Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 2/2020

06.05.2020 | Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Preparation and study of lattice structure and magnetic properties of Bi3+ ion-doped Ni–Mg–Co ferrites by sol–gel auto-combustion method

verfasst von: Nanzhaxi Suo, Aimin Sun, Lichao Yu, Zhuo Zuo, Xiqian Zhao, Wei Zhang, Yanchun Zhang, Liqiong Shao, Tengxuan Yu

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, Bi3+ ion-doped Ni–Mg–Co ferrite nanomagnetic materials were prepared by sol–gel auto-combustion method using high-purity nitrates and citric acid experimental materials. The effect of Bi3+ ion content on the lattice structure and magnetic properties of nanoferrite was also studied. XRD diffractogram analysis shows that the Ni–Mg–Co ferrite samples with x = 0 and 0.025 have single-phase cubic spinel structure. It is found that when the doping amount is 0.05 or >0.05, the secondary-phase Bi2O3 peak appears. The average crystallite size of the sample was calculated by Debye–Scheller formula. It was found that the average grain size of the sample was affected by the doping concentration. With the increase in Bi3+ ion content, the average crystallite size increases from 8.3797 nm to 8.3940 nm. The structure of Bi3+ ion-doped Ni–Mg–Co ferrite was further characterized by FT-IR. There are two absorption bands ν1 and ν2 at 584 and 397 cm−1, which further prove the spinel structure. The morphology of the sample particles was observed by SEM, and the distribution of the particle size was calculated. The chemical components of powder samples were analyzed by EDS. Through VSM analysis, the Bi3+ ion-doped Ni–Mg–Co ferrite has the characteristics of ferromagnetism. With the increase in Bi3+ ion content, the residual and saturation magnetization decreased; the magnetic stability is also reduced. The results show that the magnetic properties of Bi3+ion-doped Ni–Mg–Co ferrite are decreased.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Moghimi SM, Hunter ACH, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318 Moghimi SM, Hunter ACH, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318
2.
Zurück zum Zitat Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:198–206 Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:198–206
3.
Zurück zum Zitat Berry CC, Wells S et al. (2003) Dextran and albumin derivatised iron oxide nanoparticles.influence on fibroblasts in vitro. Biomaterials 24:4551–4557 Berry CC, Wells S et al. (2003) Dextran and albumin derivatised iron oxide nanoparticles.influence on fibroblasts in vitro. Biomaterials 24:4551–4557
5.
Zurück zum Zitat Roess E (1982) Soft magnetic ferrites and applications in telecommunication and power converters. Magn IEEE Trans 18:1529–1534 Roess E (1982) Soft magnetic ferrites and applications in telecommunication and power converters. Magn IEEE Trans 18:1529–1534
6.
Zurück zum Zitat Farid MT, Ahmad I, Kanwal M et al. (2017) Synthesis, electrical and magnetic properties of Pr-substituted Mn ferrites for high-frequency applications. J Electron Mater 46:1–10 Farid MT, Ahmad I, Kanwal M et al. (2017) Synthesis, electrical and magnetic properties of Pr-substituted Mn ferrites for high-frequency applications. J Electron Mater 46:1–10
7.
Zurück zum Zitat Mathur P, Thakur A, Singh M (2008) Low temperature synthesis of Mn0.4Zn0.6In0.5Al0.1Fe1.4O4 nano-ferrites and characterization for high frequency applications. EPJ Appl Phys 41:133–138 Mathur P, Thakur A, Singh M (2008) Low temperature synthesis of Mn0.4Zn0.6In0.5Al0.1Fe1.4O4 nano-ferrites and characterization for high frequency applications. EPJ Appl Phys 41:133–138
8.
Zurück zum Zitat Arulmurugan R, Vaidyanathan G, Sendhilnathan S et al. (2006) Thermomagnetic properties of Co1-xZnxFe2O4 (x=0.1~0.5) nanoparticles. J Magn Magn Mater 303:131–137 Arulmurugan R, Vaidyanathan G, Sendhilnathan S et al. (2006) Thermomagnetic properties of Co1-xZnxFe2O4 (x=0.1~0.5) nanoparticles. J Magn Magn Mater 303:131–137
9.
Zurück zum Zitat Arulmurugan R, Vaidyanathan G, Sendhilnathan S (2006) Mn-Zn ferrites nanoparticles for ferrofluid preparation: study on thermal-magnetic properties. J Magn Magn Mater 298:83–94 Arulmurugan R, Vaidyanathan G, Sendhilnathan S (2006) Mn-Zn ferrites nanoparticles for ferrofluid preparation: study on thermal-magnetic properties. J Magn Magn Mater 298:83–94
10.
Zurück zum Zitat Eltabey MM, El-Shokrofy KM, Gharbia SA et al. (2011) Enhancement of the magnetic properties of Ni-Cu-Zn ferrites by the nano-magnetic Al3+-ions substitution. J All Comp 509:2473–2477 Eltabey MM, El-Shokrofy KM, Gharbia SA et al. (2011) Enhancement of the magnetic properties of Ni-Cu-Zn ferrites by the nano-magnetic Al3+-ions substitution. J All Comp 509:2473–2477
11.
Zurück zum Zitat Cao D, Pan L, Li J, Cheng X, Zhao Z, Xu J, Li Q, Wang X, Li S, Wang J, Liu Q (2018) Investigation on the structures and magnetic properties of carbon or nitrogen doped cobalt ferrite nanoparticles. Sci Rep. 7916:1–6 Cao D, Pan L, Li J, Cheng X, Zhao Z, Xu J, Li Q, Wang X, Li S, Wang J, Liu Q (2018) Investigation on the structures and magnetic properties of carbon or nitrogen doped cobalt ferrite nanoparticles. Sci Rep. 7916:1–6
12.
Zurück zum Zitat Li J, Yuan H, Li G, Liu Y, Leng J (2010) Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrites nanoparticles. J Magn Magn Mater 322:3396–3400 Li J, Yuan H, Li G, Liu Y, Leng J (2010) Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrites nanoparticles. J Magn Magn Mater 322:3396–3400
13.
Zurück zum Zitat Georgea M, Johna AM, Naira SS, Joyb PA, Anantharamana MR (2006) Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. J Magn Magn Mater 302:190–195 Georgea M, Johna AM, Naira SS, Joyb PA, Anantharamana MR (2006) Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. J Magn Magn Mater 302:190–195
14.
Zurück zum Zitat Mei LT, Hsiang HI, Hsu WH (2014) Varistor and magnetic properties of nickel copper zinc niobium ferrites doped with Bi2O3. J Am Ceram Soc 97:3918–3925 Mei LT, Hsiang HI, Hsu WH (2014) Varistor and magnetic properties of nickel copper zinc niobium ferrites doped with Bi2O3. J Am Ceram Soc 97:3918–3925
15.
Zurück zum Zitat Pei J, Wang Z (2018) Effect of Bi-Co doping on the microstructure and magnetic properties of Ni-Mg-Cu-Zn ferrites. J Magn Magn Mater 465:598–602 Pei J, Wang Z (2018) Effect of Bi-Co doping on the microstructure and magnetic properties of Ni-Mg-Cu-Zn ferrites. J Magn Magn Mater 465:598–602
16.
Zurück zum Zitat Ansaree MJ, Kumar U, Upadhyay S (2018) Structural, dielectric and magnetic properties of particulate composites of relaxor (BaTi0.85Sn0.15O3) and ferrite (NiFe2O4) synthesized by gel-combustion method. J Electroceram 40:257–269 Ansaree MJ, Kumar U, Upadhyay S (2018) Structural, dielectric and magnetic properties of particulate composites of relaxor (BaTi0.85Sn0.15O3) and ferrite (NiFe2O4) synthesized by gel-combustion method. J Electroceram 40:257–269
17.
Zurück zum Zitat Tian Y, Fu Q, Xue F et al. (2018) Enhancement of dielectric and magnetic properties in phase pure, dense BiFeO3 nanoceramics synthesized by spark plasma sintering techniques. J Mater Sci 29:17170–17177 Tian Y, Fu Q, Xue F et al. (2018) Enhancement of dielectric and magnetic properties in phase pure, dense BiFeO3 nanoceramics synthesized by spark plasma sintering techniques. J Mater Sci 29:17170–17177
18.
Zurück zum Zitat Azam A, Jawad A, Ahmed AS, Chaman M, Naqvi AH (2011) Structural optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion method. J Alloys Compd 509:2909–2913 Azam A, Jawad A, Ahmed AS, Chaman M, Naqvi AH (2011) Structural optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion method. J Alloys Compd 509:2909–2913
19.
Zurück zum Zitat Betancourt-Cantera LG, Bolarín-Miró AM, Cortés-Escobedo CA, Hernández-Cruz LE, Sánchez-De Jesús F (2018) Structural transitions and multiferroic properties of high Ni-doped BiFeO3. J Magn Magn Mater 456:381–389 Betancourt-Cantera LG, Bolarín-Miró AM, Cortés-Escobedo CA, Hernández-Cruz LE, Sánchez-De Jesús F (2018) Structural transitions and multiferroic properties of high Ni-doped BiFeO3. J Magn Magn Mater 456:381–389
20.
Zurück zum Zitat Praveena K, Radhika B, Srinath S (2014) Dielectric and magnetic properties of NiFe2–xBixO4 nanoparticles at microwave frequencies prepared via co-precipitation method. Procedia Eng 76:1–7 Praveena K, Radhika B, Srinath S (2014) Dielectric and magnetic properties of NiFe2–xBixO4 nanoparticles at microwave frequencies prepared via co-precipitation method. Procedia Eng 76:1–7
21.
Zurück zum Zitat Akhtar MN, Yousaf M, Khan SN, Nazir MS, Ahmad M, Khan MA (2017) Structural and electromagnetic evaluations of YIG rare earth doped (Gd, Pr, Ho,Yb) nanoferrites for high frequency applications. Ceram Int 43:17032–17040 Akhtar MN, Yousaf M, Khan SN, Nazir MS, Ahmad M, Khan MA (2017) Structural and electromagnetic evaluations of YIG rare earth doped (Gd, Pr, Ho,Yb) nanoferrites for high frequency applications. Ceram Int 43:17032–17040
22.
Zurück zum Zitat Rahimi-Nasrabadi M, Behpour M, Sobhani-Nasab A, Hosseinpour-Mashkani SM (2015) ZnFe2–xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J Mater Sci 26:9776–9781 Rahimi-Nasrabadi M, Behpour M, Sobhani-Nasab A, Hosseinpour-Mashkani SM (2015) ZnFe2–xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J Mater Sci 26:9776–9781
23.
Zurück zum Zitat Sharma S, Kumar R, Kumar S et al. (2008) Role of interparticle interactions on the magnetic behavior of Mg0.95Mn0.05Fe2O4 ferrite nanoparticles. J Phys Condens Matter 20:235214 Sharma S, Kumar R, Kumar S et al. (2008) Role of interparticle interactions on the magnetic behavior of Mg0.95Mn0.05Fe2O4 ferrite nanoparticles. J Phys Condens Matter 20:235214
24.
Zurück zum Zitat Anjum S, Rashid A, Bashir F, Riaz S, Pervaiz M, Zia R (2015) Effect of Cu-doped nickel ferrites on structural, magnetic, and dielectric properties. Mater Today Proc 2:5559–5567 Anjum S, Rashid A, Bashir F, Riaz S, Pervaiz M, Zia R (2015) Effect of Cu-doped nickel ferrites on structural, magnetic, and dielectric properties. Mater Today Proc 2:5559–5567
25.
Zurück zum Zitat Kadam AA, Rajpure KY (2016) Compositional variation of structural, electrical and magnetic properties of Dy substituted Ni–Co spinel ferrite. J Mater Sci 27:10484–10496 Kadam AA, Rajpure KY (2016) Compositional variation of structural, electrical and magnetic properties of Dy substituted Ni–Co spinel ferrite. J Mater Sci 27:10484–10496
26.
Zurück zum Zitat Muthuselvam IP, Bhowmik RN (2010) Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J Magn Magn Mater 322:767–776 Muthuselvam IP, Bhowmik RN (2010) Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J Magn Magn Mater 322:767–776
27.
Zurück zum Zitat Sadiq I, Khan I, Rebrov EV, Ashiq MN, Naseem S, Rana MU (2013) Structural, infrared, magnetic and microwave absorption properties of rare earth doped X-type hexagonal nanoferrites. J Alloy Compd 570:7–13 Sadiq I, Khan I, Rebrov EV, Ashiq MN, Naseem S, Rana MU (2013) Structural, infrared, magnetic and microwave absorption properties of rare earth doped X-type hexagonal nanoferrites. J Alloy Compd 570:7–13
28.
Zurück zum Zitat Smit J, Wijn HPJ (1959) Ferrites. John Wiley, New York, NY Smit J, Wijn HPJ (1959) Ferrites. John Wiley, New York, NY
29.
Zurück zum Zitat Gawas SG, Gawas UB, Verenkar VMS, Kothawale MM, Pednekar R (2017) Structural and magnetic studies of Cu-substituted nanocrystalline Ni–Zn ferrites obtained via Hexamine–Nitrate combustion route. J Supercond Nov Magn 30:1447–1452 Gawas SG, Gawas UB, Verenkar VMS, Kothawale MM, Pednekar R (2017) Structural and magnetic studies of Cu-substituted nanocrystalline Ni–Zn ferrites obtained via Hexamine–Nitrate combustion route. J Supercond Nov Magn 30:1447–1452
30.
Zurück zum Zitat Hassan HE, Sharshar T, Hessien MM, Hemeda OM (2013) Effect of c-rays irradiation on Mn-Ni ferrites: structure, magnetic properties and positron annihilation studies. Nucl Instrum Methods Phys Res B 304:72–79 Hassan HE, Sharshar T, Hessien MM, Hemeda OM (2013) Effect of c-rays irradiation on Mn-Ni ferrites: structure, magnetic properties and positron annihilation studies. Nucl Instrum Methods Phys Res B 304:72–79
31.
Zurück zum Zitat Gadkari AB, Shinde TJ, Vasambekar PN (2009) Structural analysis of Y3+-doped Mg–Cd ferrites prepared by oxalate co-precipitation method. Mater Chem Phys 114:505–510 Gadkari AB, Shinde TJ, Vasambekar PN (2009) Structural analysis of Y3+-doped Mg–Cd ferrites prepared by oxalate co-precipitation method. Mater Chem Phys 114:505–510
32.
Zurück zum Zitat Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99:1727–1735 Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99:1727–1735
33.
Zurück zum Zitat Mosleh Z, Kamelin P, Ranjbar M, Salamati H (2014) Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrites nanoparticles. Ceram Int 40:7279–7284 Mosleh Z, Kamelin P, Ranjbar M, Salamati H (2014) Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrites nanoparticles. Ceram Int 40:7279–7284
34.
Zurück zum Zitat Rana S, Phili J, Raj B (2010) Micelle based synthesis of cobalt ferrites nanoparticles and its characterization using Fourier Transform Infrared Transmission Spectrometry and Thermogravimetry. Mater Chem Phys 124:264–269 Rana S, Phili J, Raj B (2010) Micelle based synthesis of cobalt ferrites nanoparticles and its characterization using Fourier Transform Infrared Transmission Spectrometry and Thermogravimetry. Mater Chem Phys 124:264–269
35.
Zurück zum Zitat Mosleh Z, Kamelin P, Ranjbar M, Salamati H (2014) Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexa ferrite nanoparticles. Ceram Int l40:7279–7284 Mosleh Z, Kamelin P, Ranjbar M, Salamati H (2014) Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexa ferrite nanoparticles. Ceram Int l40:7279–7284
36.
Zurück zum Zitat Ziarati A, Sobhani-Nasab A, Rahimi-Nasrabadi M, Ganjali MR, Badiei A (2017) Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2–xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiatio. J Rare Eart 35:377–381 Ziarati A, Sobhani-Nasab A, Rahimi-Nasrabadi M, Ganjali MR, Badiei A (2017) Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2–xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiatio. J Rare Eart 35:377–381
37.
Zurück zum Zitat Pan XG, Sun AM, Han YQ (2018) Effects of different sintering temperature on structural and magnetic properties of Ni–Cu–Co ferrites nanoparticles. Moder Phys Let B 32:1850321 Pan XG, Sun AM, Han YQ (2018) Effects of different sintering temperature on structural and magnetic properties of Ni–Cu–Co ferrites nanoparticles. Moder Phys Let B 32:1850321
38.
Zurück zum Zitat Köseoǧlu Y, Alan F, Tan M, Yilgin R, öztürk M (2012) Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrites nanoparticles. Cera Inter 38:3625–3634 Köseoǧlu Y, Alan F, Tan M, Yilgin R, öztürk M (2012) Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrites nanoparticles. Cera Inter 38:3625–3634
39.
Zurück zum Zitat Kumar L, Kar M (2011) Influence of Al3+ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrites. J Magn Magn Mater 323:2042–2048 Kumar L, Kar M (2011) Influence of Al3+ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrites. J Magn Magn Mater 323:2042–2048
40.
Zurück zum Zitat Gholizadeh A, Jafari E (2017) Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: magnetic enhancement by a reducing atmosphere. J Magn Magn Mater 422:328–336 Gholizadeh A, Jafari E (2017) Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: magnetic enhancement by a reducing atmosphere. J Magn Magn Mater 422:328–336
41.
Zurück zum Zitat Yafet Y, Kittel C (1952) Antiferromagnetic arrangements in ferrites. Phys Rev 87:290–294 Yafet Y, Kittel C (1952) Antiferromagnetic arrangements in ferrites. Phys Rev 87:290–294
42.
Zurück zum Zitat Chervin CN, Clapsaddle BJ, Chiu HW et al. (2006) Role of cyclic ether and solvent in a non-alkoxide sol? Gel synthesis of yttria-stabilized zirconia nanoparticles. Chem Mater 18:4865–4874 Chervin CN, Clapsaddle BJ, Chiu HW et al. (2006) Role of cyclic ether and solvent in a non-alkoxide sol? Gel synthesis of yttria-stabilized zirconia nanoparticles. Chem Mater 18:4865–4874
43.
Zurück zum Zitat Bhukal S, Namgyal T, Mor S, Bansal S, Singhal S (2012) Structural, electrical, optical and magnetic properties of chromium substituted Co-Zn nanoferrites Co0.6Zn0.4CrxFe2–xO4 (0 ≤ x ≤ 1.0) prepared via sol–gel Au-to-combustion method. J Mol Struct 1012:162–167 Bhukal S, Namgyal T, Mor S, Bansal S, Singhal S (2012) Structural, electrical, optical and magnetic properties of chromium substituted Co-Zn nanoferrites Co0.6Zn0.4CrxFe2–xO4 (0 ≤ x ≤ 1.0) prepared via sol–gel Au-to-combustion method. J Mol Struct 1012:162–167
44.
Zurück zum Zitat Lin Q, He Y, Xu J, Lin J, Guo Z, Yang F (2018) Effects of Al3+ substitution on structural and magnetic behavior of CoFe2O4 ferrite Nanomaterials. Nanomaterials 750:1–11 Lin Q, He Y, Xu J, Lin J, Guo Z, Yang F (2018) Effects of Al3+ substitution on structural and magnetic behavior of CoFe2O4 ferrite Nanomaterials. Nanomaterials 750:1–11
45.
Zurück zum Zitat Singhal S, Jauhar S, Lakshmi N, Bansal S (2013) Mn3+ substituted Co-Cd ferrites, CoCd0.4MnxFe1.6–xO4 (0.1 ≤ x ≤ 0.6): cation distribution, structural, magnetic and electrical properties. J Mol Struct 1038:45–51 Singhal S, Jauhar S, Lakshmi N, Bansal S (2013) Mn3+ substituted Co-Cd ferrites, CoCd0.4MnxFe1.6–xO4 (0.1 ≤ x ≤ 0.6): cation distribution, structural, magnetic and electrical properties. J Mol Struct 1038:45–51
46.
Zurück zum Zitat Miller A (1959) Distribution of cations in spinels. J Appl Phys 30:S24–S25 Miller A (1959) Distribution of cations in spinels. J Appl Phys 30:S24–S25
47.
Zurück zum Zitat Lin J, He Y, Lin Q, Wang R, Chen H (2014) Microstructural and Mössbauer spectroscopy studies of Mg1-xZnxFe2O4 (x = 0.5, 0.7) nanoparticles. J Spectrosc 2014:540319 Lin J, He Y, Lin Q, Wang R, Chen H (2014) Microstructural and Mössbauer spectroscopy studies of Mg1-xZnxFe2O4 (x = 0.5, 0.7) nanoparticles. J Spectrosc 2014:540319
48.
Zurück zum Zitat Motavallian P, Abasht B, Abdollah-Pour H (2018) Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol-gel based Pechini method. J Magn Magn Mater 451:577–586 Motavallian P, Abasht B, Abdollah-Pour H (2018) Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol-gel based Pechini method. J Magn Magn Mater 451:577–586
49.
Zurück zum Zitat Herzer G (1990) grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans Magn 20:1397–1400 Herzer G (1990) grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans Magn 20:1397–1400
51.
Zurück zum Zitat Raut AV, Barkule RS, Shengule DR, Jadhav KM (2014) Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol-gel auto-combustion technique. J Magn Magn Mater 358:87–92 Raut AV, Barkule RS, Shengule DR, Jadhav KM (2014) Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol-gel auto-combustion technique. J Magn Magn Mater 358:87–92
52.
Zurück zum Zitat Ibusuki T, Kojima S, Kitakami O, Shimada Y (2001) Magnetic anisotropy and behaviors of Fe nanoparticles. IEEE Trans Magn 37:2223–2225 Ibusuki T, Kojima S, Kitakami O, Shimada Y (2001) Magnetic anisotropy and behaviors of Fe nanoparticles. IEEE Trans Magn 37:2223–2225
53.
Zurück zum Zitat Jadhav SS, Shirsath SE, Patange SM, Jadhav KM (2010) Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrites. J Appl Phys 108:2–6 Jadhav SS, Shirsath SE, Patange SM, Jadhav KM (2010) Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrites. J Appl Phys 108:2–6
54.
Zurück zum Zitat Jadhav SS, Shirsath SE, Patange SM (2010) Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrites. J Appl Phys 108:381 Jadhav SS, Shirsath SE, Patange SM (2010) Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrites. J Appl Phys 108:381
55.
Zurück zum Zitat Mazen SA, Abu-Elsaad NI (2012) Structural and some magnetic properties of manganese-substituted lithium ferrites. J Magn Magn Mater 324:3366–3373 Mazen SA, Abu-Elsaad NI (2012) Structural and some magnetic properties of manganese-substituted lithium ferrites. J Magn Magn Mater 324:3366–3373
56.
Zurück zum Zitat Eltabe MM, El-Shokrofy KM, Gharbia SA (2011) Enhancement of the magnetic properties of Ni–Cu–Zn ferrites by the non-magnetic Al3+-ions substitution. J All Comp 509:2473–2477 Eltabe MM, El-Shokrofy KM, Gharbia SA (2011) Enhancement of the magnetic properties of Ni–Cu–Zn ferrites by the non-magnetic Al3+-ions substitution. J All Comp 509:2473–2477
58.
Zurück zum Zitat Lin Q, Ye Z, Lei C, Huang H, Xu J, He Y (2013) Microstructure and magnetic research of NiCuZn ferrite by Co, Bi compound doped. Mater Res Innov 17:287–291 Lin Q, Ye Z, Lei C, Huang H, Xu J, He Y (2013) Microstructure and magnetic research of NiCuZn ferrite by Co, Bi compound doped. Mater Res Innov 17:287–291
59.
Zurück zum Zitat Chavan P, Naik LR, Belavi PB, Chavan GN, Otala RK (2017) Synthesis of Bi3+ substituted Ni-Cu ferrites and study of structural, electrical and magnetic properties. J Alloy Compd 694:607–612 Chavan P, Naik LR, Belavi PB, Chavan GN, Otala RK (2017) Synthesis of Bi3+ substituted Ni-Cu ferrites and study of structural, electrical and magnetic properties. J Alloy Compd 694:607–612
Metadaten
Titel
Preparation and study of lattice structure and magnetic properties of Bi3+ ion-doped Ni–Mg–Co ferrites by sol–gel auto-combustion method
verfasst von
Nanzhaxi Suo
Aimin Sun
Lichao Yu
Zhuo Zuo
Xiqian Zhao
Wei Zhang
Yanchun Zhang
Liqiong Shao
Tengxuan Yu
Publikationsdatum
06.05.2020
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 2/2020
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-020-05302-2

Weitere Artikel der Ausgabe 2/2020

Journal of Sol-Gel Science and Technology 2/2020 Zur Ausgabe

Original Paper: Sol-gel, hybrids and solution chemistries

Catalysis of silica sol–gel reactions using a PdCl2 precursor

Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical, and sensor applications

Preparation of Fe3+-doped TiO2 aerogels for photocatalytic reduction of CO2 to methanol

Original Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications

Investigation of the photoanode based on graphene/zinc aluminum mixed metal oxide for dye-sensitized solar cell

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Synthesis of MnO2/PPy nanocomposites by novel emulsifying device and its electrochemical performances

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.