Skip to main content
Erschienen in: Meccanica 5/2015

01.05.2015

Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method

verfasst von: Nuttawit Wattanasakulpong, Arisara Chaikittiratana

Erschienen in: Meccanica | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flexural vibration analysis of beams made of functionally graded materials (FGMs) with various boundary conditions is considered in this paper. Due to technical problems during FGM fabrication, porosities and micro-voids can be created inside FGM samples which may lead to the reduction in density and strength of materials. In this investigation, the FGM beams are assumed to have even and uneven distributions of porosities over the beam cross-section. The modified rule of mixture is used to approximate material properties of the FGM beams including the porosity volume fraction. In order to cover the effects of shear deformation, axial and rotary inertia, the Timoshenko beam theory is used to form the coupled equations of motion for describing dynamic behavior of the beams. To solve such a problem, Chebyshev collocation method is employed to find natural frequencies of the beams supported by different end conditions. Based on numerical results, it is revealed that FGM beams with even distribution of porosities have more significant impact on natural frequencies than FGM beams with uneven porosity distribution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Suresh S, Mortensen A (1998) Fundamental of functionally graded materials. Maney, London Suresh S, Mortensen A (1998) Fundamental of functionally graded materials. Maney, London
2.
Zurück zum Zitat Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG (1999) Functionally graded materials: design, processing and application. Kluwer Academic Publishers, LondonCrossRef Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG (1999) Functionally graded materials: design, processing and application. Kluwer Academic Publishers, LondonCrossRef
3.
Zurück zum Zitat Zhu J, Lai Z, Yin Z, Jeon J, Lee S (2001) Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Mater Chem Phys 68:130–135CrossRef Zhu J, Lai Z, Yin Z, Jeon J, Lee S (2001) Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Mater Chem Phys 68:130–135CrossRef
4.
Zurück zum Zitat Wattanasakulpong N, Prusty BG, Kelly DW, Hoffman M (2012) Free vibration analysis of layered functionally graded beams with experimental validation. Mater Design 36:182–190CrossRef Wattanasakulpong N, Prusty BG, Kelly DW, Hoffman M (2012) Free vibration analysis of layered functionally graded beams with experimental validation. Mater Design 36:182–190CrossRef
5.
Zurück zum Zitat Sankar BV (2001) An elasticity solution for functionally graded beams. Compos Sci Technol 61:689–696CrossRef Sankar BV (2001) An elasticity solution for functionally graded beams. Compos Sci Technol 61:689–696CrossRef
6.
Zurück zum Zitat Zhong Z, Yu T (2007) Analytical solution of a cantilever functionally graded beam. Compos Sci Technol 67:481–488CrossRef Zhong Z, Yu T (2007) Analytical solution of a cantilever functionally graded beam. Compos Sci Technol 67:481–488CrossRef
7.
Zurück zum Zitat Kang YA, Li XF (2009) Bending of functionally graded cantilever beams with power-law non-linearity subjected to an end force. Int J Non Linear Mech 44:696–703CrossRef Kang YA, Li XF (2009) Bending of functionally graded cantilever beams with power-law non-linearity subjected to an end force. Int J Non Linear Mech 44:696–703CrossRef
8.
Zurück zum Zitat Kapuria S, Bhattacharyya M, Kumar AN (2008) Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Compos Struct 82:390–402CrossRef Kapuria S, Bhattacharyya M, Kumar AN (2008) Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Compos Struct 82:390–402CrossRef
9.
Zurück zum Zitat Aydogdu M, Taskin V (2007) Free vibration analysis of functionally graded beams with simply-supported edges. Mater Design 36:182–190 Aydogdu M, Taskin V (2007) Free vibration analysis of functionally graded beams with simply-supported edges. Mater Design 36:182–190
10.
Zurück zum Zitat Xiang HJ, Yang J (2008) Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Compos Part B Eng 39:292–303CrossRef Xiang HJ, Yang J (2008) Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Compos Part B Eng 39:292–303CrossRef
11.
Zurück zum Zitat Sina SA, Navazi HM, Haddadpour H (2009) An analytical method for free vibration analysis of functionally graded beams. Mater Design 30:741–747CrossRef Sina SA, Navazi HM, Haddadpour H (2009) An analytical method for free vibration analysis of functionally graded beams. Mater Design 30:741–747CrossRef
12.
Zurück zum Zitat Simsek M (2010) Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Eng Design 240:697–705CrossRef Simsek M (2010) Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Eng Design 240:697–705CrossRef
13.
Zurück zum Zitat Thai HT, Vo TP (2012) Bending and free vibration of functionally graded beams using various higher-order shear deformation theories. Int Mech Sci 62:57–66CrossRef Thai HT, Vo TP (2012) Bending and free vibration of functionally graded beams using various higher-order shear deformation theories. Int Mech Sci 62:57–66CrossRef
14.
Zurück zum Zitat Wattanasakulpong N, Prusty BG, Kelly DW (2011) Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams. Int J Mech Sci 53:734–743CrossRef Wattanasakulpong N, Prusty BG, Kelly DW (2011) Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams. Int J Mech Sci 53:734–743CrossRef
15.
Zurück zum Zitat Giunta G, Crisafulli D, Belouettar S, Carrera E (2011) Hierarchical theories for the free vibration analysis of functionally graded beams. Compos Struct 94:68–74CrossRef Giunta G, Crisafulli D, Belouettar S, Carrera E (2011) Hierarchical theories for the free vibration analysis of functionally graded beams. Compos Struct 94:68–74CrossRef
16.
Zurück zum Zitat Alshorbagy AE, Eltaher MA, Mahmoud FF (2011) Free vibration characteristics of a functionally graded beam by finite element method. Appl Math Model 35:412–425CrossRefMATHMathSciNet Alshorbagy AE, Eltaher MA, Mahmoud FF (2011) Free vibration characteristics of a functionally graded beam by finite element method. Appl Math Model 35:412–425CrossRefMATHMathSciNet
17.
Zurück zum Zitat Su H, Banerjee JR, Cheung CW (2013) Dynamic stiffness formulation and free vibration analysis of functionally graded beams. Compos Struct 106:854–862CrossRef Su H, Banerjee JR, Cheung CW (2013) Dynamic stiffness formulation and free vibration analysis of functionally graded beams. Compos Struct 106:854–862CrossRef
18.
Zurück zum Zitat Pradhan KK, Chakraverty S (2013) Free vibration and Timoshenko functionally graded beams by Rayleigh-Ritz method. Compos Part B 51:175–184CrossRef Pradhan KK, Chakraverty S (2013) Free vibration and Timoshenko functionally graded beams by Rayleigh-Ritz method. Compos Part B 51:175–184CrossRef
19.
Zurück zum Zitat Suddoung K, Charoensuk J, Wattanasakulpong N (2014) Vibration response of stepped. Appl Acoust 77:20–28CrossRef Suddoung K, Charoensuk J, Wattanasakulpong N (2014) Vibration response of stepped. Appl Acoust 77:20–28CrossRef
20.
Zurück zum Zitat Rajasekaran S (2013) Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach. Meccanica 48:1053–1070CrossRefMATHMathSciNet Rajasekaran S (2013) Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach. Meccanica 48:1053–1070CrossRefMATHMathSciNet
21.
Zurück zum Zitat Vo TP, Thai HT, Nguyen TK, Inam F (2014) Static and vibration analysis of functionally graded beams using refined shear deformation theory. Meccanica 49:155–168CrossRefMATHMathSciNet Vo TP, Thai HT, Nguyen TK, Inam F (2014) Static and vibration analysis of functionally graded beams using refined shear deformation theory. Meccanica 49:155–168CrossRefMATHMathSciNet
22.
Zurück zum Zitat Rajasekaran S, Tochaei EN (2014) Free vibration analysis of axially functionally graded tapered Timoshenko beams using differential transformation element method and differential quadrature element method of lowest-order. Meccanica 49:995–1009CrossRefMATHMathSciNet Rajasekaran S, Tochaei EN (2014) Free vibration analysis of axially functionally graded tapered Timoshenko beams using differential transformation element method and differential quadrature element method of lowest-order. Meccanica 49:995–1009CrossRefMATHMathSciNet
23.
Zurück zum Zitat Wattanasakulpong N, Ungbhakorn V (2014) Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp Sci Technol 32:111–120CrossRef Wattanasakulpong N, Ungbhakorn V (2014) Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp Sci Technol 32:111–120CrossRef
24.
Zurück zum Zitat Fox L, Parker IB (1968) Chebyshev polynomials in numerical analysis. Oxford University Press, London Fox L, Parker IB (1968) Chebyshev polynomials in numerical analysis. Oxford University Press, London
25.
Zurück zum Zitat Elbarbary EME (2005) Chebyshev finite difference method for the solution of boundary-layer equations. Appl Math Comput 160:487–498CrossRefMATHMathSciNet Elbarbary EME (2005) Chebyshev finite difference method for the solution of boundary-layer equations. Appl Math Comput 160:487–498CrossRefMATHMathSciNet
26.
27.
Zurück zum Zitat Biazar J, Ebrahimi H (2012) Chebyshev wavelets approach for nonlinear systems of Volterra integral equations. Comput Math Appl 63:608–616CrossRefMATHMathSciNet Biazar J, Ebrahimi H (2012) Chebyshev wavelets approach for nonlinear systems of Volterra integral equations. Comput Math Appl 63:608–616CrossRefMATHMathSciNet
28.
Zurück zum Zitat Doha EH, Abd-Elhameed WM, Bassuony MA (2013) New algorithms for solving high even-order differential equations using third and fourth Chebyshev-Galerkin method. J Comput Phys 236:563–579CrossRefADSMATHMathSciNet Doha EH, Abd-Elhameed WM, Bassuony MA (2013) New algorithms for solving high even-order differential equations using third and fourth Chebyshev-Galerkin method. J Comput Phys 236:563–579CrossRefADSMATHMathSciNet
29.
Zurück zum Zitat Lin CH, Jen MHR (2005) Analysis of a laminated anisotropic plate by Chebyshev collocation method. Compos B 36:155–169CrossRef Lin CH, Jen MHR (2005) Analysis of a laminated anisotropic plate by Chebyshev collocation method. Compos B 36:155–169CrossRef
30.
Zurück zum Zitat Lee J, Schultz WW (2004) Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method. J Sound Vib 269:609–621CrossRefADS Lee J, Schultz WW (2004) Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method. J Sound Vib 269:609–621CrossRefADS
31.
Zurück zum Zitat Sari MS, Butcher EA (2010) Natural frequencies and critical loads of beams and columns with damaged boundaries using Chebyshev polynomials. Int J Eng Sci 48:862–873CrossRef Sari MS, Butcher EA (2010) Natural frequencies and critical loads of beams and columns with damaged boundaries using Chebyshev polynomials. Int J Eng Sci 48:862–873CrossRef
32.
Zurück zum Zitat Sari MS, Butcher EA (2012) Free vibration analysis of non-rotating and rotating Timoshenko beams with damaged boundaries using the Chebyshev collocation method. Int J Mech Sci 60:1–11CrossRef Sari MS, Butcher EA (2012) Free vibration analysis of non-rotating and rotating Timoshenko beams with damaged boundaries using the Chebyshev collocation method. Int J Mech Sci 60:1–11CrossRef
33.
Zurück zum Zitat Delale F, Erdogan F (1983) The crack problem for a nonhomogeneous plane. ASME J Appl Mech 50:609–614CrossRefMATH Delale F, Erdogan F (1983) The crack problem for a nonhomogeneous plane. ASME J Appl Mech 50:609–614CrossRefMATH
Metadaten
Titel
Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method
verfasst von
Nuttawit Wattanasakulpong
Arisara Chaikittiratana
Publikationsdatum
01.05.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 5/2015
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-014-0094-8

Weitere Artikel der Ausgabe 5/2015

Meccanica 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.