Skip to main content
Erschienen in: Journal of Materials Science 1/2018

05.09.2017 | Biomaterials

Synthesis and characterization of mechanically strong carboxymethyl cellulose–gelatin–hydroxyapatite nanocomposite for load-bearing orthopedic application

verfasst von: Chandrani Sarkar, Pushpa Kumari, Kumar Anuvrat, Sumant Kumar Sahu, Jui Chakraborty, Subhadra Garai

Erschienen in: Journal of Materials Science | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Novel three-dimensional hybrid polymer–hydroxyapatite nanocomposites have been developed as load-bearing synthetic bone graft through in situ mineralization process, using natural polymers carboxymethyl cellulose (CMC) and gelatin (Gel) as matrix. This process is simple and does not involve any chemical cross-linker. Detailed structural and physicochemical characterization of the samples disclosed that incorporation of gelatin with CMC assists the formation of CMC-Gel polymeric network of new conformational structure through non-covalent interactions (H-bond). The formation of hydroxyapatite (HA) in this polymeric network was occurred in such a fashion that the HA serves as bridging molecule which strengthen the polymeric network more and formed a mechanically strong three-dimensional CMC-Gel-HA nanocomposite. The synthesized CMC-Gel-HA nanocomposites have compressive strength and modulus in the range of 40–86 MPa and 0.4–1.2 GPa, respectively, analogous to human cancellous as well as cortical bone. In vitro cell interaction of the synthesized nanocomposites with osteoblast-like MG-63 cells has been evaluated. Results showed that synthesized CMC-Gel-HA nanocomposite promote cells for high alkaline phosphatase activity and extracellular mineralization. Extracellular mineralization ability of nanocomposite was investigated by alizarin red staining and von Kossa staining. Biodegradable nature and bone apatite formation ability of CMC-Gel-HA nanocomposite under simulated physiological environment were investigated by different characterization processes. Results indicated that the synthesized CMC-Gel-HA nanocomposite has great potential to be used as regenerative bone graft in major load-bearing region.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update Injury. Int J Care Inj 36:S20–S27CrossRef Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update Injury. Int J Care Inj 36:S20–S27CrossRef
2.
Zurück zum Zitat Brydone AS, Meek D, Maclaine S (2010) Bone grafting, orthopedic biomaterials, and the clinical need for bone engineering. J Proc Inst Mech Eng H 224:1329–1343CrossRef Brydone AS, Meek D, Maclaine S (2010) Bone grafting, orthopedic biomaterials, and the clinical need for bone engineering. J Proc Inst Mech Eng H 224:1329–1343CrossRef
3.
Zurück zum Zitat Barrere F, Mahmood TA, Groot KD, van Blitterswijk CA (2008) Advanced biomaterials for skeletal tissue regeneration: instructive and smart functions. Mater Sci Eng, R 59:38–71CrossRef Barrere F, Mahmood TA, Groot KD, van Blitterswijk CA (2008) Advanced biomaterials for skeletal tissue regeneration: instructive and smart functions. Mater Sci Eng, R 59:38–71CrossRef
4.
Zurück zum Zitat Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169CrossRef Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169CrossRef
5.
Zurück zum Zitat Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146CrossRef Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146CrossRef
7.
Zurück zum Zitat Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X (2006) A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J 42:3171–3179CrossRef Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X (2006) A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J 42:3171–3179CrossRef
8.
Zurück zum Zitat Chen J, Nan K, Yin S, Wang Y, Wu T, Zhang Q (2010) Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix. Coll Surf B 81:640–647CrossRef Chen J, Nan K, Yin S, Wang Y, Wu T, Zhang Q (2010) Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix. Coll Surf B 81:640–647CrossRef
9.
Zurück zum Zitat Yang W, Both SK, Zuo Y, Birgani ZT, Habibovic P, Li Y, Jansen JA, Yang F (2015) Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering. J Biomed Mater Res 103:2251–2259CrossRef Yang W, Both SK, Zuo Y, Birgani ZT, Habibovic P, Li Y, Jansen JA, Yang F (2015) Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering. J Biomed Mater Res 103:2251–2259CrossRef
10.
Zurück zum Zitat Sun F, Zhou H, Lee J (2011) Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 7:3813–3828CrossRef Sun F, Zhou H, Lee J (2011) Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 7:3813–3828CrossRef
11.
Zurück zum Zitat Bleek K, Taubert A (2013) New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution. Acta Biomater 9:6283–6321CrossRef Bleek K, Taubert A (2013) New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution. Acta Biomater 9:6283–6321CrossRef
12.
Zurück zum Zitat Wegst UGK, Bai H, Saiz E, Tomsia PA, Ritchie RO (2014) Bioinspired structural materials. Nat Mater 14:23–36CrossRef Wegst UGK, Bai H, Saiz E, Tomsia PA, Ritchie RO (2014) Bioinspired structural materials. Nat Mater 14:23–36CrossRef
13.
Zurück zum Zitat Minardi S, Corradetti B, Taraballi F, Sandri M, Eps JV, Cabrera F, Weiner BK, Tampieri A, Tasciotti E (2015) Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche, for bone augmentation. Biomaterials 62:128–137CrossRef Minardi S, Corradetti B, Taraballi F, Sandri M, Eps JV, Cabrera F, Weiner BK, Tampieri A, Tasciotti E (2015) Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche, for bone augmentation. Biomaterials 62:128–137CrossRef
14.
Zurück zum Zitat Wells HC, Sizeland KH, Kirby N, Hawley A, Mudie S, Haverkamp RG (2015) Collagen fibril structure and strength in acellular dermal matrix materials of bovine, porcine, and human origin. ACS Biomater Sci Eng 1:1026–1038CrossRef Wells HC, Sizeland KH, Kirby N, Hawley A, Mudie S, Haverkamp RG (2015) Collagen fibril structure and strength in acellular dermal matrix materials of bovine, porcine, and human origin. ACS Biomater Sci Eng 1:1026–1038CrossRef
15.
Zurück zum Zitat Kane RJ, Weiss BHE, Meagher MJ, Liu Y, Gargac JA, Niebur GL, Wagner DR, Roeder RK (2015) Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta Biomater 17:16–25CrossRef Kane RJ, Weiss BHE, Meagher MJ, Liu Y, Gargac JA, Niebur GL, Wagner DR, Roeder RK (2015) Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta Biomater 17:16–25CrossRef
16.
Zurück zum Zitat Kikuchi M, Suetsugu Y, Tanaka J, Ito S, Ichinose S, Shiniyama K, Hiraoka Y, Mandai Y, Nakatani S (1999) The biomimetic synthesis and biocompatibility of self-organized hydroxyapatite/collagen composites. Bioceram 12:393–396CrossRef Kikuchi M, Suetsugu Y, Tanaka J, Ito S, Ichinose S, Shiniyama K, Hiraoka Y, Mandai Y, Nakatani S (1999) The biomimetic synthesis and biocompatibility of self-organized hydroxyapatite/collagen composites. Bioceram 12:393–396CrossRef
17.
Zurück zum Zitat Chang MC, Ikoma T, Kikuchi M, Tanaka J (2002) Crosslinkage of hydroxyapatite/collagen nanocomposite using glutaraldehyde. J Mater Sci Mat Med 13:993–997CrossRef Chang MC, Ikoma T, Kikuchi M, Tanaka J (2002) Crosslinkage of hydroxyapatite/collagen nanocomposite using glutaraldehyde. J Mater Sci Mat Med 13:993–997CrossRef
18.
Zurück zum Zitat Pek YS, Gao S, Arshad MSM, Leck KJ, Ying JY (2008) Porous collagen-apatite nanocomposite foams as bone regeneration scaffolds. Biomaterials 29:4300–4305CrossRef Pek YS, Gao S, Arshad MSM, Leck KJ, Ying JY (2008) Porous collagen-apatite nanocomposite foams as bone regeneration scaffolds. Biomaterials 29:4300–4305CrossRef
19.
Zurück zum Zitat Chang MC, Ko CC, Douglas WH (2003) Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24:2853–2862CrossRef Chang MC, Ko CC, Douglas WH (2003) Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24:2853–2862CrossRef
20.
Zurück zum Zitat Azami M, Tavakol S, Samadikuchaksaraei A, Hashjin MS, Baheiraei N, Kamali M, Nourani MR (2012) A porous hydroxyapatite/gelatin nanocomposite scaffold for bone tissue repair: in vitro and in vivo evaluation. J Biomater Sci 23:2353–2368 Azami M, Tavakol S, Samadikuchaksaraei A, Hashjin MS, Baheiraei N, Kamali M, Nourani MR (2012) A porous hydroxyapatite/gelatin nanocomposite scaffold for bone tissue repair: in vitro and in vivo evaluation. J Biomater Sci 23:2353–2368
21.
Zurück zum Zitat Kim HW, Knowles JC, Kim HE (2005) Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release. J Biomed Mater Res B 74:686–698CrossRef Kim HW, Knowles JC, Kim HE (2005) Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release. J Biomed Mater Res B 74:686–698CrossRef
22.
Zurück zum Zitat Kim HW, Kim HE, Salih V (2005) Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin- hydroxyapatite for tissue engineering scaffolds. Biomaterials 26:5221–5230CrossRef Kim HW, Kim HE, Salih V (2005) Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin- hydroxyapatite for tissue engineering scaffolds. Biomaterials 26:5221–5230CrossRef
23.
Zurück zum Zitat Serra IR, Fradique R, Vallejo MCS, Correia TR, Miguel SP, Correia IJ (2015) Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. Mater Sci Eng, C 55:592–604CrossRef Serra IR, Fradique R, Vallejo MCS, Correia TR, Miguel SP, Correia IJ (2015) Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. Mater Sci Eng, C 55:592–604CrossRef
24.
Zurück zum Zitat Sharma C, Dinda AK, Mishra NC (2012) Synthesis and characterization of glycine modified chitosan-gelatin-alginate composite scaffold for tissue engineering applications. J Biomater Tiss Eng 2:133–142CrossRef Sharma C, Dinda AK, Mishra NC (2012) Synthesis and characterization of glycine modified chitosan-gelatin-alginate composite scaffold for tissue engineering applications. J Biomater Tiss Eng 2:133–142CrossRef
25.
Zurück zum Zitat Luo Y, Lode A, Akkineni AR, Gelinsky M (2015) Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv 5:43480–43488CrossRef Luo Y, Lode A, Akkineni AR, Gelinsky M (2015) Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv 5:43480–43488CrossRef
26.
Zurück zum Zitat Balakrishnana B, Joshia N, Jayakrishnanb A, Banerjee R (2013) Self cross-linked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta biomaterial 10:3650–3663CrossRef Balakrishnana B, Joshia N, Jayakrishnanb A, Banerjee R (2013) Self cross-linked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta biomaterial 10:3650–3663CrossRef
27.
Zurück zum Zitat Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC (2014) Fabrication and characterization of PCL/gelatine/chitosan ternary nanofibrous composite scaffold for tissue engineering applications. J Mater Sci 49:1076–1089. doi:10.1007/s10853-013-7785-8 CrossRef Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC (2014) Fabrication and characterization of PCL/gelatine/chitosan ternary nanofibrous composite scaffold for tissue engineering applications. J Mater Sci 49:1076–1089. doi:10.​1007/​s10853-013-7785-8 CrossRef
28.
Zurück zum Zitat Svensson A, Nicklasson E, Herrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenhol P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRef Svensson A, Nicklasson E, Herrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenhol P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRef
29.
Zurück zum Zitat Brackmann C, Bodin A, Akason M, Gatenholm P, Enijder A (2010) Visualization of the cellulose biosynthesis and cell integration into cellulose scaffolds. Biomacromol 11:542–548CrossRef Brackmann C, Bodin A, Akason M, Gatenholm P, Enijder A (2010) Visualization of the cellulose biosynthesis and cell integration into cellulose scaffolds. Biomacromol 11:542–548CrossRef
30.
Zurück zum Zitat Hutchens SA, Benson RS, Evans BR, O’Neil HM, Rawn CJ (2006) Biomimetic synthesis of calcium deficient hydroxyapatite in a natural hydrogel. Biomaterials 27:4661–4670CrossRef Hutchens SA, Benson RS, Evans BR, O’Neil HM, Rawn CJ (2006) Biomimetic synthesis of calcium deficient hydroxyapatite in a natural hydrogel. Biomaterials 27:4661–4670CrossRef
31.
Zurück zum Zitat Lii CY, Tomasik P, Zaleska H, Liaw SC, Lai VMF (2002) Carboxymethyl cellulose-gelatin complexes. Carbohydr polym 50:19–26CrossRef Lii CY, Tomasik P, Zaleska H, Liaw SC, Lai VMF (2002) Carboxymethyl cellulose-gelatin complexes. Carbohydr polym 50:19–26CrossRef
32.
Zurück zum Zitat Taokaew S, Seetabhawang S, Siripong P, Phisalaphong M (2013) Biosynthesis and characterization of nanocellulose-gelatin films. Materials 6:782–794CrossRef Taokaew S, Seetabhawang S, Siripong P, Phisalaphong M (2013) Biosynthesis and characterization of nanocellulose-gelatin films. Materials 6:782–794CrossRef
33.
Zurück zum Zitat Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91:638–645CrossRef Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91:638–645CrossRef
34.
Zurück zum Zitat Rokhade AP, Agnihotri SA, Patil SA, Malliarjuna NN, Kulkarni PV, Aminabhavi TM (2006) Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym 65:243–252CrossRef Rokhade AP, Agnihotri SA, Patil SA, Malliarjuna NN, Kulkarni PV, Aminabhavi TM (2006) Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym 65:243–252CrossRef
35.
Zurück zum Zitat Wiwatwongwana F, Khunathon Y, Rangsri W, Promma N, Pattana S (2012) Identification of shear modulus of gelatin blended with carboxymethylcellulose scaffolds using curve fitting method from compressive test. J Mater Sci Res 1:106–113 Wiwatwongwana F, Khunathon Y, Rangsri W, Promma N, Pattana S (2012) Identification of shear modulus of gelatin blended with carboxymethylcellulose scaffolds using curve fitting method from compressive test. J Mater Sci Res 1:106–113
36.
Zurück zum Zitat Isikli C, Hasirci V, Hasirci N (2012) Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. Tiss Eng Regen Med 6:135–143CrossRef Isikli C, Hasirci V, Hasirci N (2012) Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. Tiss Eng Regen Med 6:135–143CrossRef
37.
Zurück zum Zitat Sadeghi D, Nazarian H, Marouf N, Aghalu F, Nojehdehyan H, Dastjerdi EV (2013) Alkaline phosphatase activity of osteoblast cells on three-dimensional chitosan gelatin/hydroxyapatite composite scaffolds. J Dent Sch 30:203–209 Sadeghi D, Nazarian H, Marouf N, Aghalu F, Nojehdehyan H, Dastjerdi EV (2013) Alkaline phosphatase activity of osteoblast cells on three-dimensional chitosan gelatin/hydroxyapatite composite scaffolds. J Dent Sch 30:203–209
38.
Zurück zum Zitat Sharma C, Dinda AK, Potdar PD, Chou CF, Mishra NC (2016) Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C 64:416–427CrossRef Sharma C, Dinda AK, Potdar PD, Chou CF, Mishra NC (2016) Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C 64:416–427CrossRef
39.
Zurück zum Zitat Teng SH, Liang MH, Wang P, Luo Y (2016) Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: in-situ synthesis and characterization. Mater Sci Eng C 58:610–613CrossRef Teng SH, Liang MH, Wang P, Luo Y (2016) Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: in-situ synthesis and characterization. Mater Sci Eng C 58:610–613CrossRef
40.
Zurück zum Zitat Li J, Chen Y, Yin Y, Yao F, Yao K (2007) Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 28:781–790CrossRef Li J, Chen Y, Yin Y, Yao F, Yao K (2007) Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 28:781–790CrossRef
41.
Zurück zum Zitat Teng S, Shi J, Peng B, Chen L (2006) The effect of alginate addition on the structure and morphology of hydroxyapatite/gelatin nanocomposites. Compos Sci Technol 66:1532–1538CrossRef Teng S, Shi J, Peng B, Chen L (2006) The effect of alginate addition on the structure and morphology of hydroxyapatite/gelatin nanocomposites. Compos Sci Technol 66:1532–1538CrossRef
42.
Zurück zum Zitat Garai S, Sinha A (2014) Biomimetic nanocomposites of carboxymethyl cellulose-hydroxyapatite: novel three dimensional load bearing bone grafts. Coll Surf B 115:182–190CrossRef Garai S, Sinha A (2014) Biomimetic nanocomposites of carboxymethyl cellulose-hydroxyapatite: novel three dimensional load bearing bone grafts. Coll Surf B 115:182–190CrossRef
43.
Zurück zum Zitat George A, Ravindran S (2010) Protein templates in hard tissue engineering. Nano today 5:254–266CrossRef George A, Ravindran S (2010) Protein templates in hard tissue engineering. Nano today 5:254–266CrossRef
44.
Zurück zum Zitat Cui FZ, Li Y, Ge J (2007) Self-assembly of mineralized collagen composites. Mater Sci Eng R 57:1–27CrossRef Cui FZ, Li Y, Ge J (2007) Self-assembly of mineralized collagen composites. Mater Sci Eng R 57:1–27CrossRef
45.
Zurück zum Zitat Farbod K, Nejadnik MR, Jansen JA, Leeuwenburgh SCG (2014) Interactions between inorganic and organic phases in bone tissue as a source of inspiration for design of novel nanocomposites. Tiss Eng B 20:173–188CrossRef Farbod K, Nejadnik MR, Jansen JA, Leeuwenburgh SCG (2014) Interactions between inorganic and organic phases in bone tissue as a source of inspiration for design of novel nanocomposites. Tiss Eng B 20:173–188CrossRef
46.
Zurück zum Zitat Pei Y, Ye D, Zhao Q, Wang X, Zhang C, Huang W, Zhang N, Liu S, Zhang L (2015) Effective promoting wound healing with cellulose/gelatin sponges constructed directly from a cellulose solution. J Mater Chem B 3:7518–7528CrossRef Pei Y, Ye D, Zhao Q, Wang X, Zhang C, Huang W, Zhang N, Liu S, Zhang L (2015) Effective promoting wound healing with cellulose/gelatin sponges constructed directly from a cellulose solution. J Mater Chem B 3:7518–7528CrossRef
47.
Zurück zum Zitat Kim HL, Jung GY, Yoon JH, Han JS, Park YJ, Kim DG, Zhang M, Kim DJ (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C 54:20–25CrossRef Kim HL, Jung GY, Yoon JH, Han JS, Park YJ, Kim DG, Zhang M, Kim DJ (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C 54:20–25CrossRef
48.
Zurück zum Zitat Koupaei N, Karkhaneh A, Joupari MD (2015) Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds. J Biomed Mater Res 103:3919–3929CrossRef Koupaei N, Karkhaneh A, Joupari MD (2015) Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds. J Biomed Mater Res 103:3919–3929CrossRef
49.
Zurück zum Zitat Rodriguez IA, Saxena G, Hixon KR, Sell SA, Bowlin GL (2016) In vitro characterization of MG-63 osteoblast-like cells cultured on organic-inorganic lyophilized gelatin sponges for early bone healing. J Biomed Mater Res 104:2011–2019CrossRef Rodriguez IA, Saxena G, Hixon KR, Sell SA, Bowlin GL (2016) In vitro characterization of MG-63 osteoblast-like cells cultured on organic-inorganic lyophilized gelatin sponges for early bone healing. J Biomed Mater Res 104:2011–2019CrossRef
50.
Zurück zum Zitat Liuyun J, Yubao L, Chendong X (2009) Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/Carboxymethyl cellulose for bone tissue engineering. J Biomed Sci 16:65–75CrossRef Liuyun J, Yubao L, Chendong X (2009) Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/Carboxymethyl cellulose for bone tissue engineering. J Biomed Sci 16:65–75CrossRef
51.
Zurück zum Zitat Liuyun J, Yubao L, Li Z, Jianguo L (2008) Preparation and properties of a novel bone repair composite: nano-hydroxyapatite/chitosan/Carboxymethyl cellulose. J Mater Sci Mater Med 19:981–987CrossRef Liuyun J, Yubao L, Li Z, Jianguo L (2008) Preparation and properties of a novel bone repair composite: nano-hydroxyapatite/chitosan/Carboxymethyl cellulose. J Mater Sci Mater Med 19:981–987CrossRef
52.
Zurück zum Zitat Zheng X, Zhou S, Xiao Y, Yu X, Feng B (2009) In situ preparation and characterization of a novel gelatin/poly(d, l-lactide)/hydroxyapatite nanocomposite. J Biomed Mater Res B 91:181–190CrossRef Zheng X, Zhou S, Xiao Y, Yu X, Feng B (2009) In situ preparation and characterization of a novel gelatin/poly(d, l-lactide)/hydroxyapatite nanocomposite. J Biomed Mater Res B 91:181–190CrossRef
53.
Zurück zum Zitat Rajzer I, Menaszek E, Bacakova L, Rom M, Blazewicz M (2010) In vitro and in vivo studies on biocompatibility of carbon fibers. J Mater Sci Mater Med 21:2611–2622CrossRef Rajzer I, Menaszek E, Bacakova L, Rom M, Blazewicz M (2010) In vitro and in vivo studies on biocompatibility of carbon fibers. J Mater Sci Mater Med 21:2611–2622CrossRef
54.
Zurück zum Zitat Chen J, Zhang X, Huang C, Cai H, Hu S, Wan Q, Pei X, Wang J (2017) Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films. J Biomed Mater Res A 105:834–846CrossRef Chen J, Zhang X, Huang C, Cai H, Hu S, Wan Q, Pei X, Wang J (2017) Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films. J Biomed Mater Res A 105:834–846CrossRef
55.
Zurück zum Zitat Garai S, Sinha A (2016) Three dimensional biphasic calcium phosphate nanocomposites for loadbearing bioactive bone grafts. Mater Sci Eng C 59:375–383CrossRef Garai S, Sinha A (2016) Three dimensional biphasic calcium phosphate nanocomposites for loadbearing bioactive bone grafts. Mater Sci Eng C 59:375–383CrossRef
56.
Zurück zum Zitat Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 24:721–734CrossRef Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 24:721–734CrossRef
57.
Zurück zum Zitat Li J, Zhu D, Yin J, Liu Y, Yao F, Yao K, Li J, Zhu D, Yin J, Liu Y, Yao F, Yao K (2010) Formation of nano-hydroxyapatite crystal in situ in chitosan–pectin polyelectrolyte complex network. Mater Sci Eng C 30:795–803CrossRef Li J, Zhu D, Yin J, Liu Y, Yao F, Yao K, Li J, Zhu D, Yin J, Liu Y, Yao F, Yao K (2010) Formation of nano-hydroxyapatite crystal in situ in chitosan–pectin polyelectrolyte complex network. Mater Sci Eng C 30:795–803CrossRef
58.
Zurück zum Zitat Li J, Dou Y, Yang J, Yin Y, Zhang H, Yao F, Wang H, Yao K (2009) Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan-gelatin networks films. Mater Sci Eng C 29:1207–1215CrossRef Li J, Dou Y, Yang J, Yin Y, Zhang H, Yao F, Wang H, Yao K (2009) Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan-gelatin networks films. Mater Sci Eng C 29:1207–1215CrossRef
59.
Zurück zum Zitat Wang F, WenY Bai T (2016) The composite hydrogels of polyvinyl alcohol–gellan gum-Ca2+with improved network structure and mechanical property. Mater Sci Eng C 69:268–275CrossRef Wang F, WenY Bai T (2016) The composite hydrogels of polyvinyl alcohol–gellan gum-Ca2+with improved network structure and mechanical property. Mater Sci Eng C 69:268–275CrossRef
60.
Zurück zum Zitat Tu ZC, Huang T, Wang H, Sha XM, Shi Y, Huang XQ, Man ZZ, Li DJ (2015) Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction. J Food Sci Technol 52:2166–2174CrossRef Tu ZC, Huang T, Wang H, Sha XM, Shi Y, Huang XQ, Man ZZ, Li DJ (2015) Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction. J Food Sci Technol 52:2166–2174CrossRef
61.
Zurück zum Zitat Klug HP, Alexander LE (1974) X-ray diffraction procedures: for polycrystalline and amorphous materials, 2nd edn. Wiley, New York 4:960 Klug HP, Alexander LE (1974) X-ray diffraction procedures: for polycrystalline and amorphous materials, 2nd edn. Wiley, New York 4:960
62.
Zurück zum Zitat Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mater Sci Eng R 58:77–116CrossRef Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mater Sci Eng R 58:77–116CrossRef
63.
Zurück zum Zitat Busch S, Schwarz U, Kniep R (2001) Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite-gelatin composites. Chem Mater 13:3260–3271CrossRef Busch S, Schwarz U, Kniep R (2001) Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite-gelatin composites. Chem Mater 13:3260–3271CrossRef
65.
Zurück zum Zitat Sturm EV, Colfen H (2016) Mesocrystals: structural and morphogenetic aspects. Chem Soc Rev 45:5821–5833CrossRef Sturm EV, Colfen H (2016) Mesocrystals: structural and morphogenetic aspects. Chem Soc Rev 45:5821–5833CrossRef
66.
Zurück zum Zitat Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510CrossRef Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510CrossRef
67.
Zurück zum Zitat Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681CrossRef Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681CrossRef
68.
Zurück zum Zitat Shi C, Yuan W, Khan M, Li Q, Feng Y, Yao F, Zhang W (2015) Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation. Mater Sci Eng C 50:201–209CrossRef Shi C, Yuan W, Khan M, Li Q, Feng Y, Yao F, Zhang W (2015) Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation. Mater Sci Eng C 50:201–209CrossRef
69.
Zurück zum Zitat Kuo ZK, Lai PL, Toh EKW, Weng CH, Tseng HW, Chang PZ, Chen CC, Cheng CM (2016) Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge. Sci Rep 6:32884–32896CrossRef Kuo ZK, Lai PL, Toh EKW, Weng CH, Tseng HW, Chang PZ, Chen CC, Cheng CM (2016) Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge. Sci Rep 6:32884–32896CrossRef
70.
Zurück zum Zitat Golub EE, Battaglia KB (2007) Theo role of alkaline phosphatase in mineralization. Curr Opin Orthop 18:444–448CrossRef Golub EE, Battaglia KB (2007) Theo role of alkaline phosphatase in mineralization. Curr Opin Orthop 18:444–448CrossRef
Metadaten
Titel
Synthesis and characterization of mechanically strong carboxymethyl cellulose–gelatin–hydroxyapatite nanocomposite for load-bearing orthopedic application
verfasst von
Chandrani Sarkar
Pushpa Kumari
Kumar Anuvrat
Sumant Kumar Sahu
Jui Chakraborty
Subhadra Garai
Publikationsdatum
05.09.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1528-1

Weitere Artikel der Ausgabe 1/2018

Journal of Materials Science 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.