Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2013

01.08.2013

Sn diffusion coefficient and activation energy determined by way of XRD measurement and evaluation of micromechanical properties of Sn diffused YBa2Cu3O7−x superconducting ceramics

verfasst von: O. Gorur, Y. Ozturk, G. Yildirim, M. Dogruer, C. Terzioglu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study manifests not only the effect of Sn diffusion on physical, electrical, mechanical, structural and superconducting properties of the bulk YBa2Cu3O7−x (Y123) superconductors prepared by the conventional solid-state reaction route by use of electrical resistance, X-ray diffraction analysis (XRD), electron dispersive X-ray, scanning electron microscopy, transport critical current density (J c ) and Vickers microhardness (H v ) measurements but also the diffusion coefficient and the activation energy of tin (Sn) in the Y123 material for the first time. The diffusion coefficient and the activation energy of Sn are investigated in the temperature range 500–945 °C using the change of the lattice parameters extracted from the XRD patterns. The resistance (at room temperature), critical (onset and offset) temperature, variation of critical temperature, hole-carrier concentration, crystallinity, lattice parameter, texturing, surface morphology, lotgering index, element distribution, critical current density, oxygen content, load dependent microhardness, elastic modulus and yield strength values are obtained for the pure and Sn diffused samples and compared with each other. One can see that all superconducting parameters given above depend sensitively on the Sn diffusion on Y123 system. The obtained results exhibit that the room temperature resistance enhances with the Sn diffusion because of the hole filling when the onset \( (T_{c}^{onset} ) \) and offset \( (T_{c}^{offset} ) \) critical temperatures are obtained to be about 93.4 and 89.6 K for the pure sample as against 92.2 and 88.1 K for the Sn diffused sample, respectively. This may be attributed to the fact that the decrement in the critical temperatures is due to the deterioration of crystallinity and descend in the grain size. As for the critical current density measurements, J c values are obtained to be about 125.4–65.3 A/cm2, respectively, for the undiffused and Sn diffused materials. This may be led to the decrease of the flux pinning mechanism stemming from the stacking faults, planar and micro-defects. At the same time, XRD measurements display that the samples produced in this work exhibit the polycrystalline superconducting phase with the changing intensity of diffraction lines. Besides, the peak intensities belonging to major phase (Y123) decrease monotonously with Sn diffusion in the system; however, new peaks belonging to the minor (BaCuO2) phases start to appear for Sn diffused sample confirming both the reduction of the grain size and degradation of the critical temperature. Moreover, the pure sample is confirmed by both enhancement of a and b lattice constants and the decrement of the cell parameter c of the sample in comparison with that of the Sn diffused sample. According to SEM examination, the crystallinity and grain connectivity suppress with the Sn diffusion. EDX measurements illustrate that not only do the elements used for the preparation of the Y123 superconductors with and without Sn diffusion distribute homogeneously but also the level of Cu element reduces with the Sn diffusion, presenting that the Cu2+ ions may partly be diffused by tetravalent tin (Sn4+) ions. Further, surprising results of the Vickers microhardness values demonstrate that the pure sample visualizes Indentation Size Effect (ISE) feature; however, the Sn diffused sample reports Reverse Indentation Size Effect (RISE) nature. Additionally, the diffusion coefficient is observed to increase from 1.11 × 10−9 to 2.82 × 10−8 cm2 s−1 as the diffusion-annealing temperature increases, verifying that the Sn diffusion at lower temperatures is much less significant as compared to the higher ones. Temperature dependence of the Sn diffusion coefficient and activation energy in the range of 500–945 °C is defined with the aid of the following equation: \( D = 7.78 \times 10^{ - 6} { \exp }\left[ {\left( {( - 0.590 \pm 0.005){\raise0.7ex\hbox{${\text{eV}}$} \!\mathord{\left/ {\vphantom {{\text{eV}} {k_{B} T}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${k_{B} T}$}}} \right)} \right] \).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908–910 (1987)CrossRef K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908–910 (1987)CrossRef
3.
Zurück zum Zitat P. Bordet, C. Chaillout, J. Chenavas, J.L. Hodeau, M. Marezio, J. Karpinski, E. Kaldis, Nature 336, 596–599 (1988)CrossRef P. Bordet, C. Chaillout, J. Chenavas, J.L. Hodeau, M. Marezio, J. Karpinski, E. Kaldis, Nature 336, 596–599 (1988)CrossRef
5.
Zurück zum Zitat M.E. Sagsoz, M. Ertugrul, U. Cevik, Mater. Lett. 60, 1778–1781 (2006)CrossRef M.E. Sagsoz, M. Ertugrul, U. Cevik, Mater. Lett. 60, 1778–1781 (2006)CrossRef
6.
Zurück zum Zitat S. Gupta, R.S. Yadav, N.P. Lalla, G.D. Verma, B. Das, Integr. Ferroelectr. 116, 68–81 (2010)CrossRef S. Gupta, R.S. Yadav, N.P. Lalla, G.D. Verma, B. Das, Integr. Ferroelectr. 116, 68–81 (2010)CrossRef
7.
Zurück zum Zitat B. Jayaram, P.C. Lanchester, M.T. Weller, Physica C 160, 17–24 (1989)CrossRef B. Jayaram, P.C. Lanchester, M.T. Weller, Physica C 160, 17–24 (1989)CrossRef
8.
Zurück zum Zitat H. Ikuta, A. Mase, Y. Yanagi, M. Yoahikawa, Y. Itoh, T. Oka, U. Mizutani, Supercond. Sci. Technol. 11, 1345–1347 (1998)CrossRef H. Ikuta, A. Mase, Y. Yanagi, M. Yoahikawa, Y. Itoh, T. Oka, U. Mizutani, Supercond. Sci. Technol. 11, 1345–1347 (1998)CrossRef
9.
Zurück zum Zitat G. Yildirim, Y. Zalaoglu, M. Akdogan, S.P. Altintas, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. 24, 2153–2159 (2011)CrossRef G. Yildirim, Y. Zalaoglu, M. Akdogan, S.P. Altintas, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. 24, 2153–2159 (2011)CrossRef
10.
Zurück zum Zitat Y.C. Guo, J. Horvat, H.K. Liu, S.X. Dou, Physica C 300, 38–42 (1998)CrossRef Y.C. Guo, J. Horvat, H.K. Liu, S.X. Dou, Physica C 300, 38–42 (1998)CrossRef
11.
Zurück zum Zitat G. Yildirim, M. Dogruer, O. Ozturk, A. Varilci, C. Terzioglu, Y. Zalaoglu, J. Supercond. Nov. Magn. 25, 893–903 (2012)CrossRef G. Yildirim, M. Dogruer, O. Ozturk, A. Varilci, C. Terzioglu, Y. Zalaoglu, J. Supercond. Nov. Magn. 25, 893–903 (2012)CrossRef
12.
Zurück zum Zitat M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim, O. Ozturk, J. Supercond. Nov. Magn. 25, 961–968 (2012)CrossRef M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim, O. Ozturk, J. Supercond. Nov. Magn. 25, 961–968 (2012)CrossRef
13.
Zurück zum Zitat Y. Zalaoglu, G. Yildirim, C. Terzioglu, J. Mater. Sci.: Mater. Electron. 24, 239–247 (2013)CrossRef Y. Zalaoglu, G. Yildirim, C. Terzioglu, J. Mater. Sci.: Mater. Electron. 24, 239–247 (2013)CrossRef
14.
Zurück zum Zitat R. Lal, S.P. Pandey, A.V. Narlikar, Phys. Rev. B 49, 6382–6393 (1994)CrossRef R. Lal, S.P. Pandey, A.V. Narlikar, Phys. Rev. B 49, 6382–6393 (1994)CrossRef
15.
Zurück zum Zitat C.Y. Yang, A.R. Moodenbaugh, Y.L. Wang, Y. Xu, S.M. Heald, D.O. Welch, M. Suenaga, Phys. Rev. B 42, 2231–2241 (1990)CrossRef C.Y. Yang, A.R. Moodenbaugh, Y.L. Wang, Y. Xu, S.M. Heald, D.O. Welch, M. Suenaga, Phys. Rev. B 42, 2231–2241 (1990)CrossRef
16.
Zurück zum Zitat P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, Mater. Res. Bull. 44, 1017–1021 (2009)CrossRef P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, Mater. Res. Bull. 44, 1017–1021 (2009)CrossRef
17.
Zurück zum Zitat K. Ogasawara, N. Sakai, M. Murakami, Supercond. Sci. Technol. 13, 688–692 (2000)CrossRef K. Ogasawara, N. Sakai, M. Murakami, Supercond. Sci. Technol. 13, 688–692 (2000)CrossRef
18.
Zurück zum Zitat A. Koblischka-Veneva, M.R. Koblischka, K. Ogasawara, M. Murakami, Cryst. Eng. 5, 265–272 (2002)CrossRef A. Koblischka-Veneva, M.R. Koblischka, K. Ogasawara, M. Murakami, Cryst. Eng. 5, 265–272 (2002)CrossRef
19.
Zurück zum Zitat J.M. Hur, K. Togano, A. Matsumoto, H. Kumakura, H. Wada, K. Kimura, Supercond. Sci. Technol. 21, 032001 (2008)CrossRef J.M. Hur, K. Togano, A. Matsumoto, H. Kumakura, H. Wada, K. Kimura, Supercond. Sci. Technol. 21, 032001 (2008)CrossRef
21.
22.
Zurück zum Zitat M. Tepe, I. Avci, H. Kocoglu, D. Abukay, Solid State Commun. 131, 319–323 (2004)CrossRef M. Tepe, I. Avci, H. Kocoglu, D. Abukay, Solid State Commun. 131, 319–323 (2004)CrossRef
26.
Zurück zum Zitat G. Yildirim, A. Varilci, M. Akdogan, C. Terzioglu, J. Mater. Sci.: Mater. Electron. 23, 928–935 (2012)CrossRef G. Yildirim, A. Varilci, M. Akdogan, C. Terzioglu, J. Mater. Sci.: Mater. Electron. 23, 928–935 (2012)CrossRef
27.
Zurück zum Zitat A.I. Abou-Aly, S.A. Mahmoud, R. Awad, M.M.E. Barakat, J. Supercond. Nov. Magn. 23, 1575–1588 (2010)CrossRef A.I. Abou-Aly, S.A. Mahmoud, R. Awad, M.M.E. Barakat, J. Supercond. Nov. Magn. 23, 1575–1588 (2010)CrossRef
28.
Zurück zum Zitat R. Shabna, P.M. Sarun, S. Vinu, A. Biju, U. Syamaprasad, J. Alloy. Compd. 493, 11–16 (2010)CrossRef R. Shabna, P.M. Sarun, S. Vinu, A. Biju, U. Syamaprasad, J. Alloy. Compd. 493, 11–16 (2010)CrossRef
29.
Zurück zum Zitat B.F. Azzouz, A. Mchirgui, B. Yangui, C. Boulesteix, B.M. Salem, Physica C 356, 83–96 (2001)CrossRef B.F. Azzouz, A. Mchirgui, B. Yangui, C. Boulesteix, B.M. Salem, Physica C 356, 83–96 (2001)CrossRef
30.
31.
Zurück zum Zitat G.B. Akyuz, K. Kocabas, A. Yıldız, L. Ozyuzer, M. Ciftcioglu, J. Supercond. Nov. Magn. 24, 2189–2201 (2011)CrossRef G.B. Akyuz, K. Kocabas, A. Yıldız, L. Ozyuzer, M. Ciftcioglu, J. Supercond. Nov. Magn. 24, 2189–2201 (2011)CrossRef
34.
35.
Zurück zum Zitat S.B. Guner, O. Gorur, S. Celik, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, J. Alloy. Compd. 540, 260–266 (2012)CrossRef S.B. Guner, O. Gorur, S. Celik, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, J. Alloy. Compd. 540, 260–266 (2012)CrossRef
36.
Zurück zum Zitat M. Dogruer, O. Gorur, Y. Zalaoglu, O. Ozturk, G. Yildirim, A. Varilci, C. Terzioglu, J. Mater. Sci.: Mater. Electron. 24, 352–361 (2013)CrossRef M. Dogruer, O. Gorur, Y. Zalaoglu, O. Ozturk, G. Yildirim, A. Varilci, C. Terzioglu, J. Mater. Sci.: Mater. Electron. 24, 352–361 (2013)CrossRef
37.
38.
Zurück zum Zitat M. Dogruer, G. Yildirim, E. Yucel, C. Terzioglu, J. Mater. Sci.: Mater. Electron. 23, 1965–1970 (2012)CrossRef M. Dogruer, G. Yildirim, E. Yucel, C. Terzioglu, J. Mater. Sci.: Mater. Electron. 23, 1965–1970 (2012)CrossRef
39.
Metadaten
Titel
Sn diffusion coefficient and activation energy determined by way of XRD measurement and evaluation of micromechanical properties of Sn diffused YBa2Cu3O7−x superconducting ceramics
verfasst von
O. Gorur
Y. Ozturk
G. Yildirim
M. Dogruer
C. Terzioglu
Publikationsdatum
01.08.2013
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2013
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-013-1212-4

Weitere Artikel der Ausgabe 8/2013

Journal of Materials Science: Materials in Electronics 8/2013 Zur Ausgabe

Neuer Inhalt