Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 11/2017

09.02.2017

Electrical characteristics of Au/n-Si (MS) Schottky Diodes (SDs) with and without different rates (graphene + Ca1.9Pr0.1Co4Ox-doped poly(vinyl alcohol)) interfacial layer

verfasst von: H. G. Çetinkaya, Ş. Altındal, I. Orak, I. Uslu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to see effects of interfacial (with and without different graphene (GP) + Ca1.9Pr0.1Co4Ox-doped PVA) layer on the electrical characteristics of conventional Au/n-Si (MS) contacts. Therefore, Au/(GP + Ca1.9Pr0.1Co4Ox-doped PVA)/n-Si (MPS) structures were fabricated with different rates of (%3 GP, %7 GP) PVA and were fabricated on same n-Si wafer. Au/n-Si (MS), Au/PVA/n-Si, Au/%3GP + Ca1.9Pr0.1Co4Ox-doped PVA/n-Si and Au/%7GP + Ca1.9Pr0.1Co4Ox-doped PVA/n-Si structures were fabricated and their main electrical characteristics compared each other by using current–voltage (I–V) methods. The forward and reverse bias current voltage (I–V) characteristics of with and without GP + Ca1.9Pr0.1Co4Ox-doped PVA/n-Si at room temperature were studied to investigate its main electrical parameters. The energy density distribution profile of the interface states (Nss) was obtained from the forward bias I–V data by taking into account voltage dependent ideality factor (n(v)) and effective barrier height (Φe) and they increase from at about mid-gap energy of Si to bottom of conductance band edge. In addition, voltage dependent profile of resistivity of the structure was obtained from I–V data for four different structures. The analysis of experimental results reveals that the existence of GP + Ca1.9Pr0.1Co4Ox-doped PVA interfacial layer improves the performance of MS structure. In order to determine the dominant current-transport mechanism (CTM) in the whole forward bias region of these structures, the double logarithmic forward bias I–V plots were also drawn. These plots exhibit two distinct linear region with different slopes which are corresponding to intermediate and high forward bias voltages. The slope of these plots show that in the region 1 (low biases) the dominant CTM is trap-charge-limited current (TCLC), whereas in the region 2 (high biases) is space-charge-limited current (SCLC) for four diodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Uslu, Ş. Altindal, T. Tunç, I. Uslu, T.S. Mammadov. J. Appl. Polym. Sci. 120, 322–328 (2011)CrossRef H. Uslu, Ş. Altindal, T. Tunç, I. Uslu, T.S. Mammadov. J. Appl. Polym. Sci. 120, 322–328 (2011)CrossRef
2.
Zurück zum Zitat A. Kaya, H. G. Çetinkaya, Ş. Altındal, I. Uslu, Int. J. Mod. Phys. B. 30, 1650090–107 (2016)CrossRef A. Kaya, H. G. Çetinkaya, Ş. Altındal, I. Uslu, Int. J. Mod. Phys. B. 30, 1650090–107 (2016)CrossRef
3.
Zurück zum Zitat A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S.A. Yerişkin, A. Aytimur, Ceram. Int. 42, 3322–3329 (2016)CrossRef A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S.A. Yerişkin, A. Aytimur, Ceram. Int. 42, 3322–3329 (2016)CrossRef
5.
Zurück zum Zitat H. G. Çetinkaya, Ş. Altındal, I. Uslu, J. Mater. Sci. 26, 3186–3195 (2015) H. G. Çetinkaya, Ş. Altındal, I. Uslu, J. Mater. Sci. 26, 3186–3195 (2015)
6.
Zurück zum Zitat V. Rajagopal Reddy, J. Phys. 89(5), 463–469 (2015) V. Rajagopal Reddy, J. Phys. 89(5), 463–469 (2015)
7.
Zurück zum Zitat I. Karteri, Ş. Karataş, A.A. Al-Ghamdi, F. Yakuphanoğlu. Synth. Met. 199, 241–245 (2015)CrossRef I. Karteri, Ş. Karataş, A.A. Al-Ghamdi, F. Yakuphanoğlu. Synth. Met. 199, 241–245 (2015)CrossRef
10.
Zurück zum Zitat M. Gökçen, T. Tunç, Ş. Altindal, I. Uslu, Master-Sci. Eng. B. 177, 416–420 (2012)CrossRef M. Gökçen, T. Tunç, Ş. Altindal, I. Uslu, Master-Sci. Eng. B. 177, 416–420 (2012)CrossRef
11.
Zurück zum Zitat M. Gökçen, T. Tunç, Ş. Altindal, I. Uslu, J. Appl. Phys. 12, 525–530 (2012) M. Gökçen, T. Tunç, Ş. Altindal, I. Uslu, J. Appl. Phys. 12, 525–530 (2012)
13.
14.
Zurück zum Zitat I. Tantis, G.C. Pssaras, D. Tasis, Express Polym. Lett. 6, 283–292 (2012)CrossRef I. Tantis, G.C. Pssaras, D. Tasis, Express Polym. Lett. 6, 283–292 (2012)CrossRef
15.
Zurück zum Zitat B.P. Singh, B.K. Jena, S. Bhattacharjee, L. Besra, Surf. Coat. Technol. 232, 475–481 (2013)CrossRef B.P. Singh, B.K. Jena, S. Bhattacharjee, L. Besra, Surf. Coat. Technol. 232, 475–481 (2013)CrossRef
16.
17.
18.
Zurück zum Zitat Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Adv. Mater. 20, 3924–3930 (2008)CrossRef Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Adv. Mater. 20, 3924–3930 (2008)CrossRef
19.
Zurück zum Zitat A. Singh, M.A. Uddin, T. Sudarshan, G. Koley, Nano Micro. Small 10, 1555–1565 (2014) A. Singh, M.A. Uddin, T. Sudarshan, G. Koley, Nano Micro. Small 10, 1555–1565 (2014)
20.
Zurück zum Zitat Y. An, A. Behnam, E. Pop, A. Ural, Appl. Phys. Lett. 102, 013110 (2013)CrossRef Y. An, A. Behnam, E. Pop, A. Ural, Appl. Phys. Lett. 102, 013110 (2013)CrossRef
21.
Zurück zum Zitat S. Reddy, X. Han, Q.Y. Zhu, M.L.Q. Mai, W. Chen, Microelectron. Eng. 83, 281–285 (2006)CrossRef S. Reddy, X. Han, Q.Y. Zhu, M.L.Q. Mai, W. Chen, Microelectron. Eng. 83, 281–285 (2006)CrossRef
23.
24.
Zurück zum Zitat K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)CrossRef
25.
Zurück zum Zitat X.N. Luan, L. Chen, J.D. Zhang, G.Y. Qu, J.C. Flake, Y. Wang, Electrochim. Acta. 111, 216–222 (2013)CrossRef X.N. Luan, L. Chen, J.D. Zhang, G.Y. Qu, J.C. Flake, Y. Wang, Electrochim. Acta. 111, 216–222 (2013)CrossRef
26.
Zurück zum Zitat L. Ravagnan, F. Siviero, C. Lenardi, P. Piseri, E. Barborini, P. Milani, C.S. Casari, A. Li Bassi, C.E. Bottani, Phys. Rev. Lett. 89, 285506 (2002)CrossRef L. Ravagnan, F. Siviero, C. Lenardi, P. Piseri, E. Barborini, P. Milani, C.S. Casari, A. Li Bassi, C.E. Bottani, Phys. Rev. Lett. 89, 285506 (2002)CrossRef
27.
Zurück zum Zitat R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck, Nature 397, 121–128 (1999)CrossRef R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck, Nature 397, 121–128 (1999)CrossRef
28.
Zurück zum Zitat S.M. Sze, Physics of Semiconductor Devices. (Wiley, New York, 1985) S.M. Sze, Physics of Semiconductor Devices. (Wiley, New York, 1985)
29.
Zurück zum Zitat E.H. Rhoderick, Metal-Semiconductor Contacts, (Oxford University Press, London, 1978) E.H. Rhoderick, Metal-Semiconductor Contacts, (Oxford University Press, London, 1978)
30.
Zurück zum Zitat B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications. (Plenum Press, New York, 1984)CrossRef B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications. (Plenum Press, New York, 1984)CrossRef
32.
Zurück zum Zitat E. Arslan, S. Bütün, Y. Şafak, H. Uslu, I. Taşcıoğlu, Ş. Altındal, E. Özbay, Microelectron. Reliab. 51, 370–375 (2011)CrossRef E. Arslan, S. Bütün, Y. Şafak, H. Uslu, I. Taşcıoğlu, Ş. Altındal, E. Özbay, Microelectron. Reliab. 51, 370–375 (2011)CrossRef
33.
34.
36.
Zurück zum Zitat Y.S. Ocak, M. Kulakcı, T. Kılıcoğlu, R. Turan, K. Akkılıc, Synth. Met. 159, 1603 (2009)CrossRef Y.S. Ocak, M. Kulakcı, T. Kılıcoğlu, R. Turan, K. Akkılıc, Synth. Met. 159, 1603 (2009)CrossRef
37.
Zurück zum Zitat V. Rajagopal Reddy, V. Janardhanah, J.-W. Ju, H.-J. Yun, C.-J. Choi Solid State Commun. 179, 34 (2014)CrossRef V. Rajagopal Reddy, V. Janardhanah, J.-W. Ju, H.-J. Yun, C.-J. Choi Solid State Commun. 179, 34 (2014)CrossRef
Metadaten
Titel
Electrical characteristics of Au/n-Si (MS) Schottky Diodes (SDs) with and without different rates (graphene + Ca1.9Pr0.1Co4Ox-doped poly(vinyl alcohol)) interfacial layer
verfasst von
H. G. Çetinkaya
Ş. Altındal
I. Orak
I. Uslu
Publikationsdatum
09.02.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 11/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6490-9

Weitere Artikel der Ausgabe 11/2017

Journal of Materials Science: Materials in Electronics 11/2017 Zur Ausgabe

Neuer Inhalt