [35], and criticized Ernest Mallard when their views differed.
 
16
Mero means part in Greek, as opposed to holo meaning whole. Hedra means seat, base or face. Hemi means half, tetartos means four and ogdoas eight. When hedra comes with a prefix it usually looses the aspired h (a special diacritic sign on the Ε in Greek which is then pronounced by rough breathing). This explains the French and German spellings of for instance: polyèdre, holoèdre, polyeder and holoeder. Modern English spelling keeps the h and writes polyhedron and holohedry, etc. French writes mériédrie, although méroédrie would be slightly more correct.
 
17
Only the orientation of the atomic unit (basis) within the primitive cells changes. These twins have a twin index (see below) equal to 1.
 
18
Auguste Bravais first wrote with his elder brother, Louis: an Essai géométrique sur la symétrie des feuilles curvisériées et rectisériées. This was transmitted to the French Academy of Sciences before 1837, see [36].
 
19
‘But it is clear that this is a purely fictional move’ (‘mais il est clair que c’est là un mouvement purement fictif, et que la coordination moléculaire se fait symétriquement par rapport au plan d’hémitropie’), said Auguste Bravais in 1850 [37]. For instance, the Σ = 3 {111} 〈110〉 θ ~ 70.53° twins in cubic systems can also be described as hemitropic Σ = 3 {111} 〈111〉 (θ = 180°) (as well as Σ = 3 {111} 〈111〉 θ = 60° twist grain boundaries since 〈111〉 are threefold axes in cubic systems).
 
20
In 1885 [38], not in 1876 [25].
 
21
As is the case for the twins by merohedry described previously.
 
22
The primitive lattice point group is not necessarily a subgroup of the coincidence lattice point group, because it may possess symmetry elements that are not shared by the coincident lattice (see [40] and [41]).
 
23
These twins are frequent in minerals which have a complicated atomic group associated with each primitive lattice point or node.
 
24
With a natural extension to cases of twins formed by pseudo reticular merohedry. See Table 2 for a synthetic presentation of the four classes developed by Friedel.
 
25
Friedel noted that the (310) case had never been observed.
 
26
A School to whose development he significantly contributed. He became Head of the School from 1907 to 1919, except for the war years.
 
27
The Friedels were Alsatian from Strasbourg. As a first name, Friedel is a variant for Gottfried. The German Friede means peace.
 
28
See Appendix C for some further considerations on simple analytical properties of the twin index in cubic crystals.
 
29
It is remarkable that G. Friedel immediately understood the principles of X-ray diffraction discovered in 1912, and explicited the inversion symmetry limitation (under normal conditions) known as Friedel’s law ([32], see also footnote 13). Donnay and Harker were able to expand Friedel’s 1911 preview for surfaces in 1937 [46]. Friedel’s formalism is limited to a consideration of Bravais lattices and does not incorporate the Schönflies-Fedorov space groups. Denis Gratias, Richard Portier, Robert Pond and others further extended Friedel’s formalism for twins in the 1980’s, but this goes beyond the scope of this article. Also see Appendix D.
 
30
In contrast, the French(‘La Gardette’)-Japanese twin in quartz is much rarer and complicated, see [48, 5154]. There are many other twin laws for quartz. One of these is also known as the Friedel-law, or Friedel-twin, having been found by Charles Friedel in artificial quartz in 1888 [55].
 
31
Gregori Aminoff and (his wife) Birgit Broomé proposed several rules in 1935 about the atomic structure of twins in minerals. These rules have been reported by Robert Cahn [39]: 1. When two individuals form a contact twin either one or two layers of the structure at the interface are common to both individuals. 2. The atomic coordination in the transition layer is either (almost) identical with that in the crystal structure or closely related to it. In the latter case, the transition structure is that of a possible polymorphic modification of the structure, or else that of a modification which would be possible for that substance. British physicist by heart, R.W. Cahn was born in Germany and could speak French, see [57]. His 1954 review article is a wealth of informations about twins. .
 
32
The order n of a Σ = 3 n twin (or any Σ = Σ o n twin) should not be confused with the twin index Σ itself. Such a confusion can arise because n has also been used as a symbol for the twin index (by G. Friedel himself, in his textbooks. In 1926 one finds n and I), and Paul Niggli (see Appendix B) translated Friedel’s French word indice by Ordnung in his books in German ([63, 64]).
 
33
These twins thus merit study at the atomistic level, and have been investigated by joint numerical and observational studies, see [65, 66]. These twins are called grain boundaries in these studies. See, however, Appendix E.
 
34
For instance William Lawrence Bragg, Bragg junior, could derive the fcc structure of copper as soon as 1914 thanks to natural crystal specimens from the Mineral Laboratory at Cambridge [67]. Other metal samples, usually consisting of tiny crystalline grains, had to await the development of the powder diffraction technique in 1917 (Peter Debye and Paul Scherrer in Göttingen, Germany, Albert Hull in Schenectady, in the US).
 
35
Compare the following with Ronald King and Bruce Chalmers [68], Chaps 1 and 2 of Donald McLean [1], Ernest Hondros’ ‘enquiry’ in 1995 [69], and David Brandon’s recent perspective [70].
 
36
Typical is the first sentence of HC Sorby in his article ‘On the microscopical structure of iron and steel’, published in 1887: ‘It is now more than 20 years since I first commenced to carefully study the microscopical structure of iron and steel, in order, if possible, to throw light on the origin of meteoric iron; but soon found that the results were of even more value in connection with practical metallurgy’. [72]. Most ceramic materials are also manufactured, but rarely from the melt and, at first glance, look more like hard minerals than like soft metals.
 
37
Rosenhain had been thinking about the problem for several years, presumably since 1904, as would appear from the discussion of a paper by GD Bengough [82] where Guy Bengough (1876–1945) wrote that ‘the first action of a dilute reagent is to eat into the crystalline boundaries’ so that ‘the deduction may reasonably be drawn that the individual crystals in a pure metal are normally bound to one another by some substance stronger than the crystals themselves, but more easily attacked by etching agents. This substance must surely be no other than Beilby's amorphous material, arranged in a thin, more or less continuous layer round the crystals’. Sir George Beilby (1850–1924) never reacted positively to this hypothesis concerning the structure of grain boundaries.
 
38
Although he did teach ferrous metallurgy in the 1890’s at the École des Mines in Saint Étienne.
 
39
Speaking of Anderson and Norton, Foley wrote: ‘The authors have apparently driven another spike in the coffin of the general amorphous-metal hypothesis which has been reared a weakling from its inception’.
 
40
That is, the (ductile) intergranular fracture of metallic polycrystals at high temperatures versus the (brittle) transgranular fracture at low temperatures (when the amorphous interface can be assumed to be as hard as a glass below its transition temperature).
 
41
‘such positions as will balance the atomic forces’. This over estimation of the amplitude of atomic relaxations probably allowed them to consider that, under stress the interface would become amorphous so that ‘the material will behave in the manner described by Rosenhain in connection with the amorphous cement theory’. Yet, even in the unstressed condition, Rosenhain wrote in the discussion that he could not accept their illustration: ‘I think that it implies an arrangement of atoms in a condition which I think is not one of possible stable equilibrium. It implies atoms being brought in some places too close together and in others too far apart to fulfil what we believe is known of the conditions of atomic linkage that exist in solid metals. Such an arrangement of atoms is certainly improbable and would require proof before one could accept it as a fact’. Recent observations and simulations of asymmetrical grain boundaries in copper show that atomic disorder exists only locally [65, 66]. A true \( (100)_{1} //(\bar{4}30)_{2} \) tilt GB has recently been grown, observed and simulated, in a ceramic material: SrTiO3 [90].
 
42
Thum saw the development of slip planes but he unfortunately failed to recognize dislocations (which were probably present) because he had not been expecting to see them. Bubble soap models were rediscovered by Sir W. Lawrence Bragg and John F. Nye in 1947. With respect to Rosenhain’s model, dislocations did not help to simplify the considerations of deformation mechanisms in polycrystalline metals, but they are necessary to explain in details what is observed because they correspond to reality. At about the same time, the early thirties, the neutrino was postulated, not to simplify the existing theories, but to explain the riddle of the observed continuous energy spectrum of nuclear beta electrons.
 
43
G. Friedel proposed the term nematics, from the Greek nema meaning thread, ‘because of the linear discontinuities, which are twisted like threads’, (‘à cause des discontinuités, contournées comme des fils’ [21]). These topological defects correspond to disclinations. For discontinuities in smectics, G. Friedel and his son Edmond (see Table 1) noted in 1931 that they must have ‘the form of groups of focal conics’ (‘les discontinuités n’y peuvent apparaître que sous la forme d’un groupe de coniques focales’ [91], See also G. Friedel and François Grandjean in 1910/1911 [92, 93]). François Grandjean (1882-1975) later became a specialist of acarians.
 
44
This idea was generalized by Nevill Mott in 1948: ‘If two crystal planes are in contact, but cannot fit owing to different indices of orientation, one may suppose that the surface of contact is divided into islands where the fit is reasonably good, separated by lines near which fit is bad’. [94].
 
45
The same reasoning applies for twin orientations near the special {111} twin in elemental fcc crystals, and as well as for the contribution of widely spaced secondary dislocations, so, as noted by Thornton Read and William Shockley, misorientations near energetically favoured twins may have the characteristic |δθ| ln|δθ| additional cusp contribution [96]. This does not work near the structurally favoured {122} twin, the energy of which does not correspond to a cusp.
 
46
Jacques Friedel went to Bristol (1949–1952) to work with Nevill Mott and learn more about the electronic interactions in metals. Some of Jacques Friedel’s later contributions in that field eventually led, with François Ducastelle, to the development of the Finnis–Sinclair potentials for transition and noble metals (see [99]). His stay in Bristol also led Jacques Friedel meeting his future wife, a younger sister of Nevill Mott’s wife. He also met there with Charles Frank, who thus learnt of Georges Friedel’s Leçons.
 
47
Friedel wrote that what mostly prompted this extention was a ‘beautiful work’ by M. Schaskolsky and A. Schubnikow using in 1933 crystals of alum in an experiment very much akin to the later MgO smoke experiments. This Schubnikow is no one else that Alekseï Vasil’evich Shubnikov (1887–1970) who is famous for the Shubnikov groups, or antisymmetry groups, magnetic groups, coloured groups, which have been used in many fields, including the study of Grain Boundaries (for instance by Yves Le Corre and Hubert Curien in 1958, and by Denis Gratias and Richard Portier, and Demosthenes Vlachavas and Robert Pond in the 1970s and 1980s). Shubnikov had also been a pioneer in the formation and growth of crystals, in Leningrad (St Petersburg) and in Moscow.
 
48
Denis Gratias and Richard Portier already complained in 1982 that ‘the terminology to day in common use in grain boundary community is often unfortunate and confuses, for example, lattice nodes and crystal sites’. [117].
 
49
E.g. Charles Kittel, Introduction to Solid State Physics, pp. 4–5, Neil Ashcroft and David Mermin, Solid State Physics (1976) p. 75. It was introduced, in German, by Max Born in 1922 [118]. At the Göttingen University Born served as an assistant to David Hilbert, his mentor, who was famous for his ‘basis theorem’ so that Born was certainly aware of the first usage of the term basis.
 
50
Although, as we have seen, it is a sublattice from a mathematical point of view.
 
Literatur
1.
Zurück zum Zitat McLean D (1957) Grain boundaries in metals. Oxford University Press, London McLean D (1957) Grain boundaries in metals. Oxford University Press, London
2.
Zurück zum Zitat Bollmann W (1970) Crystal defects and crystalline interfaces. Springer, Berlin Bollmann W (1970) Crystal defects and crystalline interfaces. Springer, Berlin
3.
Zurück zum Zitat Murr LE (1975) Interfacial phenomena in metals and alloys. Addison-Wesley, Reading Murr LE (1975) Interfacial phenomena in metals and alloys. Addison-Wesley, Reading
4.
Zurück zum Zitat Orlov N, Perevezentsev VN, Rybin VV (1980) Granitsy zeren v metallakh. Metallurgiya, Moscow (in Russian) Orlov N, Perevezentsev VN, Rybin VV (1980) Granitsy zeren v metallakh. Metallurgiya, Moscow (in Russian)
5.
Zurück zum Zitat Bollmann W (1982) Crystal lattices, interfaces, matrices. Bollmann W, Geneva Bollmann W (1982) Crystal lattices, interfaces, matrices. Bollmann W, Geneva
6.
Zurück zum Zitat Kaibyshev OA, Valiev RZ (1987) Grain boundaries and properties of metals. Metallurgiya, Moscow (in Russian) Kaibyshev OA, Valiev RZ (1987) Grain boundaries and properties of metals. Metallurgiya, Moscow (in Russian)
7.
Zurück zum Zitat Wolf D, Yip S (1992) Materials interfaces. Chapman and Hall, London Wolf D, Yip S (1992) Materials interfaces. Chapman and Hall, London
8.
Zurück zum Zitat Fionova LK, Artemyev AV (1993) Grain boundaries in metals and semiconductors. Éditions de Physique, Les Ulis Fionova LK, Artemyev AV (1993) Grain boundaries in metals and semiconductors. Éditions de Physique, Les Ulis
9.
Zurück zum Zitat Sutton AP, Balluffi RW (1996) Interfaces in crystalline materials. Oxford University Press, Oxford Sutton AP, Balluffi RW (1996) Interfaces in crystalline materials. Oxford University Press, Oxford
10.
Zurück zum Zitat Howe JM (1997) Interfaces in materials. Wiley, New York Howe JM (1997) Interfaces in materials. Wiley, New York
11.
Zurück zum Zitat Priester L (2006) Les joints de grains. Éditions de Physique, Les Ulis Priester L (2006) Les joints de grains. Éditions de Physique, Les Ulis
12.
Zurück zum Zitat Grandjean F (1934) Bulletin de la Société Française de Minéralogie 57:144 (reprinted in 1939, with other contributions, in Georges Friedel (1865–1933). Berger-Levrault. 128 pp. Printing limited to one thousand copies) Grandjean F (1934) Bulletin de la Société Française de Minéralogie 57:144 (reprinted in 1939, with other contributions, in Georges Friedel (1865–1933). Berger-Levrault. 128 pp. Printing limited to one thousand copies)
13.
Zurück zum Zitat Donnay JDH (1934) Memorial of Georges Friedel. Am Miner 19:329–335 Donnay JDH (1934) Memorial of Georges Friedel. Am Miner 19:329–335
14.
Zurück zum Zitat Friedel J (1994) Graine de mandarin. Odile Jacob, Paris (Chapter 4 deals with Charles Friedel, and Chapter 5 deals with Georges Friedel) Friedel J (1994) Graine de mandarin. Odile Jacob, Paris (Chapter 4 deals with Charles Friedel, and Chapter 5 deals with Georges Friedel)
15.
Zurück zum Zitat Willemart A (1949) Charles Friedel (1832–1899). J Chem Educ 26:3–9CrossRef Willemart A (1949) Charles Friedel (1832–1899). J Chem Educ 26:3–9CrossRef
16.
Zurück zum Zitat Bataille X, Bram G (1998) La découverte de la réaction de Friedel et Crafts. Comptes Rendus hebdomadaires de l’Académie des Sciences IIc 1:293–296CrossRef Bataille X, Bram G (1998) La découverte de la réaction de Friedel et Crafts. Comptes Rendus hebdomadaires de l’Académie des Sciences IIc 1:293–296CrossRef
17.
Zurück zum Zitat Curie P (1900) Charles Friedel. Bulletin de la Société Française de Minéralogie 22:171–190 Curie P (1900) Charles Friedel. Bulletin de la Société Française de Minéralogie 22:171–190
18.
Zurück zum Zitat Katzir S (2004) The emergence of the principle of symmetry in physics. Hist Stud Phys Biol Sci 35:35–65CrossRef Katzir S (2004) The emergence of the principle of symmetry in physics. Hist Stud Phys Biol Sci 35:35–65CrossRef
19.
Zurück zum Zitat Friedel G (1897) Sur un chloro-aluminate de calcium hydraté se maclant par compression. Bulletin de la Société Française de Minéralogie 20:122–136 (+ Plate V) Friedel G (1897) Sur un chloro-aluminate de calcium hydraté se maclant par compression. Bulletin de la Société Française de Minéralogie 20:122–136 (+ Plate V)
20.
Zurück zum Zitat Birnin-Yauri UA, Glasser FP (1998) Friedel’s salt, Ca2Al(OH)6(Cl,OH)·2H2O: its solid solutions and their role in chloride binding. Cem Concr Res 28:1713–1723CrossRef Birnin-Yauri UA, Glasser FP (1998) Friedel’s salt, Ca2Al(OH)6(Cl,OH)·2H2O: its solid solutions and their role in chloride binding. Cem Concr Res 28:1713–1723CrossRef
21.
Zurück zum Zitat Friedel G (1922) Les états mésomorphes de la matière. Annales de Physique 18:273–474 Friedel G (1922) Les états mésomorphes de la matière. Annales de Physique 18:273–474
22.
Zurück zum Zitat Burchard U (1998) History of the development of the crystallographic goniometers. Miner Rec 29:517–583 Burchard U (1998) History of the development of the crystallographic goniometers. Miner Rec 29:517–583
23.
Zurück zum Zitat Romé de l’Isle JBL (1783) Cristallographie ou Description des Formes propres à tous les Corps du Règne Minéral. Imprimerie de Monsieur, Paris (spec. vol 1, p 93) Romé de l’Isle JBL (1783) Cristallographie ou Description des Formes propres à tous les Corps du Règne Minéral. Imprimerie de Monsieur, Paris (spec. vol 1, p 93)
24.
Zurück zum Zitat Friedel C (1869) Sur les propriétés pyro-électriques des cristaux bons conducteurs d’électricité. Ann Chim Phys 17:79–90 Friedel C (1869) Sur les propriétés pyro-électriques des cristaux bons conducteurs d’électricité. Ann Chim Phys 17:79–90
25.
Zurück zum Zitat Mallard E (1876) Explication des phénomènes optiques anomaux que présentent un grand nombre de substance cristallines. Ann Min 10:60–196 (+three plates) Mallard E (1876) Explication des phénomènes optiques anomaux que présentent un grand nombre de substance cristallines. Ann Min 10:60–196 (+three plates)
26.
Zurück zum Zitat Mallard E (1887) Les groupements cristallins. Revue Scientifique (revue rose) 17:129–138; 165–171 Mallard E (1887) Les groupements cristallins. Revue Scientifique (revue rose) 17:129–138; 165–171
28.
Zurück zum Zitat Lück R (2000) Dürer–Kepler–Penrose, the development of pentagon tilings. Mater Sci Eng A 294–296:263–267 Lück R (2000) Dürer–Kepler–Penrose, the development of pentagon tilings. Mater Sci Eng A 294–296:263–267
29.
Zurück zum Zitat Lord EA, Mackay AL, Ranganathan S (2006) New geometries for new materials. Cambridge University Press, Cambridge (USA) Lord EA, Mackay AL, Ranganathan S (2006) New geometries for new materials. Cambridge University Press, Cambridge (USA)
30.
Zurück zum Zitat Pauling L (1985) So-called icosahedral and decagonal quasicrystals are twins of an 820-atom cubic crystal. Phys Rev Lett 58:365–368CrossRef Pauling L (1985) So-called icosahedral and decagonal quasicrystals are twins of an 820-atom cubic crystal. Phys Rev Lett 58:365–368CrossRef
31.
Zurück zum Zitat Cahn JW, Gratias D, Shechtman D (1986) Pauling’s model not universally accepted. Nature 319:102–103CrossRef Cahn JW, Gratias D, Shechtman D (1986) Pauling’s model not universally accepted. Nature 319:102–103CrossRef
32.
Zurück zum Zitat Friedel G (1913) Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen. Comptes Rendus hebdomadaires de l’Académie des Sciences 157:1533–1536 Friedel G (1913) Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen. Comptes Rendus hebdomadaires de l’Académie des Sciences 157:1533–1536
33.
Zurück zum Zitat Ludwig W, Reischig P, King A, Herbig M, Lauridsen EM, Johnson G, Marrow TJ, Buffière JY (2009) Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis. Rev Sci Instrum 80:033905 (9 pp)CrossRef Ludwig W, Reischig P, King A, Herbig M, Lauridsen EM, Johnson G, Marrow TJ, Buffière JY (2009) Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis. Rev Sci Instrum 80:033905 (9 pp)CrossRef
34.
Zurück zum Zitat Friedel G (1920) Sur la loi générale des macles et sur les macles aberrantes. Comptes Rendus du Congrès des Sociétés Savantes (de Paris et des Départements) held in Strasbourg May 25–28 1920, pp 92–120 Friedel G (1920) Sur la loi générale des macles et sur les macles aberrantes. Comptes Rendus du Congrès des Sociétés Savantes (de Paris et des Départements) held in Strasbourg May 25–28 1920, pp 92–120
35.
Zurück zum Zitat Wallérant F (1899) Groupements cristallins. Gauthiers-Villars & Cie, Paris, p 81 Wallérant F (1899) Groupements cristallins. Gauthiers-Villars & Cie, Paris, p 81
36.
Zurück zum Zitat Turpin PJF, Brongniart A (1837) Rapport sur un mémoire de MM. Louis et Auguste Bravais, intitulé : Essai géométrique sur la symétrie des feuilles curvisériées et rectisériées. Comptes Rendus hebdomadaires de l’Académie des Sciences 4:611–622 Turpin PJF, Brongniart A (1837) Rapport sur un mémoire de MM. Louis et Auguste Bravais, intitulé : Essai géométrique sur la symétrie des feuilles curvisériées et rectisériées. Comptes Rendus hebdomadaires de l’Académie des Sciences 4:611–622
37.
Zurück zum Zitat Bravais A (1851) Études cristallographiques, Bachelier, Paris, 1851. Spec. the third part: Des macles et des hémitropies, first communicated to the Société Philomathique in 1850 (this Philomathic Society still exists today) Bravais A (1851) Études cristallographiques, Bachelier, Paris, 1851. Spec. the third part: Des macles et des hémitropies, first communicated to the Société Philomathique in 1850 (this Philomathic Society still exists today)
38.
Zurück zum Zitat Mallard E (1885) Sur la théorie des macles. Bulletin de la Société Minéralogique de France 8:452–469 Mallard E (1885) Sur la théorie des macles. Bulletin de la Société Minéralogique de France 8:452–469
40.
Zurück zum Zitat Friedel G (1933) Sur un nouveau type de macles. Bulletin de la société française de minéralogie 56:262–274 Friedel G (1933) Sur un nouveau type de macles. Bulletin de la société française de minéralogie 56:262–274
41.
Zurück zum Zitat Hahn Th, Klapper H (2003) In: Authier A (ed) International tables for crystallography, vol D. Physical properties of crystals. International Union of Crystallography/Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 393–448 Hahn Th, Klapper H (2003) In: Authier A (ed) International tables for crystallography, vol D. Physical properties of crystals. International Union of Crystallography/Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 393–448
42.
Zurück zum Zitat Friedel G (1911) Leçons de Cristallographie. Hermann et fils, Paris, p 310 Friedel G (1911) Leçons de Cristallographie. Hermann et fils, Paris, p 310
43.
Zurück zum Zitat Friedel G (1920) Contribution à l’étude géométrique des macles. Bulletin de la Société Française de Minéralogie 43:246–294 Friedel G (1920) Contribution à l’étude géométrique des macles. Bulletin de la Société Française de Minéralogie 43:246–294
44.
Zurück zum Zitat Friedel G (1926) Leçons de Cristallographie professées à la Faculté des sciences de Strasbourg. Berger-Levrault, Nancy, 602 pp (reprinted as Leçons de Cristallographie in 1964 by A. Blanchard, Paris) Friedel G (1926) Leçons de Cristallographie professées à la Faculté des sciences de Strasbourg. Berger-Levrault, Nancy, 602 pp (reprinted as Leçons de Cristallographie in 1964 by A. Blanchard, Paris)
45.
Zurück zum Zitat Donnay JDH, Donnay G (1959) In: International tables for X-ray crystallography, vol II (Section 3.19 of Chap 3. Crystal geometry by Donnay and Donnay). International Union of Crystallography/Kynoch Press, Birmingham, pp 104–105 Donnay JDH, Donnay G (1959) In: International tables for X-ray crystallography, vol II (Section 3.19 of Chap 3. Crystal geometry by Donnay and Donnay). International Union of Crystallography/Kynoch Press, Birmingham, pp 104–105
46.
Zurück zum Zitat Donnay JDH, Harker D (1937) A new law of crystal morphology extending the law of Bravais. Am Miner 22:446–467 Donnay JDH, Harker D (1937) A new law of crystal morphology extending the law of Bravais. Am Miner 22:446–467
47.
Zurück zum Zitat Barlow W (1883) Probable nature of the internal symmetry of crystals. Nature 29:186, 205, 404 (spec. p 207, col 1) Barlow W (1883) Probable nature of the internal symmetry of crystals. Nature 29:186, 205, 404 (spec. p 207, col 1)
48.
Zurück zum Zitat Heide F (1928) Die Japaner Zwillinge des Quarzes und ihr Auftreten im Quarzporphyr vom Saubach i. V. (that is, im Vogtland). Z Kristallogr 66:239–281 Heide F (1928) Die Japaner Zwillinge des Quarzes und ihr Auftreten im Quarzporphyr vom Saubach i. V. (that is, im Vogtland). Z Kristallogr 66:239–281
49.
Zurück zum Zitat Frondel C (1945) Secondary Dauphiné twinning in quartz. Am Miner 30:447–460 Frondel C (1945) Secondary Dauphiné twinning in quartz. Am Miner 30:447–460
50.
Zurück zum Zitat Heaney PJ, Veblen DR (1991) Observations of the α-β phase transition in quartz: a review of imaging and diffraction studies and some new results. Am Miner 76:1018–1032 Heaney PJ, Veblen DR (1991) Observations of the α-β phase transition in quartz: a review of imaging and diffraction studies and some new results. Am Miner 76:1018–1032
51.
Zurück zum Zitat Weiss CS (1832) Über die herzförmig genannten Zwillingskrystalle von Kalkspath, und gewisse analoge von Quarz. Abhandlungen der Königlichen Akademie der Wissenschaften in Berlin, Physikalische Klasse 77–87. (Read before the Academy of Science in 1829, printed in 1832) Weiss CS (1832) Über die herzförmig genannten Zwillingskrystalle von Kalkspath, und gewisse analoge von Quarz. Abhandlungen der Königlichen Akademie der Wissenschaften in Berlin, Physikalische Klasse 77–87. (Read before the Academy of Science in 1829, printed in 1832)
52.
Zurück zum Zitat Descloizeaux A (1855) Mémoire sur la cristallisation et la structure intérieure du quartz. Mallet-Bachelier, Paris Descloizeaux A (1855) Mémoire sur la cristallisation et la structure intérieure du quartz. Mallet-Bachelier, Paris
53.
Zurück zum Zitat Goldschmidt V (1905) Über die Zwillingsgesetze des Quarz. Tschermarks Mineralogische und Petralographische Mittheilungen 24:167–182CrossRef Goldschmidt V (1905) Über die Zwillingsgesetze des Quarz. Tschermarks Mineralogische und Petralographische Mittheilungen 24:167–182CrossRef
54.
Zurück zum Zitat Momma K, Nagase T, Kudoh Y, Kuribayashi T (2009) Computational simulations of the structure of Japan twin boundaries in quartz. Eur J Miner 21:373–383CrossRef Momma K, Nagase T, Kudoh Y, Kuribayashi T (2009) Computational simulations of the structure of Japan twin boundaries in quartz. Eur J Miner 21:373–383CrossRef
55.
Zurück zum Zitat Friedel C (1888) Sur une macle nouvelle du quartz. Bulletin de la Société Française de Minéralogie 11:29–31 Friedel C (1888) Sur une macle nouvelle du quartz. Bulletin de la Société Française de Minéralogie 11:29–31
56.
Zurück zum Zitat Aminoff G, Broomé B (1935) Strukturtheoretische Studien über Zwillinge. Z Kristallogr 80:355–376 Aminoff G, Broomé B (1935) Strukturtheoretische Studien über Zwillinge. Z Kristallogr 80:355–376
57.
Zurück zum Zitat Hardouin Duparc OBM (2007) Robert W. Cahn: 1924–2007. Int J Mat Res (ex Z. Metallkd.) 98:651–654 Hardouin Duparc OBM (2007) Robert W. Cahn: 1924–2007. Int J Mat Res (ex Z. Metallkd.) 98:651–654
58.
Zurück zum Zitat Hardouin Duparc OBM (2010) The Preston of the Guinier-Preston zones. Metall Mater Trans A 41:1873–1882CrossRef Hardouin Duparc OBM (2010) The Preston of the Guinier-Preston zones. Metall Mater Trans A 41:1873–1882CrossRef
59.
Zurück zum Zitat Preston GD (1927) The formation of twin metallic crystals. Nature 119:600–601CrossRef Preston GD (1927) The formation of twin metallic crystals. Nature 119:600–601CrossRef
60.
Zurück zum Zitat Slawson CB (1950) Twinning in the diamond. Am Miner 35:193–206 Slawson CB (1950) Twinning in the diamond. Am Miner 35:193–206
61.
Zurück zum Zitat Ellis WC (1950) Twin relationships in ingots of germanium. J Met Trans AIME 188:886 Ellis WC (1950) Twin relationships in ingots of germanium. J Met Trans AIME 188:886
62.
Zurück zum Zitat Whitwham D, Mouflard M, Lacombe P (1951) Discussion (of an article by W.C. Ellis and R.G. Treuting). J Met Trans AIME 191:1070–1074 Whitwham D, Mouflard M, Lacombe P (1951) Discussion (of an article by W.C. Ellis and R.G. Treuting). J Met Trans AIME 191:1070–1074
63.
Zurück zum Zitat Niggli P (1919) Geometrische Kristallographie des Diskontinuums. Borntraeger, Leipzig, pp 551–561 Niggli P (1919) Geometrische Kristallographie des Diskontinuums. Borntraeger, Leipzig, pp 551–561
64.
Zurück zum Zitat Niggli P (1924) Lehrbuch der Mineralogie. Borntraeger, Berlin Niggli P (1924) Lehrbuch der Mineralogie. Borntraeger, Berlin
65.
Zurück zum Zitat Hardouin Duparc OBM, Couzinié JPh, Thibault-Pénisson J, Lartigue-Korinek S, Descamps B, Priester L (2007) Atomic structure of symmetrical and asymmetrical facets in a near ∑=9 {221} Tilt Grain Boundary in Copper. Acta Mater 55:1791–1800CrossRef Hardouin Duparc OBM, Couzinié JPh, Thibault-Pénisson J, Lartigue-Korinek S, Descamps B, Priester L (2007) Atomic structure of symmetrical and asymmetrical facets in a near ∑=9 {221} Tilt Grain Boundary in Copper. Acta Mater 55:1791–1800CrossRef
66.
Zurück zum Zitat Couzinié JPh, Hardouin Duparc OBM, Lartigue-Korinek S, Thibault-Pénisson J, Descamps B, Priester L (2009) On the atomic structure of an asymmetrical near ∑=27 grain boundary in copper. Philos Mag Lett 89:757–767CrossRef Couzinié JPh, Hardouin Duparc OBM, Lartigue-Korinek S, Thibault-Pénisson J, Descamps B, Priester L (2009) On the atomic structure of an asymmetrical near ∑=27 grain boundary in copper. Philos Mag Lett 89:757–767CrossRef
67.
Zurück zum Zitat Bragg WL (1914) The crystalline structure of copper. Philos Mag 28:355–360 Bragg WL (1914) The crystalline structure of copper. Philos Mag 28:355–360
68.
Zurück zum Zitat King R, Chalmers B (1949) In: Chalmers B (ed) Progress in metal physics, vol 1. Butterworths, London, pp 127–162 King R, Chalmers B (1949) In: Chalmers B (ed) Progress in metal physics, vol 1. Butterworths, London, pp 127–162
69.
Zurück zum Zitat Hondros ED (1996) In: The Donald McLean symposium. University Press, Cambridge, pp 1–12 Hondros ED (1996) In: The Donald McLean symposium. University Press, Cambridge, pp 1–12
70.
Zurück zum Zitat Brandon D (2010) Defining grain boundaries. An historical perspective. Mater Sci Technol 26:762–773CrossRef Brandon D (2010) Defining grain boundaries. An historical perspective. Mater Sci Technol 26:762–773CrossRef
71.
Zurück zum Zitat Tresca HÉ (1868) Mémoire sur l'écoulement des corps solides. Mémoires présentés par divers savants de l’Académie royale des Sciences de l’Institut impérial de France, des Savants Étrangers 18:733–799 Tresca HÉ (1868) Mémoire sur l'écoulement des corps solides. Mémoires présentés par divers savants de l’Académie royale des Sciences de l’Institut impérial de France, des Savants Étrangers 18:733–799
72.
Zurück zum Zitat Sorby HC (1887) On the microscopical structure of iron and steel. J Iron Steel Inst (London) 33:255–288 (+17 figures) Sorby HC (1887) On the microscopical structure of iron and steel. J Iron Steel Inst (London) 33:255–288 (+17 figures)
73.
Zurück zum Zitat Osmond F, Werth J (1885) Théorie cellulaire des propriétés de l’acier. Ann Min 8:5–84 Osmond F, Werth J (1885) Théorie cellulaire des propriétés de l’acier. Ann Min 8:5–84
74.
Zurück zum Zitat Brillouin M (1898) Théorie des déformations permanentes des métaux industriels. Annales de Chimie et de Physique 13:377–404 Brillouin M (1898) Théorie des déformations permanentes des métaux industriels. Annales de Chimie et de Physique 13:377–404
75.
Zurück zum Zitat Quincke G (1905) The formation of ice and the grained structure of glaciers. Proc R Soc A 76:431–439 Quincke G (1905) The formation of ice and the grained structure of glaciers. Proc R Soc A 76:431–439
76.
Zurück zum Zitat Osmond F (1911) in the transcription of the written discussion of a paper by Grenet L: The Transformations of steel within the limits of the temperatures employed in the heat-treatment. J Iron Steel Inst 84:13–75 Osmond F (1911) in the transcription of the written discussion of a paper by Grenet L: The Transformations of steel within the limits of the temperatures employed in the heat-treatment. J Iron Steel Inst 84:13–75
77.
Zurück zum Zitat Rosenhain W, Ewen D (1912) The intercrystalline cohesion of metals. J Inst Met 8:149–185 Rosenhain W, Ewen D (1912) The intercrystalline cohesion of metals. J Inst Met 8:149–185
78.
Zurück zum Zitat Rosenhain W, Ewen D (1913) The intercrystalline cohesion of metals. J Inst Met 10:119–149 Rosenhain W, Ewen D (1913) The intercrystalline cohesion of metals. J Inst Met 10:119–149
79.
Zurück zum Zitat Ewing JA, Rosenhain W (1900) The crystalline structure of metals. First paper. Philos Trans R Soc Lond A 193:353–377, plates Ewing JA, Rosenhain W (1900) The crystalline structure of metals. First paper. Philos Trans R Soc Lond A 193:353–377, plates
80.
Zurück zum Zitat Ewing JA, Rosenhain W (1901) The crystalline structure of metals. Second paper. Philos Trans R Soc Lond A 195:279–301, plates (ibid.) Ewing JA, Rosenhain W (1901) The crystalline structure of metals. Second paper. Philos Trans R Soc Lond A 195:279–301, plates (ibid.)
81.
Zurück zum Zitat Kelly A (1976) Walter Rosenhain and materials research at Teddington. Philos Trans R Soc Lond A 282:5–36CrossRef Kelly A (1976) Walter Rosenhain and materials research at Teddington. Philos Trans R Soc Lond A 282:5–36CrossRef
82.
Zurück zum Zitat Bengough GD (1912) A study of the properties of alloys at high temperatures. J Inst Met 7:123–192 (discussions included) Bengough GD (1912) A study of the properties of alloys at high temperatures. J Inst Met 7:123–192 (discussions included)
83.
Zurück zum Zitat Schneider D, Mathieu C, Clément B (1995) Les Schneider, Le Creusot. Une famille, une entreprise, une ville (1836–1960). Fayard, Paris Schneider D, Mathieu C, Clément B (1995) Les Schneider, Le Creusot. Une famille, une entreprise, une ville (1836–1960). Fayard, Paris
84.
Zurück zum Zitat Jeffries Z, Archer RS (1924) The science of metals. Mc Graw-Hill, New York Jeffries Z, Archer RS (1924) The science of metals. Mc Graw-Hill, New York
85.
Zurück zum Zitat Anderson RJ, Norton JT (1925) X-ray evidence versus the amorphous-metal hypothesis. Trans AIME 71:720–744 (discussions included) Anderson RJ, Norton JT (1925) X-ray evidence versus the amorphous-metal hypothesis. Trans AIME 71:720–744 (discussions included)
86.
Zurück zum Zitat Foley FB (1925) in the discussion of Anderson and Norton’s paper. Trans AIME 71:735–737 Foley FB (1925) in the discussion of Anderson and Norton’s paper. Trans AIME 71:735–737
87.
Zurück zum Zitat Foley FB (1926) Amorphous cement and the formation of ferrite in the light of x-ray evidence. Trans AIME 73:850–858 (with discussion, see Thum) Foley FB (1926) Amorphous cement and the formation of ferrite in the light of x-ray evidence. Trans AIME 73:850–858 (with discussion, see Thum)
88.
Zurück zum Zitat Thum EE (1926) in the discussion of Foley’s paper. Trans AIME 73:857–858 Thum EE (1926) in the discussion of Foley’s paper. Trans AIME 73:857–858
89.
Zurück zum Zitat Hargreaves F, Hills RJ (1929) Work-softening and a theory of intercrystalline cohesion. J Inst Met 41:257–288 Hargreaves F, Hills RJ (1929) Work-softening and a theory of intercrystalline cohesion. J Inst Met 41:257–288
90.
Zurück zum Zitat Lee H, Mizoguchi T, Mitsui J, Yamamoto T, Kang SJ, Ikuhara Y (personal communication) Lee H, Mizoguchi T, Mitsui J, Yamamoto T, Kang SJ, Ikuhara Y (personal communication)
91.
Zurück zum Zitat Friedel G, Friedel E (1931) Sur la texture à coniques focales dans les corps mésomorphes. Le Journal de Physique et le Radium 2:133–138CrossRef Friedel G, Friedel E (1931) Sur la texture à coniques focales dans les corps mésomorphes. Le Journal de Physique et le Radium 2:133–138CrossRef
92.
Zurück zum Zitat Friedel G, Grandjean F (1910) les liquides à coniques focales. Comptes Rendus hebdomadaires de l’Académie des Sciences 151:762–765 Friedel G, Grandjean F (1910) les liquides à coniques focales. Comptes Rendus hebdomadaires de l’Académie des Sciences 151:762–765
93.
Zurück zum Zitat Friedel G, Grandjean F (1911) Structures des liquides à coniques focales. Comptes Rendus hebdomadaires de l’Académie des Sciences 152:322–325 Friedel G, Grandjean F (1911) Structures des liquides à coniques focales. Comptes Rendus hebdomadaires de l’Académie des Sciences 152:322–325
94.
Zurück zum Zitat Mott NF (1948) Slip at grain boundaries and grain growth in metals. Proc Phys Soc Lond 60:391–394 Mott NF (1948) Slip at grain boundaries and grain growth in metals. Proc Phys Soc Lond 60:391–394
95.
Zurück zum Zitat Taylor GI (1934) The mechanism of plastic deformation of crystals. Part II.—Comparison with observations. Proc R Soc Lond A 145:388–404 Taylor GI (1934) The mechanism of plastic deformation of crystals. Part II.—Comparison with observations. Proc R Soc Lond A 145:388–404
96.
Zurück zum Zitat Read WT, Shockley W (1950) Dislocation models of crystal grain boundaries. Phys Rev 78:275–289CrossRef Read WT, Shockley W (1950) Dislocation models of crystal grain boundaries. Phys Rev 78:275–289CrossRef
97.
Zurück zum Zitat Hardouin Duparc OBM (2009) Charles Crussard’s early contributions: Recrystallization in situ and a Grain Boundary study with J. Friedel and B. Cullity. Int J Mat Res (ex Z. Metallkd.) 100:1382–1388CrossRef Hardouin Duparc OBM (2009) Charles Crussard’s early contributions: Recrystallization in situ and a Grain Boundary study with J. Friedel and B. Cullity. Int J Mat Res (ex Z. Metallkd.) 100:1382–1388CrossRef
98.
Zurück zum Zitat Friedel J, Cullity BD, Crussard C (1953) Étude de la tension capillaire d'un joint dans un métal, en fonction de l'orientation des grains qu'il sépare. Acta Met 1:79–92CrossRef Friedel J, Cullity BD, Crussard C (1953) Étude de la tension capillaire d'un joint dans un métal, en fonction de l'orientation des grains qu'il sépare. Acta Met 1:79–92CrossRef
99.
Zurück zum Zitat Hardouin Duparc OBM (2009) On the origins of the Finnis-Sinclair potentials. Philos Mag 89:3117–3131CrossRef Hardouin Duparc OBM (2009) On the origins of the Finnis-Sinclair potentials. Philos Mag 89:3117–3131CrossRef
100.
Zurück zum Zitat Brandon D, Ralph B, Ranganathan S, Wald MS (1964) A field ion microscope study of atomic configuration at grain boundaries. Acta Metall 12:813–818CrossRef Brandon D, Ralph B, Ranganathan S, Wald MS (1964) A field ion microscope study of atomic configuration at grain boundaries. Acta Metall 12:813–818CrossRef
101.
Zurück zum Zitat Friedel G (1905) Sur la loi de Bravais et la loi des macles dans Haüy. Bulletin de la Société Française de Minéralogie 28:6–12 Friedel G (1905) Sur la loi de Bravais et la loi des macles dans Haüy. Bulletin de la Société Française de Minéralogie 28:6–12
102.
Zurück zum Zitat Haüy RJ (1801) Traité de Minéralogie. Louis, Paris (spec. vol 2, pp 88–89) Haüy RJ (1801) Traité de Minéralogie. Louis, Paris (spec. vol 2, pp 88–89)
103.
Zurück zum Zitat Schiebold E (1919) Die Verwendung der Laue-diagramme zur Bestimmung der Struktur des Kalkspates. Abhandlungen der Sächsischen Akademie der Wissenschaften, Mathematisch-Physische Klasse 36:67–213 Schiebold E (1919) Die Verwendung der Laue-diagramme zur Bestimmung der Struktur des Kalkspates. Abhandlungen der Sächsischen Akademie der Wissenschaften, Mathematisch-Physische Klasse 36:67–213
104.
Zurück zum Zitat Beckenkamp J (1923) Über Zwillingsbildung. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilageband 48:1–33 Beckenkamp J (1923) Über Zwillingsbildung. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilageband 48:1–33
105.
Zurück zum Zitat Löffler M (1934) Strukturelle und kristallochemische Grundlagen der Zwillingsbildung. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 68:125–193 Löffler M (1934) Strukturelle und kristallochemische Grundlagen der Zwillingsbildung. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 68:125–193
106.
Zurück zum Zitat Donnay JDH (1940) Width of albite-twinning lamellae. Am Miner 25:578–586 Donnay JDH (1940) Width of albite-twinning lamellae. Am Miner 25:578–586
107.
Zurück zum Zitat Crussard C (1945) Les déformations des cristaux métalliques. Bulletin de la Société Française de Minéralogie 68:174–197 Crussard C (1945) Les déformations des cristaux métalliques. Bulletin de la Société Française de Minéralogie 68:174–197
108.
Zurück zum Zitat Goux C (1961) Étude de la structure et des propriétés des joints de grains à l'aide de bicristaux orientés en aluminium pur. Les Mémoires Scientifiques of the Revue de Métallurgie 58:661–667 Goux C (1961) Étude de la structure et des propriétés des joints de grains à l'aide de bicristaux orientés en aluminium pur. Les Mémoires Scientifiques of the Revue de Métallurgie 58:661–667
109.
Zurück zum Zitat Ranganathan S (1966) On the geometry of coincident site lattices. Acta Crystallogr A 21:197–199CrossRef Ranganathan S (1966) On the geometry of coincident site lattices. Acta Crystallogr A 21:197–199CrossRef
110.
Zurück zum Zitat Nespolo M, Ferraris G (2006) The derivation of twin laws in non-merohedric twins. Application to the analysis of hybrid twins. Acta Crystallogr A 62:336–349CrossRef Nespolo M, Ferraris G (2006) The derivation of twin laws in non-merohedric twins. Application to the analysis of hybrid twins. Acta Crystallogr A 62:336–349CrossRef
111.
Zurück zum Zitat Grimmer H, Nespolo M (2006) Geminography: the crystallography of twins. Z Kristallogr 221:28–50CrossRef Grimmer H, Nespolo M (2006) Geminography: the crystallography of twins. Z Kristallogr 221:28–50CrossRef
112.
Zurück zum Zitat Nespolo M, Ferraris G (2003) Geminography – The science of twinning applied to the early-stage derivation of non-merohedric twin laws. Z Kristallogr 18:178–181CrossRef Nespolo M, Ferraris G (2003) Geminography – The science of twinning applied to the early-stage derivation of non-merohedric twin laws. Z Kristallogr 18:178–181CrossRef
113.
Zurück zum Zitat Takeda H (1975) Prediction of twin formation. J Miner Soc Jpn 12:89–102 (in Japanese)CrossRef Takeda H (1975) Prediction of twin formation. J Miner Soc Jpn 12:89–102 (in Japanese)CrossRef
114.
Zurück zum Zitat Hardouin Duparc OBM, Poulat S, Larere A, Thibault J, Priester L (2000) High-resolution transmission electron microscopy observations and atomic simulations of the structures of exact and near ∑=11 {332} tilt grain boundaries in nickel. Philos Mag A 80:853–870CrossRef Hardouin Duparc OBM, Poulat S, Larere A, Thibault J, Priester L (2000) High-resolution transmission electron microscopy observations and atomic simulations of the structures of exact and near ∑=11 {332} tilt grain boundaries in nickel. Philos Mag A 80:853–870CrossRef
115.
Zurück zum Zitat Warrington DH, Bufalini P (1971) The coincidence site lattice and grain boundaries. Scr Metall 5:771–776CrossRef Warrington DH, Bufalini P (1971) The coincidence site lattice and grain boundaries. Scr Metall 5:771–776CrossRef
116.
Zurück zum Zitat Grimmer H, Bollmann W, Warrington DF (1974) Coincidence-site lattices and complete pattern-shift lattices in cubic crystals. Acta Crystallogr A 30:197–207CrossRef Grimmer H, Bollmann W, Warrington DF (1974) Coincidence-site lattices and complete pattern-shift lattices in cubic crystals. Acta Crystallogr A 30:197–207CrossRef
117.
Zurück zum Zitat Gratias D, Portier R (1982) General geometrical models of grain boundaries. J Phys 43C6:15–24 Gratias D, Portier R (1982) General geometrical models of grain boundaries. J Phys 43C6:15–24
118.
Zurück zum Zitat Born M (1922) Atomtheorie des festen Zustandes (Dynamik der Krystallgitter). In: Sommerfeld A (ed) Encyklopädie der mathematischen Wissenschaften mit Einschluß ihrer Anwendungen, vol 5, Part 3. B.G. Teubner, Leipzig, pp 527–781 Born M (1922) Atomtheorie des festen Zustandes (Dynamik der Krystallgitter). In: Sommerfeld A (ed) Encyklopädie der mathematischen Wissenschaften mit Einschluß ihrer Anwendungen, vol 5, Part 3. B.G. Teubner, Leipzig, pp 527–781
119.
Zurück zum Zitat Kronberg ML, Wilson FH (1949) Secondary recrystallization in copper. Trans AIME 185:501–514 Kronberg ML, Wilson FH (1949) Secondary recrystallization in copper. Trans AIME 185:501–514
120.
Zurück zum Zitat Ellis WC, Treuting RG (1951) Atomic relationship in the cubic twinned state. J Met (Trans AIME) 189:53–55 Ellis WC, Treuting RG (1951) Atomic relationship in the cubic twinned state. J Met (Trans AIME) 189:53–55
121.
Zurück zum Zitat Hou M, Hairie A, Lebouvier B, Paumier E, Ralantoson N, Hardouin Duparc O, Sutton AP (1996) Direct free energy estimates along a real path by means of constraints molecular dynamics. Mater Sci Forum 207–209:249–252 Hou M, Hairie A, Lebouvier B, Paumier E, Ralantoson N, Hardouin Duparc O, Sutton AP (1996) Direct free energy estimates along a real path by means of constraints molecular dynamics. Mater Sci Forum 207–209:249–252
122.
Zurück zum Zitat Weins M, Chalmers B, Gleiter H, Ashby M (1969) Structure of high angle grain boundaries. Scr Metall 3:601–604CrossRef Weins M, Chalmers B, Gleiter H, Ashby M (1969) Structure of high angle grain boundaries. Scr Metall 3:601–604CrossRef
123.
Zurück zum Zitat Weins M (1972) Structure and energy of grain boundaries. Surf Sci 31:138–160CrossRef Weins M (1972) Structure and energy of grain boundaries. Surf Sci 31:138–160CrossRef
124.
Zurück zum Zitat Pond RC, Smith DA (1974) An experimental technique for detecting rigid body translations between adjacent grains. Can Metall Q 13:39–42 Pond RC, Smith DA (1974) An experimental technique for detecting rigid body translations between adjacent grains. Can Metall Q 13:39–42
125.
Zurück zum Zitat Pond RC, Smith DA, Clark WAT (1974) An experimental study of coincidence grain boundary structure using displacement fringe. J Microsc 102:309–316CrossRef Pond RC, Smith DA, Clark WAT (1974) An experimental study of coincidence grain boundary structure using displacement fringe. J Microsc 102:309–316CrossRef
126.
Zurück zum Zitat Eichholz DE (1949) Aristotle‘s theory of the formation of metals and minerals. Class Q 43:141–146CrossRef Eichholz DE (1949) Aristotle‘s theory of the formation of metals and minerals. Class Q 43:141–146CrossRef
127.
Zurück zum Zitat Friedel G (1904–1905) Études sur les groupements cristallins. Bulletin de la Société de l’Industrie Minérale 3:877; 4:127; 4:479 (also published as a single book in 1904 by Théolier, and J. Thomas et Cie, Saint-Étienne) Friedel G (1904–1905) Études sur les groupements cristallins. Bulletin de la Société de l’Industrie Minérale 3:877; 4:127; 4:479 (also published as a single book in 1904 by Théolier, and J. Thomas et Cie, Saint-Étienne)
128.
Zurück zum Zitat Nespolo M, Ferraris G (2007) Overlooked problems in manifold twins: twin misfit in zero-obliquity TLQS twinning and twin index calculation. Acta Crystallogr A 63:278–286CrossRef Nespolo M, Ferraris G (2007) Overlooked problems in manifold twins: twin misfit in zero-obliquity TLQS twinning and twin index calculation. Acta Crystallogr A 63:278–286CrossRef
129.
Zurück zum Zitat Donnay JDH, Donnay G (1983) The Staurolite story. Miner Pet 31:1–15 Donnay JDH, Donnay G (1983) The Staurolite story. Miner Pet 31:1–15
Metadaten
Titel
A review of some elements in the history of grain boundaries, centered on Georges Friedel, the coincident ‘site’ lattice and the twin index
verfasst von
O. B. M. Hardouin Duparc
Publikationsdatum
01.06.2011
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2011
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-011-5367-1

Weitere Artikel der Ausgabe 12/2011

Journal of Materials Science 12/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.