Skip to main content
Erschienen in: Meccanica 11/2020

14.10.2020 | Original papers

An electrostatically actuated microsensor for determination of micropolar fluid physical properties

verfasst von: Mina Ghanbari, Ghader Rezazadeh

Erschienen in: Meccanica | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Micropolar fluids as complex non-Newtonian fluids admittedly have numerous applications in various fields, especially in medicine. Blood as a micropolar fluid plays an important role in regulating the body’s system and maintaining homeostasis. Physical properties of micropolar fluids, especially their viscosity, affect their rheological behavior significantly. Therefore, measurement of viscosity of these complex fluids especially human blood seems very necessary as it is considered a key parameter in the diagnosis and treatment of several diseases. In this paper, a new comb-drive microsensor for estimation of physical properties of micropolar fluids is presented. Driving and sensing combs, a sensing plate attached to the shuttle of the resonator form the structure of the electrostatic sensor. The nonlinear dynamic behavior of the sensor due to the presence of the electrostatic force has been investigated to obtain the limitations of the linear behavior of the structure. It has been shown that calculating the resonance frequency and resonance amplitude variations of the lumped dynamic model of the sensor arising from damping and inertial effects of the fluid can lead to the determination of the physical properties of a micropolar fluid. The effects of the geometrical parameters of the sensor and the applied exciting voltage on the performance of the sensor have also been studied.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lukaszewicz G (1999) Micropolar fluids: theory and applications, chapter1. Springer, BerlinMATH Lukaszewicz G (1999) Micropolar fluids: theory and applications, chapter1. Springer, BerlinMATH
2.
Zurück zum Zitat Weng HC, Chen CK, Chang MH (2009) Stability of micropolar fluid flow between concentric rotating cylinders. J Fluid Mech 631:343–362MathSciNetMATH Weng HC, Chen CK, Chang MH (2009) Stability of micropolar fluid flow between concentric rotating cylinders. J Fluid Mech 631:343–362MathSciNetMATH
3.
Zurück zum Zitat Ding Z, Jian Y, Wang L, Yang L (2017) Analytical in investigation of electrokinetic effects of micropolar fluids in nanofluidic channels. Phys Fluids 29:082008 Ding Z, Jian Y, Wang L, Yang L (2017) Analytical in investigation of electrokinetic effects of micropolar fluids in nanofluidic channels. Phys Fluids 29:082008
4.
Zurück zum Zitat Eringen AC (1993) An assessment of director and micropolar theories of liquid crystals. Int J Eng Sci 31(4):605–616MathSciNetMATH Eringen AC (1993) An assessment of director and micropolar theories of liquid crystals. Int J Eng Sci 31(4):605–616MathSciNetMATH
5.
Zurück zum Zitat Allen SJ, Kline KA (1971) Lubrication theory for micropolar fluids. J Appl Mech Trans ASME 38:646–650MATH Allen SJ, Kline KA (1971) Lubrication theory for micropolar fluids. J Appl Mech Trans ASME 38:646–650MATH
6.
Zurück zum Zitat Prabhakaran Nair K, Sukumaran Nair VP, Jayadas NH (2007) Static and dynamic analysis of elastohydrodynamic elliptical journal bearing with micropolar lubricant. Tribol Int 40(2):297–305 Prabhakaran Nair K, Sukumaran Nair VP, Jayadas NH (2007) Static and dynamic analysis of elastohydrodynamic elliptical journal bearing with micropolar lubricant. Tribol Int 40(2):297–305
7.
Zurück zum Zitat Aurangzaib SU, Md BK, Shafie S (2016) Micropolar fluid flow and heat transfer over an exponentially permeable shrinking sheet. Propuls Power Res 5(4):310–317 Aurangzaib SU, Md BK, Shafie S (2016) Micropolar fluid flow and heat transfer over an exponentially permeable shrinking sheet. Propuls Power Res 5(4):310–317
8.
Zurück zum Zitat Hayakawa H (2000) Slow viscous flows in micropolar fluids. Phys Rev E 61(5B):5477–5492 Hayakawa H (2000) Slow viscous flows in micropolar fluids. Phys Rev E 61(5B):5477–5492
9.
Zurück zum Zitat Sui J, Zhao P, Cheng Z, Zheng L, Zhang X (2017) A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer. Phys Fluid 29(2):023105 Sui J, Zhao P, Cheng Z, Zheng L, Zhang X (2017) A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer. Phys Fluid 29(2):023105
10.
Zurück zum Zitat Alberts B, Johnson A, Lewis J et al. (2002) Molecular biology of the cell, 4th edn. Garland Science, New York. Renewal by Multipotent stem cells: blood cell formation Alberts B, Johnson A, Lewis J et al. (2002) Molecular biology of the cell, 4th edn. Garland Science, New York. Renewal by Multipotent stem cells: blood cell formation
11.
Zurück zum Zitat Shram VG, Lysyannikov AV, Kovaleva MA (2016) The mechanism of lubricants protective layers formation in friction sliding. Proc Eng 150:458–463 Shram VG, Lysyannikov AV, Kovaleva MA (2016) The mechanism of lubricants protective layers formation in friction sliding. Proc Eng 150:458–463
12.
Zurück zum Zitat Waqas M, Khan MI, Farooq S, Hayat T, Al-Saedi A (2019) Significance of improved Fourier–Fick laws in non-linear convective micropolar material stratified flow with variable properties. Therm Sci 23(6B):3809–3815 Waqas M, Khan MI, Farooq S, Hayat T, Al-Saedi A (2019) Significance of improved Fourier–Fick laws in non-linear convective micropolar material stratified flow with variable properties. Therm Sci 23(6B):3809–3815
13.
Zurück zum Zitat Hasnain J, Abbas Z (2019) Entropy generation analysis on two-phase micropolar nanofluids flow in an inclined channel with convective heat transfer. Therm Sci 23(3B):1765–1777 Hasnain J, Abbas Z (2019) Entropy generation analysis on two-phase micropolar nanofluids flow in an inclined channel with convective heat transfer. Therm Sci 23(3B):1765–1777
14.
Zurück zum Zitat Kocic MM, Stamenkovic ZM, Petrovic JD, Nikodijevic MD (2018) Influence of electrical-conductivity of walls on magnetohydrodynamic flow and heat transfer of micropolar fluid. Therm Sci 22(5):S1591–S1600 Kocic MM, Stamenkovic ZM, Petrovic JD, Nikodijevic MD (2018) Influence of electrical-conductivity of walls on magnetohydrodynamic flow and heat transfer of micropolar fluid. Therm Sci 22(5):S1591–S1600
15.
Zurück zum Zitat Rao PS, Murmu B, Agarwal S (2019) A comparison of porous structures on the performance of slider bearing with surface roughness in micropolar fluid film lubrication. Therm Sci 23(3B):1813–1824 Rao PS, Murmu B, Agarwal S (2019) A comparison of porous structures on the performance of slider bearing with surface roughness in micropolar fluid film lubrication. Therm Sci 23(3B):1813–1824
16.
Zurück zum Zitat Gan C, Lian Z, YaoWen L, FuLong L, Dong H, Hong Z (2012) Regulating of blood viscosity in disease prevention and treatment. Chin Sci Bull 57(16):1946–1952 Gan C, Lian Z, YaoWen L, FuLong L, Dong H, Hong Z (2012) Regulating of blood viscosity in disease prevention and treatment. Chin Sci Bull 57(16):1946–1952
17.
Zurück zum Zitat Ville F (2013) Lubricant viscosity. In: Wang QI, Chung YW (eds) Encyclopedia of tribology. Springer, Boston, MA Ville F (2013) Lubricant viscosity. In: Wang QI, Chung YW (eds) Encyclopedia of tribology. Springer, Boston, MA
18.
Zurück zum Zitat Shin S, Keum DY, Ku YH (2002) Blood viscosity measurements using pressure-scanning capillary viscometer. KSME Int J 16:1719–1724 Shin S, Keum DY, Ku YH (2002) Blood viscosity measurements using pressure-scanning capillary viscometer. KSME Int J 16:1719–1724
19.
Zurück zum Zitat Yusibani E, Nagahama Y, Kohno M, Takata Y, Woodfield PL et al (2011) A capillary tube viscometer designed for measurements of hydrogen gas viscosity at high pressure and high temperature. Int J Thermophys 32(6):1111–1124 Yusibani E, Nagahama Y, Kohno M, Takata Y, Woodfield PL et al (2011) A capillary tube viscometer designed for measurements of hydrogen gas viscosity at high pressure and high temperature. Int J Thermophys 32(6):1111–1124
20.
Zurück zum Zitat Manfredi OF, Mills RS, Schirru MM, Dwyer-Joyce RS (2019) Non-invasive measurement of lubricating oil viscosity using an ultrasonic continuously repeated chirp shear wave. Ultrasonics 94:332–339 Manfredi OF, Mills RS, Schirru MM, Dwyer-Joyce RS (2019) Non-invasive measurement of lubricating oil viscosity using an ultrasonic continuously repeated chirp shear wave. Ultrasonics 94:332–339
21.
Zurück zum Zitat Schirru M, Li X, Cadeddu M, Dwyer-Joyce RS (2019) Development of a shear ultrasonic spectroscopy technique for the evaluation of viscoelastic fluid properties: theory and experimental validation. Ultrasonics 94:364–375 Schirru M, Li X, Cadeddu M, Dwyer-Joyce RS (2019) Development of a shear ultrasonic spectroscopy technique for the evaluation of viscoelastic fluid properties: theory and experimental validation. Ultrasonics 94:364–375
22.
Zurück zum Zitat Franco EE, Buiochi F (2019) Ultrasonic measurement of viscosity: signal processing methodologies. Ultrasonics 91:213–219 Franco EE, Buiochi F (2019) Ultrasonic measurement of viscosity: signal processing methodologies. Ultrasonics 91:213–219
23.
Zurück zum Zitat Ciuti G, Ricotti L, Menciassi A, Dario P (2015) MEMS sensor technologies for human centered applications in healthcare, physical activities, safety, and environmental sensing: a review on research activities in Italy. Sensors 15(3):6441–6468 Ciuti G, Ricotti L, Menciassi A, Dario P (2015) MEMS sensor technologies for human centered applications in healthcare, physical activities, safety, and environmental sensing: a review on research activities in Italy. Sensors 15(3):6441–6468
24.
Zurück zum Zitat Rezazadeh G, Ghanbari M, Mirzaee I, Keivani A (2010) On the modeling of a piezoelectrically actuated microsensor for simultaneous measurement of fluids viscosity and density. Measurement 43(10):1516–1524 Rezazadeh G, Ghanbari M, Mirzaee I, Keivani A (2010) On the modeling of a piezoelectrically actuated microsensor for simultaneous measurement of fluids viscosity and density. Measurement 43(10):1516–1524
26.
Zurück zum Zitat Durdag K, Jeff A (2007) Real-time viscosity measurement for condition-based monitoring using solid-state viscosity sensor. Tribol Trans 51(3):296–302 Durdag K, Jeff A (2007) Real-time viscosity measurement for condition-based monitoring using solid-state viscosity sensor. Tribol Trans 51(3):296–302
27.
Zurück zum Zitat Payam AF, Trewby W, Voitchovsky K (2017) Simultaneous viscosity and density measurement of small volumes of liquids using a vibrating microcantilever. Analyst 142(9):1492–1498 Payam AF, Trewby W, Voitchovsky K (2017) Simultaneous viscosity and density measurement of small volumes of liquids using a vibrating microcantilever. Analyst 142(9):1492–1498
28.
Zurück zum Zitat Heinisch M, Voglhuber-Brunnmaier T, Reichel EK, Dufour I, Jakoby B (2015) Electromagnetically driven torsional resonators for viscosity and mass density sensing applications. Sens Actuators A 229:182–191 Heinisch M, Voglhuber-Brunnmaier T, Reichel EK, Dufour I, Jakoby B (2015) Electromagnetically driven torsional resonators for viscosity and mass density sensing applications. Sens Actuators A 229:182–191
29.
Zurück zum Zitat Ghanbari M, Hossainpour S, Rezazadeh G (2015a) On the modeling of a piezoelectrically actuated microsensor for measurement of micro-scale fluid physical properties. Appl Phys A 121(2):651–663 Ghanbari M, Hossainpour S, Rezazadeh G (2015a) On the modeling of a piezoelectrically actuated microsensor for measurement of micro-scale fluid physical properties. Appl Phys A 121(2):651–663
30.
Zurück zum Zitat Ghanbari M, Hossainpour S, Rezazadeh G (2018) Measurement of micro-scale fluid physical properties using torsional vibration of a micro shaft. Model Meas Control B 87(4):257–265 Ghanbari M, Hossainpour S, Rezazadeh G (2018) Measurement of micro-scale fluid physical properties using torsional vibration of a micro shaft. Model Meas Control B 87(4):257–265
31.
32.
Zurück zum Zitat Chen J, Liang C, Lee JD (2011) Theory and simulation of micropolar fluid dynamics. Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst 224(1–2):31–39 Chen J, Liang C, Lee JD (2011) Theory and simulation of micropolar fluid dynamics. Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst 224(1–2):31–39
33.
34.
Zurück zum Zitat Nashat SED, AbdelRassoul R, Abd El Bary AEM (2018) Design and simulation of RF MEMS comb drive with ultra-low pull-in voltage and maximum displacement. Microsyst Technol 24:3443–3453 Nashat SED, AbdelRassoul R, Abd El Bary AEM (2018) Design and simulation of RF MEMS comb drive with ultra-low pull-in voltage and maximum displacement. Microsyst Technol 24:3443–3453
36.
Zurück zum Zitat Veijola T, Kuisma H, Lahdenperä J, Ryhänen T (1995) Equivalent-circuit model of the squeezed gas film in a silicon accelerometer. Sens Actuators A 45:239–248 Veijola T, Kuisma H, Lahdenperä J, Ryhänen T (1995) Equivalent-circuit model of the squeezed gas film in a silicon accelerometer. Sens Actuators A 45:239–248
37.
Zurück zum Zitat Ghanbari M, Hossainpour S, Rezazadeh G (2015b) Studying thin film damping in a micro-beam resonator based on non-classical theories. Acta Mech Sin 32:369–379MathSciNetMATH Ghanbari M, Hossainpour S, Rezazadeh G (2015b) Studying thin film damping in a micro-beam resonator based on non-classical theories. Acta Mech Sin 32:369–379MathSciNetMATH
38.
Zurück zum Zitat Ghanbari M, Hossainpour S, Rezazadeh G (2014) Study of squeeze film damping in a micro-beam resonator based on micro-polar theory. Lat Am J Solids Struct 12:77–91MATH Ghanbari M, Hossainpour S, Rezazadeh G (2014) Study of squeeze film damping in a micro-beam resonator based on micro-polar theory. Lat Am J Solids Struct 12:77–91MATH
39.
Zurück zum Zitat Sheikhlou M, Rezazadeh G, Shabani R (2013) Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method. Meccanica 48:259–274MathSciNetMATH Sheikhlou M, Rezazadeh G, Shabani R (2013) Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method. Meccanica 48:259–274MathSciNetMATH
40.
Zurück zum Zitat Riesch C, Keplinger F, Reichel EK, Jakoby B (2006) Characterizing resonating cantilevers for liquid property sensing. In: Sensors. IEEE, Daegu, pp 1070–1073 Riesch C, Keplinger F, Reichel EK, Jakoby B (2006) Characterizing resonating cantilevers for liquid property sensing. In: Sensors. IEEE, Daegu, pp 1070–1073
41.
Zurück zum Zitat Ahmadi G (1976) Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int J Eng Sci 14:639–646MATH Ahmadi G (1976) Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int J Eng Sci 14:639–646MATH
42.
Zurück zum Zitat Kline KA (1977) A spin-velocity relation for unidirectional plane flows of micropolar flows. Int J Eng Sci 15:131–134MATH Kline KA (1977) A spin-velocity relation for unidirectional plane flows of micropolar flows. Int J Eng Sci 15:131–134MATH
43.
Zurück zum Zitat Jiang WA, Zhang G, Chen L (2015) Forced response of quadratic nonlinear oscillator: comparison of various approaches. Appl Math Mech 36(11):1403–1416MathSciNetMATH Jiang WA, Zhang G, Chen L (2015) Forced response of quadratic nonlinear oscillator: comparison of various approaches. Appl Math Mech 36(11):1403–1416MathSciNetMATH
47.
Zurück zum Zitat He JH (2019b) The simpler, the better: analytical methods for nonlinear oscillators and fractional oscillators. J Low Freq Noise Vib Act Control 38:1252–1260 He JH (2019b) The simpler, the better: analytical methods for nonlinear oscillators and fractional oscillators. J Low Freq Noise Vib Act Control 38:1252–1260
48.
Zurück zum Zitat Qian YH, Pan JL, Qiang Y et al (2019) The spreading residue harmonic balance method for studying the doubly clamped beam-type N/MEMS subjected to the van der Waals attraction. J Low Freq Noise Vib Act Control 38:1261–1271 Qian YH, Pan JL, Qiang Y et al (2019) The spreading residue harmonic balance method for studying the doubly clamped beam-type N/MEMS subjected to the van der Waals attraction. J Low Freq Noise Vib Act Control 38:1261–1271
Metadaten
Titel
An electrostatically actuated microsensor for determination of micropolar fluid physical properties
verfasst von
Mina Ghanbari
Ghader Rezazadeh
Publikationsdatum
14.10.2020
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 11/2020
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-020-01242-x

Weitere Artikel der Ausgabe 11/2020

Meccanica 11/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.