Skip to main content
Erschienen in: Journal of Scientific Computing 3/2019

01.07.2019

A Linearly Implicit and Local Energy-Preserving Scheme for the Sine-Gordon Equation Based on the Invariant Energy Quadratization Approach

verfasst von: Chaolong Jiang, Wenjun Cai, Yushun Wang

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we develop a novel, linearly implicit and local energy-preserving scheme for the sine-Gordon equation. The basic idea is from the invariant energy quadratization approach to construct energy stable schemes for gradient systems, which are energy dispassion. We here take the sine-Gordon equation as an example to show that the invariant energy quadratization approach is also an efficient way to construct linearly implicit and local energy-conserving schemes for energy-conserving systems. Utilizing the invariant energy quadratization approach, the sine-Gordon equation is first reformulated into an equivalent system, which inherits a modified local energy conservation law. The new system are then discretized by the conventional finite difference method and a semi-discretized system is obtained, which can conserve the semi-discretized local energy conservation law. Subsequently, the linearly implicit structure-preserving method is applied for the resulting semi-discrete system to arrive at a fully discretized scheme. We prove that the resulting scheme can exactly preserve the discrete local energy conservation law. Moveover, with the aid of the classical energy method, an unconditional and optimal error estimate for the scheme is established in discrete \(H_h^1\)-norm. Finally, various numerical examples are addressed to confirm our theoretical analysis and demonstrate the advantage of the new scheme over some existing local structure-preserving schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ablowitz, M.J., Herbst, B.M., Schober, C.M.: On the numerical solution of the sine-Gordon equation. J. Comput. Phys. 131, 354–367 (1997)MathSciNetCrossRefMATH Ablowitz, M.J., Herbst, B.M., Schober, C.M.: On the numerical solution of the sine-Gordon equation. J. Comput. Phys. 131, 354–367 (1997)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Argyris, J., Haase, M., Heinrich, J.C.: Finite element approximation to two-dimensional sine-Gordon solitons. Comput. Methods Appl. Mech. Eng. 86, 1–26 (1991)MathSciNetCrossRefMATH Argyris, J., Haase, M., Heinrich, J.C.: Finite element approximation to two-dimensional sine-Gordon solitons. Comput. Methods Appl. Mech. Eng. 86, 1–26 (1991)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Bratsos, A.G.: The solution of the two-dimensional sine-Gordon equation using the method of lines. J. Comput. Appl. Math. 85, 241–252 (2008)MathSciNetMATH Bratsos, A.G.: The solution of the two-dimensional sine-Gordon equation using the method of lines. J. Comput. Appl. Math. 85, 241–252 (2008)MathSciNetMATH
4.
Zurück zum Zitat Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy conservation issues in the numerical solution of the semilinear wave equation. Appl. Math. Comput. 270, 842–870 (2015)MathSciNetMATH Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy conservation issues in the numerical solution of the semilinear wave equation. Appl. Math. Comput. 270, 842–870 (2015)MathSciNetMATH
5.
Zurück zum Zitat Brugnano, L., Iavernaro, F.: Line Integral Methods for Conservative Problems. Chapman et Hall, Boca Raton (2016)CrossRefMATH Brugnano, L., Iavernaro, F.: Line Integral Methods for Conservative Problems. Chapman et Hall, Boca Raton (2016)CrossRefMATH
6.
Zurück zum Zitat Cai, J., Wang, Y., Liang, H.: Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system. J. Comput. Phys. 239, 30–50 (2013)MathSciNetCrossRefMATH Cai, J., Wang, Y., Liang, H.: Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system. J. Comput. Phys. 239, 30–50 (2013)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012)MathSciNetCrossRefMATH Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012)MathSciNetCrossRefMATH
9.
10.
Zurück zum Zitat Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318–2340 (2011)MathSciNetCrossRefMATH Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318–2340 (2011)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Dehghan, M., Ghesmati, A.: Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput. Phys. Commun. 181, 772–786 (2010)MathSciNetCrossRefMATH Dehghan, M., Ghesmati, A.: Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput. Phys. Commun. 181, 772–786 (2010)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Dehghan, M., Shokri, A.: A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 79, 700–715 (2008)MathSciNetCrossRefMATH Dehghan, M., Shokri, A.: A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 79, 700–715 (2008)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Djidjeli, K., Price, W.G., Twizell, E.H.: Numerical solutions of a damped sine-Gordon equation in two space variables. J. Eng. Math. 29, 347–369 (1995)MathSciNetCrossRefMATH Djidjeli, K., Price, W.G., Twizell, E.H.: Numerical solutions of a damped sine-Gordon equation in two space variables. J. Eng. Math. 29, 347–369 (1995)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Furihata, D.: Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134, 37–57 (2001)MathSciNetCrossRefMATH Furihata, D.: Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134, 37–57 (2001)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Gong, Y., Cai, J., Wang, Y.: Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs. J. Comput. Phys 279, 80–102 (2014)MathSciNetCrossRefMATH Gong, Y., Cai, J., Wang, Y.: Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs. J. Comput. Phys 279, 80–102 (2014)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Gong, Y., Wang, Y., Wang, Q.: Linear-implicit conservative schemes based on energy quadratization for Hamiltonian PDEs. Preprint Gong, Y., Wang, Y., Wang, Q.: Linear-implicit conservative schemes based on energy quadratization for Hamiltonian PDEs. Preprint
17.
Zurück zum Zitat Guo, B., Pascual, P.J., Rodriguez, M.J., Vázquez, L.: Numerical solution of the sine-Gordon equation. Appl. Math. Comput. 18, 1–14 (1986)MathSciNetMATH Guo, B., Pascual, P.J., Rodriguez, M.J., Vázquez, L.: Numerical solution of the sine-Gordon equation. Appl. Math. Comput. 18, 1–14 (1986)MathSciNetMATH
18.
Zurück zum Zitat Hong, J., Jiang, S., Li, C., Liu, H.: Explicit multi-symplectic methods for Hamiltonian wave equations. Commun. Comput. Phys. 2, 662–683 (2007)MathSciNetMATH Hong, J., Jiang, S., Li, C., Liu, H.: Explicit multi-symplectic methods for Hamiltonian wave equations. Commun. Comput. Phys. 2, 662–683 (2007)MathSciNetMATH
19.
Zurück zum Zitat Jiang, C., Sun, J., Li, H., Wang, Y.: A fourth-order AVF method for the numerical integration of sine-Gordon equation. Appl. Math. Comput. 313, 144–158 (2017)MathSciNetMATH Jiang, C., Sun, J., Li, H., Wang, Y.: A fourth-order AVF method for the numerical integration of sine-Gordon equation. Appl. Math. Comput. 313, 144–158 (2017)MathSciNetMATH
20.
Zurück zum Zitat Jiwari, R., Pandit, S., Mittal, R.C.: Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method. Comput. Phys. Commun. 183, 600–616 (2012)MathSciNetCrossRefMATH Jiwari, R., Pandit, S., Mittal, R.C.: Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method. Comput. Phys. Commun. 183, 600–616 (2012)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Josephson, J.D.: Supercurrents through barries. Adv. Phys. 14, 419–451 (1965)CrossRef Josephson, J.D.: Supercurrents through barries. Adv. Phys. 14, 419–451 (1965)CrossRef
22.
23.
Zurück zum Zitat Khaliq, A.Q.M., Abukhodair, B., Sheng, Q.: A predictor-corrector scheme for the sine-Gordon equation. Numer. Methods Partial Differ. Equ. 16, 133–146 (2000)MathSciNetCrossRefMATH Khaliq, A.Q.M., Abukhodair, B., Sheng, Q.: A predictor-corrector scheme for the sine-Gordon equation. Numer. Methods Partial Differ. Equ. 16, 133–146 (2000)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Li, H., Sun, J., Qin, M.: New explicit multi-symplectic scheme for nonlinear wave equation. Appl. Math. Mech. Engl. Ed. 35, 369–380 (2014)MathSciNetCrossRefMATH Li, H., Sun, J., Qin, M.: New explicit multi-symplectic scheme for nonlinear wave equation. Appl. Math. Mech. Engl. Ed. 35, 369–380 (2014)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM. J. Numer. Anal. 32, 1839–1875 (1995)MathSciNetCrossRefMATH Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM. J. Numer. Anal. 32, 1839–1875 (1995)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Li, Y., Wu, X.: General local energy-preserving integrators for solving multi-symplectic Hamiltonian PDEs. J. Comput. Phys. 301, 141–166 (2015)MathSciNetCrossRefMATH Li, Y., Wu, X.: General local energy-preserving integrators for solving multi-symplectic Hamiltonian PDEs. J. Comput. Phys. 301, 141–166 (2015)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Liu, C., Wu, X.: Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein–Gordon equations. J. Comput. Phys. 340, 243–275 (2017)MathSciNetCrossRefMATH Liu, C., Wu, X.: Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein–Gordon equations. J. Comput. Phys. 340, 243–275 (2017)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171, 425–447 (2001)MathSciNetCrossRefMATH Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171, 425–447 (2001)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Reich, S.: Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473–499 (2000)MathSciNetCrossRefMATH Reich, S.: Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473–499 (2000)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Schober, C.M., Wlodarczyk, T.H.: Dispersive properties of multisymplectic integrators. J. Comput. Phys. 227, 5090–5104 (2008)MathSciNetCrossRefMATH Schober, C.M., Wlodarczyk, T.H.: Dispersive properties of multisymplectic integrators. J. Comput. Phys. 227, 5090–5104 (2008)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. arXiv:1710.01331 (2017) Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. arXiv:​1710.​01331 (2017)
33.
Zurück zum Zitat Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient. J. Comput. Phys. 353, 407–416 (2018)MathSciNetCrossRefMATH Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient. J. Comput. Phys. 353, 407–416 (2018)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Sheng, Q., Khaliq, A.Q.M., Voss, D.A.: Numerical simulation of two-dimensional sine-Gordon solitons via a split cosine scheme. Math. Comput. Simul. 68, 355–373 (2005)MathSciNetCrossRefMATH Sheng, Q., Khaliq, A.Q.M., Voss, D.A.: Numerical simulation of two-dimensional sine-Gordon solitons via a split cosine scheme. Math. Comput. Simul. 68, 355–373 (2005)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Wang, Y., Wang, B., Ji, Z., Qin, M.: High order symplectic schemes for the sine-Gordon equation. J. Phys. Soc. Jpn. 72, 2731–2736 (2003)MathSciNetCrossRefMATH Wang, Y., Wang, B., Ji, Z., Qin, M.: High order symplectic schemes for the sine-Gordon equation. J. Phys. Soc. Jpn. 72, 2731–2736 (2003)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Wang, Y., Wang, B., Qin, M.: Local structure-preserving algorithms for partial differential equations. Sci. China Ser. A 51, 2115–2136 (2008)MathSciNetCrossRefMATH Wang, Y., Wang, B., Qin, M.: Local structure-preserving algorithms for partial differential equations. Sci. China Ser. A 51, 2115–2136 (2008)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)MathSciNetCrossRefMATH Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27, 1993–2030 (2017)MathSciNetCrossRefMATH Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27, 1993–2030 (2017)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Zhang, F., Pérez-García, V.M., Vázquez, L.: Numerical simulation of nonlinear schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)MathSciNetMATH Zhang, F., Pérez-García, V.M., Vázquez, L.: Numerical simulation of nonlinear schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)MathSciNetMATH
40.
Zurück zum Zitat Zhang, F., Vázquez, L.: Two energy conserving numerical schemes for the sine-Gordon equation. Appl. Math. Comput. 45, 17–30 (1991)MathSciNetCrossRefMATH Zhang, F., Vázquez, L.: Two energy conserving numerical schemes for the sine-Gordon equation. Appl. Math. Comput. 45, 17–30 (1991)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic-tensor model of liquid crystals. Comput. Methods Appl. Mech. Engrg. 318, 803–825 (2017)MathSciNetCrossRef Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic-tensor model of liquid crystals. Comput. Methods Appl. Mech. Engrg. 318, 803–825 (2017)MathSciNetCrossRef
42.
Zurück zum Zitat Zhou, Y.: Applications of Discrete Functional Analysis to the Finite Difference Method. International Academic Publishers, Beijing (1990) Zhou, Y.: Applications of Discrete Functional Analysis to the Finite Difference Method. International Academic Publishers, Beijing (1990)
43.
Zurück zum Zitat Zhu, H., Tang, L., Song, S., Tang, Y., Wang, D.: Symplectic wavelet collocation method for Hamiltonian wave equations. J. Comput. Phys. 229, 2550–2572 (2010)MathSciNetCrossRefMATH Zhu, H., Tang, L., Song, S., Tang, Y., Wang, D.: Symplectic wavelet collocation method for Hamiltonian wave equations. J. Comput. Phys. 229, 2550–2572 (2010)MathSciNetCrossRefMATH
Metadaten
Titel
A Linearly Implicit and Local Energy-Preserving Scheme for the Sine-Gordon Equation Based on the Invariant Energy Quadratization Approach
verfasst von
Chaolong Jiang
Wenjun Cai
Yushun Wang
Publikationsdatum
01.07.2019
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-01001-5

Weitere Artikel der Ausgabe 3/2019

Journal of Scientific Computing 3/2019 Zur Ausgabe

Premium Partner