Skip to main content
Erschienen in: Journal of Materials Science 6/2019

03.12.2018 | Materials for life sciences

The strengthening of woven jute fiber/polylactide biocomposite without loss of ductility using rigid core–soft shell nanoparticles

verfasst von: Hailing He, Tong Earn Tay, Zhenqing Wang, Zhiwei Duan

Erschienen in: Journal of Materials Science | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Some efforts have been made to strengthen the environment friendly natural fiber-reinforced polylactide composite (NFPC), but common approaches impair its ductility. This paper successfully synthesized the rigid-soft core–shell nanoparticles which are feasible to simultaneously improve the strength and toughness of NFPC. The core–shell structure was molecularly designed to act the nano-silica and poly (butyl acrylate) rubber as rigid inner core and soft outer shell, respectively. Furthermore, the devised active functional groups at the end of core–shell filler also interact with polylactide (PLA) matrix to form strong interface. The effect of core–shell nanoparticle on crystalline, thermal and mechanical properties of NFPC was investigated. The results showed that the core–shell nanofiller can facilitate to form the more complete crystalline grain of PLA matrix and the thermal stability improvement of NFPC. More attractively, the addition of the rigid-soft core–shell nanoparticle enhanced the strength and stiffness of NFPC without sacrificing its elongation at break. Finally, the toughness improvement mechanisms and synergistic effect of core–shell nanoparticles were illustrated via field emission scanning electron microscope. It indicates that the micro-cracks, shear band and fibration of the matrix induced by the core–shell filler are the main causes of toughness improvement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fiber composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112CrossRef Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fiber composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112CrossRef
2.
Zurück zum Zitat Siengchin S (2017) Editorial corner—a personal view potential use of ‘green’ composites in automotive applications. eXPRESS Polym Lett 11:600CrossRef Siengchin S (2017) Editorial corner—a personal view potential use of ‘green’ composites in automotive applications. eXPRESS Polym Lett 11:600CrossRef
3.
Zurück zum Zitat Mavinkere S, Siengchin S (2018) Natural fibers as perspective materials. KMUTNB Int J Appl Sci Technol 11:233 Mavinkere S, Siengchin S (2018) Natural fibers as perspective materials. KMUTNB Int J Appl Sci Technol 11:233
4.
Zurück zum Zitat Qu P, Gao Y, Wu G, Zhang L (2010) Nanocomposites of poly (lactic acid) reinforced with cellulose nanofibrils. BioResources 5:1811–1823 Qu P, Gao Y, Wu G, Zhang L (2010) Nanocomposites of poly (lactic acid) reinforced with cellulose nanofibrils. BioResources 5:1811–1823
5.
Zurück zum Zitat Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607CrossRef Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607CrossRef
6.
Zurück zum Zitat Pan P, Zhu B, Kai W, Serizawa S, Iji M, Inoue Y (2007) Crystallization behavior and mechanical properties of bio-based green composites based on poly (l-lactide) and kenaf fiber. J Appl Polym Sci 105:1511–1520CrossRef Pan P, Zhu B, Kai W, Serizawa S, Iji M, Inoue Y (2007) Crystallization behavior and mechanical properties of bio-based green composites based on poly (l-lactide) and kenaf fiber. J Appl Polym Sci 105:1511–1520CrossRef
7.
Zurück zum Zitat Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286CrossRef Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286CrossRef
8.
Zurück zum Zitat Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Compos A Appl Sci Manuf 41:499–505CrossRef Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Compos A Appl Sci Manuf 41:499–505CrossRef
9.
Zurück zum Zitat Goriparthi BK, Suman KNS, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos A Appl Sci Manuf 43:1800–1808CrossRef Goriparthi BK, Suman KNS, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos A Appl Sci Manuf 43:1800–1808CrossRef
10.
Zurück zum Zitat Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432CrossRef Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432CrossRef
11.
Zurück zum Zitat Kobayashi S, Takada K (2013) Processing of unidirectional hemp fiber reinforced composites with micro-braiding technique. Compos A Appl Sci Manuf 46:173–179CrossRef Kobayashi S, Takada K (2013) Processing of unidirectional hemp fiber reinforced composites with micro-braiding technique. Compos A Appl Sci Manuf 46:173–179CrossRef
12.
Zurück zum Zitat Plackett D, Andersen TL, Pedersen WB, Nielsen L (2003) Biodegradable composites based on l-polylactide and jute fibres. Compos Sci Technol 63:1287–1296CrossRef Plackett D, Andersen TL, Pedersen WB, Nielsen L (2003) Biodegradable composites based on l-polylactide and jute fibres. Compos Sci Technol 63:1287–1296CrossRef
13.
Zurück zum Zitat Kumar R, Yakabu MK, Anandjiwala RD (2010) Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives. Compos A Appl Sci Manuf 41:1620–1627CrossRef Kumar R, Yakabu MK, Anandjiwala RD (2010) Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives. Compos A Appl Sci Manuf 41:1620–1627CrossRef
14.
Zurück zum Zitat Thitsartarn W, Fan X, Sun Y, Yeo JCC, Yuan D, He C (2015) Simultaneous enhancement of strength and toughness of epoxy using POSS-Rubber core–shell nanoparticles. Compos Sci Technol 118:63–71CrossRef Thitsartarn W, Fan X, Sun Y, Yeo JCC, Yuan D, He C (2015) Simultaneous enhancement of strength and toughness of epoxy using POSS-Rubber core–shell nanoparticles. Compos Sci Technol 118:63–71CrossRef
15.
Zurück zum Zitat Li Q, Zhang L, Zhang Z, Zhou N, Cheng Z, Zhu X (2010) Air-tolerantly surface-initiated AGET ATRP mediated by iron catalyst from silica nanoparticles. J Polym Sci Part A Polym Chem 48:2006–2015CrossRef Li Q, Zhang L, Zhang Z, Zhou N, Cheng Z, Zhu X (2010) Air-tolerantly surface-initiated AGET ATRP mediated by iron catalyst from silica nanoparticles. J Polym Sci Part A Polym Chem 48:2006–2015CrossRef
16.
Zurück zum Zitat Ren Y, Zhou G, Cao P (2016) Preparations and properties of a tunable void with shell thickness SiO2@SiO2 core–shell structures via activators generated by electron transfer for atom transfer radical polymerization. Solid State Sci 52:154–162CrossRef Ren Y, Zhou G, Cao P (2016) Preparations and properties of a tunable void with shell thickness SiO2@SiO2 core–shell structures via activators generated by electron transfer for atom transfer radical polymerization. Solid State Sci 52:154–162CrossRef
17.
Zurück zum Zitat Zhan X, Yan Y, Zhang Q, Chen F (2014) A novel superhydrophobic hybrid nanocomposite material prepared by surface-initiated AGET ATRP and its anti-icing properties. J Mater Chem A 2:9390–9399CrossRef Zhan X, Yan Y, Zhang Q, Chen F (2014) A novel superhydrophobic hybrid nanocomposite material prepared by surface-initiated AGET ATRP and its anti-icing properties. J Mater Chem A 2:9390–9399CrossRef
18.
Zurück zum Zitat Zafar MT, Maiti SN, Ghosh AK (2016) Effect of surface treatment of jute fibers on the interfacial adhesion in poly (lactic acid)/jute fiber biocomposites. Fibers and Polym 17:266–274CrossRef Zafar MT, Maiti SN, Ghosh AK (2016) Effect of surface treatment of jute fibers on the interfacial adhesion in poly (lactic acid)/jute fiber biocomposites. Fibers and Polym 17:266–274CrossRef
19.
Zurück zum Zitat Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly (lactic acid) composites. Compos B Eng 56:717–723CrossRef Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly (lactic acid) composites. Compos B Eng 56:717–723CrossRef
20.
Zurück zum Zitat Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M (2007) Composites of poly (L-lactide) with hemp fibers: morphology and thermal and mechanical properties. J Appl Polym Sci 105:255–268CrossRef Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M (2007) Composites of poly (L-lactide) with hemp fibers: morphology and thermal and mechanical properties. J Appl Polym Sci 105:255–268CrossRef
21.
Zurück zum Zitat Lee BH, Kim HS, Lee S, Kim HJ, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579CrossRef Lee BH, Kim HS, Lee S, Kim HJ, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579CrossRef
22.
Zurück zum Zitat Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of fiber treatments on interfacial shear strength of hemp fiber reinforced polylactide and unsaturated polyester composites. Compos A Appl Sci Manuf 42:1189–1196CrossRef Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of fiber treatments on interfacial shear strength of hemp fiber reinforced polylactide and unsaturated polyester composites. Compos A Appl Sci Manuf 42:1189–1196CrossRef
23.
Zurück zum Zitat Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y (2005) Crystal modifications and thermal behavior of poly (l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38:8012–8021CrossRef Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y (2005) Crystal modifications and thermal behavior of poly (l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38:8012–8021CrossRef
24.
Zurück zum Zitat Liang JZ, Zhou L, Tang CY, Tsui CP (2013) Crystalline properties of poly (l-lactic acid) composites filled with nanometer calcium carbonate. Compos B Eng 45:1646–1650CrossRef Liang JZ, Zhou L, Tang CY, Tsui CP (2013) Crystalline properties of poly (l-lactic acid) composites filled with nanometer calcium carbonate. Compos B Eng 45:1646–1650CrossRef
25.
Zurück zum Zitat Nam JY, Sinha Ray S, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131CrossRef Nam JY, Sinha Ray S, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131CrossRef
26.
Zurück zum Zitat Dong Y, Ghataura A, Takagi H, Haroosh HJ, Nakagaito AN, Lau KT (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos A Appl Sci Manuf 63:76–84CrossRef Dong Y, Ghataura A, Takagi H, Haroosh HJ, Nakagaito AN, Lau KT (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos A Appl Sci Manuf 63:76–84CrossRef
27.
Zurück zum Zitat Adeli H, Hussein Sharif Zein S, Huat Tan S, Md Akil H, Latif Ahmad A (2011) Synthesis, characterization and biodegradation of novel poly (l-lactide)/multiwalled carbon nanotube porous scaffolds for tissue engineering applications. Curr Nanosci 7(3):323–332CrossRef Adeli H, Hussein Sharif Zein S, Huat Tan S, Md Akil H, Latif Ahmad A (2011) Synthesis, characterization and biodegradation of novel poly (l-lactide)/multiwalled carbon nanotube porous scaffolds for tissue engineering applications. Curr Nanosci 7(3):323–332CrossRef
28.
Zurück zum Zitat Kabir MM, Wang H, Lau KT, Cardona F, Aravinthan T (2012) Mechanical properties of chemically-treated hemp fiber reinforced sandwich composites. Compos B Eng 43:159–169CrossRef Kabir MM, Wang H, Lau KT, Cardona F, Aravinthan T (2012) Mechanical properties of chemically-treated hemp fiber reinforced sandwich composites. Compos B Eng 43:159–169CrossRef
29.
Zurück zum Zitat Siengchin S, Pohl T, Medina L, Mitschang P (2013) Structure and properties of flax/polylactide/alumina nanocomposites. J Reinf Plast Compos 32:23–33CrossRef Siengchin S, Pohl T, Medina L, Mitschang P (2013) Structure and properties of flax/polylactide/alumina nanocomposites. J Reinf Plast Compos 32:23–33CrossRef
30.
Zurück zum Zitat Qin L, Qiu J, Liu M, Ding S (2011) Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate). Chem Eng J 166:772–778CrossRef Qin L, Qiu J, Liu M, Ding S (2011) Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate). Chem Eng J 166:772–778CrossRef
31.
Zurück zum Zitat Porras A, Maranon A (2012) Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric. Compos B Eng 43:2782–2788CrossRef Porras A, Maranon A (2012) Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric. Compos B Eng 43:2782–2788CrossRef
32.
Zurück zum Zitat Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638CrossRef Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638CrossRef
33.
Zurück zum Zitat Li X, Lei B, Lin Z, Huang L, Tan S, Cai X (2014) The utilization of bamboo charcoal enhances wood plastic composites with excellent mechanical and thermal properties. Mater Des 53:419–424CrossRef Li X, Lei B, Lin Z, Huang L, Tan S, Cai X (2014) The utilization of bamboo charcoal enhances wood plastic composites with excellent mechanical and thermal properties. Mater Des 53:419–424CrossRef
34.
Zurück zum Zitat He C, Donald AM, Butler MF (1998) In-situ deformation studies of rubber toughened poly (methyl methacrylate): influence of rubber particle concentration and rubber cross-linking density. Macromolecules 31:158–164CrossRef He C, Donald AM, Butler MF (1998) In-situ deformation studies of rubber toughened poly (methyl methacrylate): influence of rubber particle concentration and rubber cross-linking density. Macromolecules 31:158–164CrossRef
35.
Zurück zum Zitat Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48:530–541CrossRef Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48:530–541CrossRef
36.
Zurück zum Zitat Yin B, Li LP, Zhou Y, Gong L, Yang MB, Xie BH (2013) Largely improved impact toughness of PA6/EPDM-g-MA/HDPE ternary blends: the role of core–shell particles formed in melt processing on preventing micro-crack propagation. Polymer 54:1938–1947CrossRef Yin B, Li LP, Zhou Y, Gong L, Yang MB, Xie BH (2013) Largely improved impact toughness of PA6/EPDM-g-MA/HDPE ternary blends: the role of core–shell particles formed in melt processing on preventing micro-crack propagation. Polymer 54:1938–1947CrossRef
Metadaten
Titel
The strengthening of woven jute fiber/polylactide biocomposite without loss of ductility using rigid core–soft shell nanoparticles
verfasst von
Hailing He
Tong Earn Tay
Zhenqing Wang
Zhiwei Duan
Publikationsdatum
03.12.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03206-9

Weitere Artikel der Ausgabe 6/2019

Journal of Materials Science 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.