Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2013

01.08.2013

High reflectance materials for photovoltaics applications: analysis and modelling

verfasst von: E. Gondek, P. Karasiński

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper involves reflectance structures fabricated with application of sol–gel method. High reflectance was obtained through the fabrication of one-dimensional photonic crystals on glass substrate. The paper presents both the results of theoretical analysis as well as the results of experimental studies. Using the 2 × 2 transfer matrix method, we determined reflectance and transmittance characteristics of the analyzed structures as well as power distributions in the photonic crystals. The one-dimensional photonic crystals were fabricated by the successive deposition of quarter-wave layers of silica and titania on glass substrate using the dip-coating method. For the fabricated reflectance structures with four bilayers (TiO2/SiO2), for the wavelength ~500 nm we have obtained the reflectance value equal to 0.933, and for the structures with five bi-layers the reflectance was equal to about 0.967. The uniformity of the fabricated structures and the repeatability of the technological process are discussed. We discuss also some slight divergence between theoretical predictions and experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Fraas, L. Partain, Solar cells and their applications (John Wiley & Sons, Inc. Publication, New Jersey, 2010)CrossRef L. Fraas, L. Partain, Solar cells and their applications (John Wiley & Sons, Inc. Publication, New Jersey, 2010)CrossRef
2.
Zurück zum Zitat T.M. Razykov, C.S. Ferekides, D. Morel, E. Stefanakos, H.S. Ullal, H.M. Upadhyaya, Solar photovoltaic electricity: current status and future prospects. Sol. Energy 85, 1580–1608 (2011)CrossRef T.M. Razykov, C.S. Ferekides, D. Morel, E. Stefanakos, H.S. Ullal, H.M. Upadhyaya, Solar photovoltaic electricity: current status and future prospects. Sol. Energy 85, 1580–1608 (2011)CrossRef
3.
Zurück zum Zitat B. Parida, S. Iniyanb, R. Goic, A review of solar photovoltaic technologies. Renew. Sust. Energ. Rev. 15, 1625–1636 (2011)CrossRef B. Parida, S. Iniyanb, R. Goic, A review of solar photovoltaic technologies. Renew. Sust. Energ. Rev. 15, 1625–1636 (2011)CrossRef
4.
Zurück zum Zitat L.L. Ong, I.A. Levitsky, Organic/IV, III–V semiconductor hybrid solar cells. Energies 3(3), 313–334 (2010)CrossRef L.L. Ong, I.A. Levitsky, Organic/IV, III–V semiconductor hybrid solar cells. Energies 3(3), 313–334 (2010)CrossRef
5.
Zurück zum Zitat Organic electronics, edited by Hagen Klauk WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim (2006) Organic electronics, edited by Hagen Klauk WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim (2006)
6.
Zurück zum Zitat H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview. J. Mater. Res. 19(7), 1924–1945 (2004)CrossRef H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview. J. Mater. Res. 19(7), 1924–1945 (2004)CrossRef
7.
Zurück zum Zitat Moliton, A. Optoelectronics of molecules and polymers Springer Science + Business Media, Inc. (2006) Moliton, A. Optoelectronics of molecules and polymers Springer Science + Business Media, Inc. (2006)
8.
Zurück zum Zitat E. Gondek, I.V. Kityk, A. Danel, Photovoltaic effect in single layer 1H-pyrazolo[3,4-b]quinoline and 1H-pyrazolo[3,4-b]quioxaline/poly(3-decylthiophene) polymer cells. Z Naturforschung A 64(9–10), 632–638 (2009) E. Gondek, I.V. Kityk, A. Danel, Photovoltaic effect in single layer 1H-pyrazolo[3,4-b]quinoline and 1H-pyrazolo[3,4-b]quioxaline/poly(3-decylthiophene) polymer cells. Z Naturforschung A 64(9–10), 632–638 (2009)
9.
Zurück zum Zitat E. Gondek, Y. Djaoued, J. Robichaud, P. Karasiński, I.V. Kityk, A. Danel, K.J. Plucinski, Influence of TiO2 nanoparticles on the photovoltaic efficiency of the ITO/PEDOT: PSS/fluorine copolymers/polythiophene: TiO2/Al architecture. J. Mater. Sci. Mater. El 23, 2057–2064 (2012)CrossRef E. Gondek, Y. Djaoued, J. Robichaud, P. Karasiński, I.V. Kityk, A. Danel, K.J. Plucinski, Influence of TiO2 nanoparticles on the photovoltaic efficiency of the ITO/PEDOT: PSS/fluorine copolymers/polythiophene: TiO2/Al architecture. J. Mater. Sci. Mater. El 23, 2057–2064 (2012)CrossRef
10.
Zurück zum Zitat A. Pivrikas, H. Neugebauer, N.S. Sariciftci, Influence of processing additives to nano-morphology and efficiency of bulk-heterojunction solar cells: a comparative review. Sol. Energy 85, 1226–1237 (2011)CrossRef A. Pivrikas, H. Neugebauer, N.S. Sariciftci, Influence of processing additives to nano-morphology and efficiency of bulk-heterojunction solar cells: a comparative review. Sol. Energy 85, 1226–1237 (2011)CrossRef
11.
Zurück zum Zitat Yuen H. in Renewable Energy and the Environment, OSA Technical Digest, paper SRWB3 (2011) Yuen H. in Renewable Energy and the Environment, OSA Technical Digest, paper SRWB3 (2011)
12.
Zurück zum Zitat M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 39). Prog Photovolt: Res Appl. 20, 12–20 (2012)CrossRef M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 39). Prog Photovolt: Res Appl. 20, 12–20 (2012)CrossRef
13.
Zurück zum Zitat P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693–3723 (2003)CrossRef P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693–3723 (2003)CrossRef
14.
Zurück zum Zitat J. Yu, J. Huang, L. Zhang, Y. Jiang, Energy losing rate and open-circuit voltage analysis of organic solar cells based on detailed photocurrent simulation. J. Appl. Phys. 106, 063103 (2009)CrossRef J. Yu, J. Huang, L. Zhang, Y. Jiang, Energy losing rate and open-circuit voltage analysis of organic solar cells based on detailed photocurrent simulation. J. Appl. Phys. 106, 063103 (2009)CrossRef
15.
Zurück zum Zitat R. Signerski, G. Jarosz, Effect of buffer layers on performance of organic photovoltaic devices based on copper phthalocyanine-perylene dye heterojunction. Opto-Electron. Rev. 19, 468–473 (2011)CrossRef R. Signerski, G. Jarosz, Effect of buffer layers on performance of organic photovoltaic devices based on copper phthalocyanine-perylene dye heterojunction. Opto-Electron. Rev. 19, 468–473 (2011)CrossRef
16.
Zurück zum Zitat R.R. King, D. Bhusari, D. Larrabee, X.-Q. Liu, E. Rehder, K. Edmondson, H. Cotal, R.K. Jones, J.H. Ermer, C.M. Fetzer, D.C. Law, N.H. Karam, Solar cell generations over 40 % efficiency. Prog. Photovolt: Res. Appl. (2012). doi:10.1002/pip.1255 R.R. King, D. Bhusari, D. Larrabee, X.-Q. Liu, E. Rehder, K. Edmondson, H. Cotal, R.K. Jones, J.H. Ermer, C.M. Fetzer, D.C. Law, N.H. Karam, Solar cell generations over 40 % efficiency. Prog. Photovolt: Res. Appl. (2012). doi:10.​1002/​pip.​1255
17.
Zurück zum Zitat A. Luque, Will we exceed 50% efficiency in photovoltaics? J. Appl. Phys. 110, 031301 (2011)CrossRef A. Luque, Will we exceed 50% efficiency in photovoltaics? J. Appl. Phys. 110, 031301 (2011)CrossRef
18.
Zurück zum Zitat W.T. Xie, Y.J. Dai, R.Z. Wang, K. Sumathy, Concentrated solar energy applications using Fresnel lenses: a review. Renew. Sustain. Energy Rev. 15, 2588–2606 (2011)CrossRef W.T. Xie, Y.J. Dai, R.Z. Wang, K. Sumathy, Concentrated solar energy applications using Fresnel lenses: a review. Renew. Sustain. Energy Rev. 15, 2588–2606 (2011)CrossRef
19.
Zurück zum Zitat W.G.J.H.M. van Sark, K.W.J. Barnham, L.H. Slooff, A.J. Chatten, A. Büchtemann, A. Meyer, S.J. McCormack, R. Koole, D.J. Farrell, R. Bose, E.E. Bende, A.R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. De Mello Donegá, A. Meijerink, D. Vanmaekelbergh, Luminescent solar concentrators: a review of recent results. Opt. Express 16(26), 21773–21792 (2008)CrossRef W.G.J.H.M. van Sark, K.W.J. Barnham, L.H. Slooff, A.J. Chatten, A. Büchtemann, A. Meyer, S.J. McCormack, R. Koole, D.J. Farrell, R. Bose, E.E. Bende, A.R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. De Mello Donegá, A. Meijerink, D. Vanmaekelbergh, Luminescent solar concentrators: a review of recent results. Opt. Express 16(26), 21773–21792 (2008)CrossRef
20.
Zurück zum Zitat K.K. Chong, F.L. Siaw, C.W. Wong, G.S. Wong, Design and construction of non-imaging planar concentrator for concentrator photovoltaic system. Renew. Energy 34, 1364–1370 (2009)CrossRef K.K. Chong, F.L. Siaw, C.W. Wong, G.S. Wong, Design and construction of non-imaging planar concentrator for concentrator photovoltaic system. Renew. Energy 34, 1364–1370 (2009)CrossRef
21.
Zurück zum Zitat E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)CrossRef E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)CrossRef
22.
Zurück zum Zitat C.J. Brinker, G.W. Scherer, Sol–gel science: the physics and chemistry of Sol–gel processing (Academic Press, Inc., San Diego, 1990) C.J. Brinker, G.W. Scherer, Sol–gel science: the physics and chemistry of Sol–gel processing (Academic Press, Inc., San Diego, 1990)
23.
Zurück zum Zitat R.M. Almeida, A.S. Rodrigues, Photonic bandgap materials and structures by sol–gel processing. J. Non-Cryst. Solids 326–327, 405–409 (2003)CrossRef R.M. Almeida, A.S. Rodrigues, Photonic bandgap materials and structures by sol–gel processing. J. Non-Cryst. Solids 326–327, 405–409 (2003)CrossRef
24.
Zurück zum Zitat R.M. Almeida, M.C. Gonçalves, S. Portal, Sol-gel photonic bandgap materials and structures. J. Non-Cryst. Solids 345&346, 562–569 (2004)CrossRef R.M. Almeida, M.C. Gonçalves, S. Portal, Sol-gel photonic bandgap materials and structures. J. Non-Cryst. Solids 345&346, 562–569 (2004)CrossRef
25.
Zurück zum Zitat D.S. Hinczewski, M. Hinczewski, F.Z. Tepehan, G.G. Tepehan, Optical filters from SiO2 and TiO2 multi-layers using sol-gel spin coating method. Sol. Energy Mater. Sol. Cells 87, 181–196 (2005)CrossRef D.S. Hinczewski, M. Hinczewski, F.Z. Tepehan, G.G. Tepehan, Optical filters from SiO2 and TiO2 multi-layers using sol-gel spin coating method. Sol. Energy Mater. Sol. Cells 87, 181–196 (2005)CrossRef
26.
Zurück zum Zitat R.M. Almeida, A.C. Marques, Rareoerth photoluminescence in sol-gel derived confined glass structures. J. Non-Cryst. Solids 352, 475–482 (2006)CrossRef R.M. Almeida, A.C. Marques, Rareoerth photoluminescence in sol-gel derived confined glass structures. J. Non-Cryst. Solids 352, 475–482 (2006)CrossRef
27.
Zurück zum Zitat Saleh, B.E.A., Teich, M.C. Fundamentals of Photonics, Wiley, New York (1991) Ch. 10.1.B Saleh, B.E.A., Teich, M.C. Fundamentals of Photonics, Wiley, New York (1991) Ch. 10.1.B
28.
Zurück zum Zitat Morozov, G.V., Placido, F., Sprung, D.W.L. Absorptive photonic crystals in 1D, J. Opt. 13 (2011) 035102 (pp 5) Morozov, G.V., Placido, F., Sprung, D.W.L. Absorptive photonic crystals in 1D, J. Opt. 13 (2011) 035102 (pp 5)
29.
Zurück zum Zitat L.A.A. Pettersson, L.S. Roman, O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999)CrossRef L.A.A. Pettersson, L.S. Roman, O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999)CrossRef
31.
Zurück zum Zitat P. Karasiński, C. Tyszkiewicz, R. Rogoziński, J. Jaglarz, J. Mazur, Optical rib waveguides based on sol–gel derived silica–titania films. Thin Solid Films 519, 5544–5551 (2011)CrossRef P. Karasiński, C. Tyszkiewicz, R. Rogoziński, J. Jaglarz, J. Mazur, Optical rib waveguides based on sol–gel derived silica–titania films. Thin Solid Films 519, 5544–5551 (2011)CrossRef
32.
Zurück zum Zitat P. Karasiński, Optical uniform/gradient waveguide sensor structure—characterization. Opto-Electron. Rev. 19, 1–9 (2011)CrossRef P. Karasiński, Optical uniform/gradient waveguide sensor structure—characterization. Opto-Electron. Rev. 19, 1–9 (2011)CrossRef
33.
34.
Zurück zum Zitat K.M. Reddy, S.V. Monorama, A.R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 230–245 (2002) K.M. Reddy, S.V. Monorama, A.R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 230–245 (2002)
35.
Zurück zum Zitat P. Karasiński, E. Gondek, S. Drewniak, I.V. Kityk, Nano-sized blue spectral shift in sol–gel derived mesoporous titania films. J. Sol–Gel Sci. Technol. 61, 355–361 (2012)CrossRef P. Karasiński, E. Gondek, S. Drewniak, I.V. Kityk, Nano-sized blue spectral shift in sol–gel derived mesoporous titania films. J. Sol–Gel Sci. Technol. 61, 355–361 (2012)CrossRef
36.
Zurück zum Zitat K.J. Plucinski, M. Makowska-Janusik, A. Mefleh, I.V. Kityk, V.G. Yushanin, SiON films deposited on Si(111) substrates—new promising materials for nonlinear optics. Mater. Sci. Eng. B64, 88–98 (1999)CrossRef K.J. Plucinski, M. Makowska-Janusik, A. Mefleh, I.V. Kityk, V.G. Yushanin, SiON films deposited on Si(111) substrates—new promising materials for nonlinear optics. Mater. Sci. Eng. B64, 88–98 (1999)CrossRef
37.
Zurück zum Zitat I.V. Kityk, Photoinduced non-linear optical diagnostic of SiN x O y /Si 〈111〉 interfaces. Opt. Lasers Eng. 35, 239–250 (2001)CrossRef I.V. Kityk, Photoinduced non-linear optical diagnostic of SiN x O y /Si 〈111〉 interfaces. Opt. Lasers Eng. 35, 239–250 (2001)CrossRef
38.
Zurück zum Zitat I.V. Kityk, A. Kassiba, K.J. Plucinski, J. Berdowski, Band structure of the large-sized SiC nanocomposites. Phys. Lett. A 265A, 403–410 (2000)CrossRef I.V. Kityk, A. Kassiba, K.J. Plucinski, J. Berdowski, Band structure of the large-sized SiC nanocomposites. Phys. Lett. A 265A, 403–410 (2000)CrossRef
Metadaten
Titel
High reflectance materials for photovoltaics applications: analysis and modelling
verfasst von
E. Gondek
P. Karasiński
Publikationsdatum
01.08.2013
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2013
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-013-1194-2

Weitere Artikel der Ausgabe 8/2013

Journal of Materials Science: Materials in Electronics 8/2013 Zur Ausgabe

Neuer Inhalt