Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 14/2020

27.05.2020

Effect of annealing on the photoluminescence and thermoluminescence properties of Eu2+ doped BaSO4 microgravels

verfasst von: S. Sahaya Jude Dhas, S. Suresh, A. Rita, S. A. Martin Britto Dhas, R. Gowri Shankar Rao, C. S. Biju

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 14/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The quest for developing phosphors emitting intense ultra violet (UV) rays and thermoluminescence (TL) occurring in the temperature range between 180 and 250 °C is on the progressive surge as the phosphors are highly desirable for phototherapy lamps and X-ray dosimetry. For this work, strong UV and TL emitting Eu2+ doped BaSO4 gravels of sub-micro size were synthesized by acid-assisted co-precipitation method. The as-prepared phosphors were annealed at different temperatures (300–700 °C) for 10 h to enhance the UV and TL emissions. The influence of annealing on the crystallite size, morphology, vibrational bands, PL and TL were studied by X-ray diffraction (XRD), Field emission gun scanning electron microscopy (FEGSM), Fourier transform infrared spectroscopy (FTIR), Photoluminescence (PL) and TL spectroscopies, respectively. From XRD, it is noticed that the crystallite size and crystal quality increase when the annealing temperature is raised from 300 to 500 °C, whereas they are found to be decreasing at 600 °C and the trend continues till 700 °C. FEGSEM images show that all the phosphors have similar gravel morphology with inhomogeneous sub-micro size distribution. Formation of clusters is also noticed for phosphors while annealing in the range 300–500 °C. The vibrational bands related to the phosphor have been identified from the FTIR spectra. From PL and TL studies, the prominent emission intensity is found to be the maximum for 500 °C annealed phosphor revealing optimization. PL spectra also exhibit a strong UV emission at ~ 374 nm. The TL glow curve of the phosphors shows the first deconvoluted peak in the temperature range 198–210 °C and the second peak in the range 240.3–259.1 °C. The activation energy for the first peak is in the range 1.02 to 1.30 eV, whereas the second peak is in the range 0.72 to 2.98 eV. Thus the optimized multi-utility phosphor could be beneficial for phototherapy lamps and X-ray dosimeters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Singh, G. Sivaramaiah, J.L. Rao, S. Watanabe, T.K. Gundu Rao, R.V. Patel, V. Singh, J. Lumin. 188, 423 (2017) N. Singh, G. Sivaramaiah, J.L. Rao, S. Watanabe, T.K. Gundu Rao, R.V. Patel, V. Singh, J. Lumin. 188, 423 (2017)
2.
Zurück zum Zitat S. Tamboli, G.B. Nair, S.J. Dhoble, D.K. Burghate, Phys. B 535, 232 (2018) S. Tamboli, G.B. Nair, S.J. Dhoble, D.K. Burghate, Phys. B 535, 232 (2018)
3.
Zurück zum Zitat M.S. Pathak, N. Singh, V. Singh, S. Watanabe, T.K. Gundu Rao, J.K. Lee, Mater. Res. Bull 97, 512 (2018) M.S. Pathak, N. Singh, V. Singh, S. Watanabe, T.K. Gundu Rao, J.K. Lee, Mater. Res. Bull 97, 512 (2018)
4.
Zurück zum Zitat C. Hazra, T. Samanta, S. Ganguli, V. Mahalingam, Chem. Select. 2, 5970 (2017) C. Hazra, T. Samanta, S. Ganguli, V. Mahalingam, Chem. Select. 2, 5970 (2017)
5.
Zurück zum Zitat A. Patle, R.R. Patil, S.V. Moharil, AIP Conf. Proc. 1953, 030201 (2018) A. Patle, R.R. Patil, S.V. Moharil, AIP Conf. Proc. 1953, 030201 (2018)
6.
Zurück zum Zitat O. Taofiq, A. Fernandes, L. Barros, M.F. Barreiro, I.C.F.R. Ferreira, Trends Food Sci. Technol. 70, 82–94 (2017) O. Taofiq, A. Fernandes, L. Barros, M.F. Barreiro, I.C.F.R. Ferreira, Trends Food Sci. Technol. 70, 82–94 (2017)
7.
Zurück zum Zitat B.C. Batt, A. Soni, G.S. Polymeris, D.K. Koul, D.K. Patel, S.K. Gupta, D.R. Mishra, M.S. Kulkarni, Radiat. Meas. 64, 35 (2014) B.C. Batt, A. Soni, G.S. Polymeris, D.K. Koul, D.K. Patel, S.K. Gupta, D.R. Mishra, M.S. Kulkarni, Radiat. Meas. 64, 35 (2014)
8.
Zurück zum Zitat J. Manam, P.K. Kumari, S. Das, Appl. Phys. A. 104, 197 (2011) J. Manam, P.K. Kumari, S. Das, Appl. Phys. A. 104, 197 (2011)
9.
Zurück zum Zitat S. Bahl, S.P. Lochab, A. Pandey, V. Kumar, V.E. Aleynikov, A.G. Molokanov, P. Kumar, J. Lumin. 149, 176 (2014) S. Bahl, S.P. Lochab, A. Pandey, V. Kumar, V.E. Aleynikov, A.G. Molokanov, P. Kumar, J. Lumin. 149, 176 (2014)
10.
Zurück zum Zitat V. Singh, M.S. Pathak, N. Singh, V. Dubey, P.K. Singh, Optik 152, 9 (2018) V. Singh, M.S. Pathak, N. Singh, V. Dubey, P.K. Singh, Optik 152, 9 (2018)
11.
Zurück zum Zitat K. Sharma, S. Bahl, B. Singh, P. Kumar, S.P. Lochab, A. Pandey, Radiat. Phys. Chem. 145, 64 (2018) K. Sharma, S. Bahl, B. Singh, P. Kumar, S.P. Lochab, A. Pandey, Radiat. Phys. Chem. 145, 64 (2018)
12.
Zurück zum Zitat P.M. Singh, N.P. Singh, N.R. Singh, N.M. Singh, Optik 144, 490 (2017) P.M. Singh, N.P. Singh, N.R. Singh, N.M. Singh, Optik 144, 490 (2017)
13.
Zurück zum Zitat V. Singh, N. Singh, M.S. Pathak, V. Dubey, P.K. Singh, Optik 155, 285 (2018) V. Singh, N. Singh, M.S. Pathak, V. Dubey, P.K. Singh, Optik 155, 285 (2018)
14.
Zurück zum Zitat B.G. Zhai, D. Liu, Y. He, L. Yang, Y.M. Huang, J. Lumin. 194, 485 (2018) B.G. Zhai, D. Liu, Y. He, L. Yang, Y.M. Huang, J. Lumin. 194, 485 (2018)
15.
Zurück zum Zitat S. Cho, Appl. Surf. Sci. 432, 202 (2018) S. Cho, Appl. Surf. Sci. 432, 202 (2018)
16.
Zurück zum Zitat S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Appl. Surf. Sci. 258, 3255–3259 (2012) S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Appl. Surf. Sci. 258, 3255–3259 (2012)
17.
Zurück zum Zitat R.H. Krishna, B.M. Nagabhushana, H. Nagabhushana, N.S. Murthy, S.C. Sharma, C. Shivakumar, R.P.S. Chakradhar, J. Phys. Chem. C 117, 1915 (2013) R.H. Krishna, B.M. Nagabhushana, H. Nagabhushana, N.S. Murthy, S.C. Sharma, C. Shivakumar, R.P.S. Chakradhar, J. Phys. Chem. C 117, 1915 (2013)
18.
Zurück zum Zitat P.R. Gonzalez, C. Furetta, B.E. Calvo, M.I. Gaso, E. Cruz-Zaragoza, Nucl. Instrum. Methods Phys. Res B. 260, 685 (2007) P.R. Gonzalez, C. Furetta, B.E. Calvo, M.I. Gaso, E. Cruz-Zaragoza, Nucl. Instrum. Methods Phys. Res B. 260, 685 (2007)
19.
Zurück zum Zitat N. Salah, S.P. Lochab, D. Kanjilal, J. Mehra, P.D. Sahare, R. Rajan, A.A. Rupasov, V.E. Aleynikov, J. Phys. D 41, 085408 (2008) N. Salah, S.P. Lochab, D. Kanjilal, J. Mehra, P.D. Sahare, R. Rajan, A.A. Rupasov, V.E. Aleynikov, J. Phys. D 41, 085408 (2008)
20.
Zurück zum Zitat K.R.E. Saraee, A. Kharieky, Appl. Radiat. Isot. 82, 188 (2013) K.R.E. Saraee, A. Kharieky, Appl. Radiat. Isot. 82, 188 (2013)
21.
Zurück zum Zitat R.L. Dixon, K.E. Ekstrand, Phys. Med. Bio. 19, 196 (1914) R.L. Dixon, K.E. Ekstrand, Phys. Med. Bio. 19, 196 (1914)
22.
Zurück zum Zitat R. Sangeetharani, A. Lakshmanan, J. Lumin. 174, 63–69 (2016) R. Sangeetharani, A. Lakshmanan, J. Lumin. 174, 63–69 (2016)
23.
Zurück zum Zitat P.P. Kumar, T. Subhashini, G.D. Venkatasubbu, Sens. Actuators A 297, 111544 (2019) P.P. Kumar, T. Subhashini, G.D. Venkatasubbu, Sens. Actuators A 297, 111544 (2019)
24.
Zurück zum Zitat C.N. Santos, K. Yukimitu, A.R. Zanata, A.C. Hernandes, Nucl. Instru. Meth. Phys. Res. B. 246, 374 (2006) C.N. Santos, K. Yukimitu, A.R. Zanata, A.C. Hernandes, Nucl. Instru. Meth. Phys. Res. B. 246, 374 (2006)
25.
Zurück zum Zitat S. Jayasudha, K. Madhukumar, C.M.K. Nair, R.G. Nair, V.M. Anandakumar, T.S. Elias, Spectrochim. Acta. A 155, 21–27 (2016) S. Jayasudha, K. Madhukumar, C.M.K. Nair, R.G. Nair, V.M. Anandakumar, T.S. Elias, Spectrochim. Acta. A 155, 21–27 (2016)
26.
Zurück zum Zitat P. Olko, Radiat. Meas. 45, 506–511 (2010) P. Olko, Radiat. Meas. 45, 506–511 (2010)
27.
Zurück zum Zitat M.K. Hussen, F.B. Dejene, J. Solgel Sci. Technol. 88, 454–464 (2018) M.K. Hussen, F.B. Dejene, J. Solgel Sci. Technol. 88, 454–464 (2018)
28.
Zurück zum Zitat R.K. Tamrakar, N. Tiwari, R.K. Kuraria, D.P. Bisen, V. Dubey, K. Upadhyay, J. Radiat. Res. Appl. Sci. 8, 1–10 (2015) R.K. Tamrakar, N. Tiwari, R.K. Kuraria, D.P. Bisen, V. Dubey, K. Upadhyay, J. Radiat. Res. Appl. Sci. 8, 1–10 (2015)
29.
Zurück zum Zitat X. Luo, W. Cao, M. Xiag, J. Rare Earths 24, 20–24 (2006) X. Luo, W. Cao, M. Xiag, J. Rare Earths 24, 20–24 (2006)
30.
Zurück zum Zitat P. Junlabhut, P. Nuthongkum, W. Pechrapa, Mater. Today 5, 13857–13864 (2018) P. Junlabhut, P. Nuthongkum, W. Pechrapa, Mater. Today 5, 13857–13864 (2018)
31.
Zurück zum Zitat Y. Wang, O. Milosevic, L. Gomez, M.E. Ratanal, J.M. Torralba, B. Yang, P.D. Toursend, J. Phys. Conden. matter. 18, 9257–9272 (2006) Y. Wang, O. Milosevic, L. Gomez, M.E. Ratanal, J.M. Torralba, B. Yang, P.D. Toursend, J. Phys. Conden. matter. 18, 9257–9272 (2006)
32.
Zurück zum Zitat S. Sivakumar, P. Soundarajan, A. Venkatesan, C.P. Khatiwada, Spectrochim. Acta A 137, 137–147 (2015) S. Sivakumar, P. Soundarajan, A. Venkatesan, C.P. Khatiwada, Spectrochim. Acta A 137, 137–147 (2015)
33.
Zurück zum Zitat Y.S. Chang, J. Electron. Mater. 37, 1024–1028 (2008) Y.S. Chang, J. Electron. Mater. 37, 1024–1028 (2008)
34.
Zurück zum Zitat S.J. Qazi, A.R. Rennie, J.K. Cockcroft, M. Vickers, J. Colloid Interface Sci. 338, 105 (2009) S.J. Qazi, A.R. Rennie, J.K. Cockcroft, M. Vickers, J. Colloid Interface Sci. 338, 105 (2009)
35.
Zurück zum Zitat R. Gosh, G.K. Paul, D. Basak, Mater. Res. Bull. 40, 1905–1914 (2005) R. Gosh, G.K. Paul, D. Basak, Mater. Res. Bull. 40, 1905–1914 (2005)
36.
Zurück zum Zitat A.J. Deotale, R.V. Nandedkar, Mater. Today 3, 2069–2076 (2016) A.J. Deotale, R.V. Nandedkar, Mater. Today 3, 2069–2076 (2016)
37.
Zurück zum Zitat R.S. Yadav, S.B. Rai, Opt. Laser Technol. 111, 169 (2019) R.S. Yadav, S.B. Rai, Opt. Laser Technol. 111, 169 (2019)
38.
Zurück zum Zitat K. Vini, H.P. Kumar, K.M. Nissamudeen, J. Mater. Sci. 31, 5653–5666 (2020) K. Vini, H.P. Kumar, K.M. Nissamudeen, J. Mater. Sci. 31, 5653–5666 (2020)
39.
Zurück zum Zitat S. Som, S.K. Sharma, J. Phys. D 45, 415102 (2012) S. Som, S.K. Sharma, J. Phys. D 45, 415102 (2012)
40.
Zurück zum Zitat H. Nagabhushana, B.M. Nagabhushana, H.B. Prem Kumar, B.M. Lakshminarasappa, F. Singh, R.P.S. Chakradhar, J. Alloys Compd. 482, 308 (2009) H. Nagabhushana, B.M. Nagabhushana, H.B. Prem Kumar, B.M. Lakshminarasappa, F. Singh, R.P.S. Chakradhar, J. Alloys Compd. 482, 308 (2009)
41.
Zurück zum Zitat F. Jones, Cryst. Eng. Commun. 14, 8374 (2012) F. Jones, Cryst. Eng. Commun. 14, 8374 (2012)
42.
Zurück zum Zitat K. Biswas, A.D. Sontakke, R. Sen, K. Annapurna, J. Fluoresc. 22, 745 (2012) K. Biswas, A.D. Sontakke, R. Sen, K. Annapurna, J. Fluoresc. 22, 745 (2012)
43.
Zurück zum Zitat L. Chen, Y. Liu, K. Huang, Mater. Res. Bull. 41, 158 (2006) L. Chen, Y. Liu, K. Huang, Mater. Res. Bull. 41, 158 (2006)
44.
Zurück zum Zitat W. Wang, C. Jiang, M. Shen, L. Feng, F. Zhaeng, X. Wu, J. Shen, Appl. Phys. Lett. 94, 081904 (2009) W. Wang, C. Jiang, M. Shen, L. Feng, F. Zhaeng, X. Wu, J. Shen, Appl. Phys. Lett. 94, 081904 (2009)
45.
Zurück zum Zitat V.V. Shinde, R.G. Kunghatkar, S.J. Dhoble, Luminescence 30, 1257–1262 (2015) V.V. Shinde, R.G. Kunghatkar, S.J. Dhoble, Luminescence 30, 1257–1262 (2015)
46.
Zurück zum Zitat X. Sun, J. Zhang, X. Zhang, Y. Luo, X.J. Wang, J. Phys. D 41, 195414 (2008) X. Sun, J. Zhang, X. Zhang, Y. Luo, X.J. Wang, J. Phys. D 41, 195414 (2008)
47.
Zurück zum Zitat N. Salah, P.D. Sahare, S.P. Lochab, P. Kumar, Radiat. Meas. 41, 40 (2006) N. Salah, P.D. Sahare, S.P. Lochab, P. Kumar, Radiat. Meas. 41, 40 (2006)
48.
Zurück zum Zitat P.F. Smet, K.V.D. Eechout, A.J.J. Bose, E.V.D. Kolk, P. Dorenbos, J. Lumin. 132, 682 (2012) P.F. Smet, K.V.D. Eechout, A.J.J. Bose, E.V.D. Kolk, P. Dorenbos, J. Lumin. 132, 682 (2012)
49.
Zurück zum Zitat N.M. Gupta, J.M. Luthra, J. Shankar, Radiat. Eff. 21, 151 (1974) N.M. Gupta, J.M. Luthra, J. Shankar, Radiat. Eff. 21, 151 (1974)
50.
Zurück zum Zitat P.S. Chandra, B.N. Lakshminarasappa, B.M. Nagabhushana, J. Alloys Compd. 509, 10159 (2011) P.S. Chandra, B.N. Lakshminarasappa, B.M. Nagabhushana, J. Alloys Compd. 509, 10159 (2011)
51.
Zurück zum Zitat L. Bøtter-Jensen, N.A. Larsen, V. Mejdahl, N.R. Poolton, M.F. Morris, S.W. McKeever, Radiat. Meas. 24, 535 (1995) L. Bøtter-Jensen, N.A. Larsen, V. Mejdahl, N.R. Poolton, M.F. Morris, S.W. McKeever, Radiat. Meas. 24, 535 (1995)
52.
Zurück zum Zitat H. Toktamis, A.N. Yazici, Chin. Phys. Lett. 29, 087802 (2012) H. Toktamis, A.N. Yazici, Chin. Phys. Lett. 29, 087802 (2012)
53.
Zurück zum Zitat D.J. Daniel, O. Annalakshmi, U. Madhusoodanan, P. Ramasamy, J. Rare Earth 32, 496 (2014) D.J. Daniel, O. Annalakshmi, U. Madhusoodanan, P. Ramasamy, J. Rare Earth 32, 496 (2014)
54.
Zurück zum Zitat G. Kitis, J.M. Gomez-Ros, J.W.N. Tuyn, J. Phys. D 31, 2636 (1998) G. Kitis, J.M. Gomez-Ros, J.W.N. Tuyn, J. Phys. D 31, 2636 (1998)
55.
Zurück zum Zitat S. Katyayan, S. Agarwal, Opt. Quant. Electron. 51, 277 (2019) S. Katyayan, S. Agarwal, Opt. Quant. Electron. 51, 277 (2019)
56.
Zurück zum Zitat L. Marton, Advances in electronics, vol. V (Academic Press Inc. Publishers, Newyork, N.Y., 1953) L. Marton, Advances in electronics, vol. V (Academic Press Inc. Publishers, Newyork, N.Y., 1953)
57.
Zurück zum Zitat D.J. Daniel, O. Annalakshmi, U. Madhusoodanan, P. Ramasamy, J. Rare Earths 32, 496 (2014) D.J. Daniel, O. Annalakshmi, U. Madhusoodanan, P. Ramasamy, J. Rare Earths 32, 496 (2014)
58.
Zurück zum Zitat R.K. Tamrakar, D.P. Bisen, I.P. Sahu, N. Brahme, J. Radiat. Res. Appl. Sci. 7, 417–429 (2014) R.K. Tamrakar, D.P. Bisen, I.P. Sahu, N. Brahme, J. Radiat. Res. Appl. Sci. 7, 417–429 (2014)
59.
Zurück zum Zitat S.C. Prashantha, B.N. Lakshminarasappa, B.M. Nagabhushana, J. Alloys Compd. 509, 10185–10189 (2011) S.C. Prashantha, B.N. Lakshminarasappa, B.M. Nagabhushana, J. Alloys Compd. 509, 10185–10189 (2011)
60.
Zurück zum Zitat A. Durgakar, A. Muley, N.R. Pawar, V. Chopra, N.S. Dhoble, O.P. Chimankar, S.J. Double, Luminescence 34, 1–10 (2019) A. Durgakar, A. Muley, N.R. Pawar, V. Chopra, N.S. Dhoble, O.P. Chimankar, S.J. Double, Luminescence 34, 1–10 (2019)
61.
Zurück zum Zitat P. Allisy-Roberts, J. Williams, Farry’s Physics for Medical Images, 2nd edn. (Elsevier, Amsterdam, 2008) P. Allisy-Roberts, J. Williams, Farry’s Physics for Medical Images, 2nd edn. (Elsevier, Amsterdam, 2008)
Metadaten
Titel
Effect of annealing on the photoluminescence and thermoluminescence properties of Eu2+ doped BaSO4 microgravels
verfasst von
S. Sahaya Jude Dhas
S. Suresh
A. Rita
S. A. Martin Britto Dhas
R. Gowri Shankar Rao
C. S. Biju
Publikationsdatum
27.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 14/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03660-9

Weitere Artikel der Ausgabe 14/2020

Journal of Materials Science: Materials in Electronics 14/2020 Zur Ausgabe