Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 11/2018

16.03.2018

Copper effects in mechanical, thermal and electrical properties of rapidly solidified eutectic Sn–Ag alloy

verfasst von: Mohammed S. Gumaan, Rizk Mostafa Shalaby, Esmail Abdo Mohammed Ali, Mustafa Kamal

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Sn–3.5 wt%Ag alloy considered as a good alternative to Pb–Sn alloys. This study aims to investigate the effects of Cu or Sb additions by 3 or 5 wt% to melt-spun Sn–3.5%Ag alloy. Ternary melt-spun Sn–Ag–Cu and Sn–Ag–Sb alloys investigated using X-ray diffractions (XRD), Scanning electron microscope (SEM), Dynamic resonance technique (DRT), Instron machine, Vickers hardness tester and Differential scanning calorimetry (DSC). The results revealed that the microstructures of the β-Sn phase, Ag3Sn and Cu3Sn intermetallic compounds (IMCs) in the solder matrices were refined due to the effect of Cu additions and melt-spun process. Moreover, increasing Cu content promotes Ag3Sn intermetallic compound (IMC) formation. Consequently, the addition of “3 wt%” of Cu reduced the creep rate ɛ from (3.79 × 10−3) to (1.65 × 10−3) and delayed the fracture point. The tensile results showed an improvement in Young’s modulus by 47% (30.3 GPa), ultimate tensile strength (UST) by 11.6% (23.9 MPa), and in toughness by 20.5% (952.32 J/m3) compared to the eutectic Sn–Ag alloy. Vickers hardness has improved by 3.3% (136.71 MPa) and thermal activation energy by 54% (90.40 KJ/mol) when compared with that of eutectic Sn–Ag alloy. Those improvements are related to the lack of lattice strain from 7.56 × 10−4 without “3 wt%” of Cu to 5.26 × 10−4 with “3 wt%” of Cu. Its melting temperature (Tm) increased by 3 °C due to Ag3Sn IMC increased and Cu3Sn formation, but the pasty rang (mushy zone) decreased by 4 °C with “3 wt%” of Cu. The small lattice strains resulted with “3 wt%” of Cu made the electrical resistivity of this alloy more stable at elevated temperatures. The mechanical, thermal and electrical improvements of Sn93.5–Ag3.5–Cu3 alloy provide good physical performance for soldering process and electronic assembly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.R. Harrison, J.H. Vincent, H.A.H. Steen, Lead-free reflow soldering for electronics assembly. Solder. Surf. Mt. Technol. 13, 21–38 (2001)CrossRef M.R. Harrison, J.H. Vincent, H.A.H. Steen, Lead-free reflow soldering for electronics assembly. Solder. Surf. Mt. Technol. 13, 21–38 (2001)CrossRef
2.
Zurück zum Zitat F. Guo, Composite Lead-Free Electronic Solders, Lead-Free Electronic Solders, Springer, (2006) pp. 129–145 F. Guo, Composite Lead-Free Electronic Solders, Lead-Free Electronic Solders, Springer, (2006) pp. 129–145
3.
Zurück zum Zitat T. El-Ashram, R.M. Shalaby, Effect of rapid solidification and small additions of Zn and Bi on the structure and properties of Sn–Cu eutectic alloy. J. Electron. Mater. 34, 212–215 (2005)CrossRef T. El-Ashram, R.M. Shalaby, Effect of rapid solidification and small additions of Zn and Bi on the structure and properties of Sn–Cu eutectic alloy. J. Electron. Mater. 34, 212–215 (2005)CrossRef
4.
Zurück zum Zitat R.M. Shalaby, Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys. Mater. Sci. Eng. A. 560, 86–95 (2013)CrossRef R.M. Shalaby, Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys. Mater. Sci. Eng. A. 560, 86–95 (2013)CrossRef
5.
Zurück zum Zitat A. Nadia, A.S.M.A. Haseeb, Effects of addition of copper particles of different size to Sn–3.5Ag solder. J. Mater. Sci. Mater. Electron. 23, 86–93 (2012)CrossRef A. Nadia, A.S.M.A. Haseeb, Effects of addition of copper particles of different size to Sn–3.5Ag solder. J. Mater. Sci. Mater. Electron. 23, 86–93 (2012)CrossRef
6.
Zurück zum Zitat K.J. Lau, C.Y. Tang, P.C. Tse, C.L. Chow, S.P. Ng, C.P. Tsui, Microscopic experimental investigation on shear failure of solder joints. Int. J. Fract. 130, 617–634 (2004)CrossRef K.J. Lau, C.Y. Tang, P.C. Tse, C.L. Chow, S.P. Ng, C.P. Tsui, Microscopic experimental investigation on shear failure of solder joints. Int. J. Fract. 130, 617–634 (2004)CrossRef
7.
Zurück zum Zitat C.-W. Hwang, K. Suganuma, Effect of Cu addition to Sn–Ag lead-free solder on interfacial stability with Fe–42Ni. Mater. Trans. 45, 714–720 (2004)CrossRef C.-W. Hwang, K. Suganuma, Effect of Cu addition to Sn–Ag lead-free solder on interfacial stability with Fe–42Ni. Mater. Trans. 45, 714–720 (2004)CrossRef
8.
Zurück zum Zitat H.T. Lee, C.L. Yang, M.H. Chen, C.S. Li, Effect of Sb addition on microstructure and shear strength of Sn–Ag solder joints. Key Eng. Mater. 261, 501–506 (2004)CrossRef H.T. Lee, C.L. Yang, M.H. Chen, C.S. Li, Effect of Sb addition on microstructure and shear strength of Sn–Ag solder joints. Key Eng. Mater. 261, 501–506 (2004)CrossRef
9.
Zurück zum Zitat H. Lee, H. Lin, C. Lee, P. Chen, Reliability of Sn–Ag–Sb lead-free solder joints. Mater. Sci. Eng. A. 407, 36–44 (2005)CrossRef H. Lee, H. Lin, C. Lee, P. Chen, Reliability of Sn–Ag–Sb lead-free solder joints. Mater. Sci. Eng. A. 407, 36–44 (2005)CrossRef
10.
Zurück zum Zitat O. Fouassier, J.M. Heintz, J. Chazelas, P.M. Geffroy, J.F. Silvain, Microstructural evolution and mechanical properties of SnAgCu alloys. J. Appl. Phys. 100 (2006) O. Fouassier, J.M. Heintz, J. Chazelas, P.M. Geffroy, J.F. Silvain, Microstructural evolution and mechanical properties of SnAgCu alloys. J. Appl. Phys. 100 (2006)
11.
Zurück zum Zitat J. Shen, C. Wu, S. Li, Effects of rare earth additions on the microstructural evolution and microhardness of Sn30Bi0.5Cu and Sn35Bi1Ag solder alloys. J. Mater. Sci. Mater. Electron. 23, 156–163 (2012)CrossRef J. Shen, C. Wu, S. Li, Effects of rare earth additions on the microstructural evolution and microhardness of Sn30Bi0.5Cu and Sn35Bi1Ag solder alloys. J. Mater. Sci. Mater. Electron. 23, 156–163 (2012)CrossRef
12.
Zurück zum Zitat X. Hui, Damage behavior of SnAgCu solder under thermal Cy-cling. Rare Met. Mater. Eng. 42, 221–226 (2013)CrossRef X. Hui, Damage behavior of SnAgCu solder under thermal Cy-cling. Rare Met. Mater. Eng. 42, 221–226 (2013)CrossRef
13.
Zurück zum Zitat M. Kamal, U. Mohammad, A Review: Chill-Block Melt Spin Technique, Theories & Applications. Bentham Science Publishers (2012) M. Kamal, U. Mohammad, A Review: Chill-Block Melt Spin Technique, Theories & Applications. Bentham Science Publishers (2012)
14.
Zurück zum Zitat G. Saad, S.A. Fayek, A. Fawzy, H.N. Soliman, G. Mohammed, Deformation characteristics of Al-4043 alloy. Mater. Sci. Eng. A. 527, 904–910 (2010)CrossRef G. Saad, S.A. Fayek, A. Fawzy, H.N. Soliman, G. Mohammed, Deformation characteristics of Al-4043 alloy. Mater. Sci. Eng. A. 527, 904–910 (2010)CrossRef
15.
Zurück zum Zitat A. Inoue, H.S. Chen, J.T. Krause, T. Masumoto, M. Hagiwara, Young’s modulus of Fe-, Co-, Pd- and Pt-based amorphous wires produced by the in-rotating-water spinning method. J. Mater. Sci. 18, 2743–2751 (1983)CrossRef A. Inoue, H.S. Chen, J.T. Krause, T. Masumoto, M. Hagiwara, Young’s modulus of Fe-, Co-, Pd- and Pt-based amorphous wires produced by the in-rotating-water spinning method. J. Mater. Sci. 18, 2743–2751 (1983)CrossRef
16.
Zurück zum Zitat Y.L. Zhou, M. Niinomi, T. Akahori, Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications. Mater. Sci. Eng. A. 371, 283–290 (2004)CrossRef Y.L. Zhou, M. Niinomi, T. Akahori, Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications. Mater. Sci. Eng. A. 371, 283–290 (2004)CrossRef
17.
Zurück zum Zitat B. Liu, Y. Tian, C. Wang, R. An, C. Wang, Intermetallics ultrafast formation of unidirectional and reliable Cu3Sn-based intermetallic joints assisted by electric current. Intermetallics. 80, 26–32 (2017)CrossRef B. Liu, Y. Tian, C. Wang, R. An, C. Wang, Intermetallics ultrafast formation of unidirectional and reliable Cu3Sn-based intermetallic joints assisted by electric current. Intermetallics. 80, 26–32 (2017)CrossRef
18.
Zurück zum Zitat M.S. Gumaan, M. Kamal, A.-B. Elbedeiwi, Lead-Antimony-Tin Alloys for Storage Battery Applications (LAP Lambert Academic Publishing, 2016), p. 160 M.S. Gumaan, M. Kamal, A.-B. Elbedeiwi, Lead-Antimony-Tin Alloys for Storage Battery Applications (LAP Lambert Academic Publishing, 2016), p. 160
19.
Zurück zum Zitat R.M. Shalaby, Indium, chromium and nickel-modified eutectic Sn–0.7 wt% Cu lead-free solder rapidly solidified from molten state. J. Mater. Sci. Mater. Electron. 26, 6625–6632 (2015)CrossRef R.M. Shalaby, Indium, chromium and nickel-modified eutectic Sn–0.7 wt% Cu lead-free solder rapidly solidified from molten state. J. Mater. Sci. Mater. Electron. 26, 6625–6632 (2015)CrossRef
20.
Zurück zum Zitat Y. Zhang, H. Zhu, M. Fujiwara, J. Xu, M. Dao, Low-temperature creep of SnPb and SnAgCu solder alloys and reliability prediction in electronic packaging modules. Scr. Mater. 68, 607–610 (2013)CrossRef Y. Zhang, H. Zhu, M. Fujiwara, J. Xu, M. Dao, Low-temperature creep of SnPb and SnAgCu solder alloys and reliability prediction in electronic packaging modules. Scr. Mater. 68, 607–610 (2013)CrossRef
21.
Zurück zum Zitat R.S. Pandher, B.G. Lewis, R. Vangaveti, B. Singh, Drop Shock Reliability of Lead-Free Alloys—Effect of Micro-Additives, in Proceeding Electronic Components Technology Conference (2007) 669–676 R.S. Pandher, B.G. Lewis, R. Vangaveti, B. Singh, Drop Shock Reliability of Lead-Free Alloys—Effect of Micro-Additives, in Proceeding Electronic Components Technology Conference (2007) 669–676
22.
Zurück zum Zitat S.L. Ngoh, W. Zhou, H.L. Pang, aC. Spowage, X.Q. Shi, Effect of Stress on Interfacial Intermetallic Compound Development of Sn–Ag–Cu Lead-Free Solder Joint on Au/Ni/Cu Substrate, in Proceedings 6th Electron. Packag. Technol. Conf. (EPTC 2004) (IEEE Cat. No.04EX971), (2004) 414–419 S.L. Ngoh, W. Zhou, H.L. Pang, aC. Spowage, X.Q. Shi, Effect of Stress on Interfacial Intermetallic Compound Development of Sn–Ag–Cu Lead-Free Solder Joint on Au/Ni/Cu Substrate, in Proceedings 6th Electron. Packag. Technol. Conf. (EPTC 2004) (IEEE Cat. No.04EX971), (2004) 414–419
23.
Zurück zum Zitat R.M. Shalaby, M. Kamal, E.A.M. Ali, M.S. Gumaan, Microstructural and mechanical characterization of melt spun process Sn–3.5Ag and Sn–3.5Ag–xCu lead-free solders for low cost electronic assembly. Mater. Sci. Eng. A 690, 446–452 (2017)CrossRef R.M. Shalaby, M. Kamal, E.A.M. Ali, M.S. Gumaan, Microstructural and mechanical characterization of melt spun process Sn–3.5Ag and Sn–3.5Ag–xCu lead-free solders for low cost electronic assembly. Mater. Sci. Eng. A 690, 446–452 (2017)CrossRef
24.
Zurück zum Zitat C.M.L. Wu, ÆY.W. Wong, Rare-earth additions to lead-free electronic solders. J. Mater. Sci. Mater Electron. 18, 77–91 (2007)CrossRef C.M.L. Wu, ÆY.W. Wong, Rare-earth additions to lead-free electronic solders. J. Mater. Sci. Mater Electron. 18, 77–91 (2007)CrossRef
25.
Zurück zum Zitat M.E. Brown, Introduction to Thermal Analysis (Springer Netherlands, Dordrecht, 1988), pp. 1–4CrossRef M.E. Brown, Introduction to Thermal Analysis (Springer Netherlands, Dordrecht, 1988), pp. 1–4CrossRef
26.
Zurück zum Zitat T.-C. Chang, M.-H. Hon, M.-C. Wang, Thermal characteristics and intermetallic compounds formed at Sn–9Zn–0.5Ag/Cu interface. Mater. Trans. 45, 606–613 (2004)CrossRef T.-C. Chang, M.-H. Hon, M.-C. Wang, Thermal characteristics and intermetallic compounds formed at Sn–9Zn–0.5Ag/Cu interface. Mater. Trans. 45, 606–613 (2004)CrossRef
27.
Zurück zum Zitat A.M. Shaban, M. Kamal, R.H. Nada, F.A. El-Salam, Thermal, mechanical and electron transport properties of irradiated rapidly solidified Pb–Sn–Zn alloy. 25, 253–261 (2002) A.M. Shaban, M. Kamal, R.H. Nada, F.A. El-Salam, Thermal, mechanical and electron transport properties of irradiated rapidly solidified Pb–Sn–Zn alloy. 25, 253–261 (2002)
28.
Zurück zum Zitat R.M. Shalaby, Correlation between thermal diffusivity and activation energy of ordering of lead free solder alloys Sn65–xAg25Sb10Cux rapidly solidified from molten state. J. Mater. Sci. 6, 187–191 (2005) R.M. Shalaby, Correlation between thermal diffusivity and activation energy of ordering of lead free solder alloys Sn65–xAg25Sb10Cux rapidly solidified from molten state. J. Mater. Sci. 6, 187–191 (2005)
Metadaten
Titel
Copper effects in mechanical, thermal and electrical properties of rapidly solidified eutectic Sn–Ag alloy
verfasst von
Mohammed S. Gumaan
Rizk Mostafa Shalaby
Esmail Abdo Mohammed Ali
Mustafa Kamal
Publikationsdatum
16.03.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 11/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-8906-6

Weitere Artikel der Ausgabe 11/2018

Journal of Materials Science: Materials in Electronics 11/2018 Zur Ausgabe