Skip to main content
Erschienen in: Mechanics of Composite Materials 5/2021

20.11.2021

The Influence of Internal Stresses on the Aging of Polymer Composite Materials: a Review

verfasst von: E. N. Kablov, V. O. Startsev

Erschienen in: Mechanics of Composite Materials | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The formation of internal stresses in polymer composite materials (PCMs) caused by different elastic moduli and thermal expansion coefficients of polymer resin and reinforcing fibers, as well as by swelling due to the moisture uptake is discussed. The influence of thermal cycles on the internal stresses and strength of the materials was studied in dry and wet atmospheres. It shown that thermal cycles cause a periodic jumps in the stresses at lowfrequency mechanical loadings, during which the mechanical properties are degraded due to the formation of microscopic cracks in the polymer matrix. The relative changes in the strength, elastic modulus, glass-transition temperatures, moisture diffusion coefficient, and other PCM physical characteristics are proportional to the logarithm of the number of cycles and also depend on the form and size of specimens, amplitude, conditions, and length of thermal cycles. A prolonged action of external actions relaxes the internal stresses and reduces their influence on the aging of PCMs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Roylance and M. Roylance, “Weathering of fiber-reinforced epoxy composites,” Polym. Eng. Sci., 18, No. 4, 249-254 (1978).CrossRef D. Roylance and M. Roylance, “Weathering of fiber-reinforced epoxy composites,” Polym. Eng. Sci., 18, No. 4, 249-254 (1978).CrossRef
2.
Zurück zum Zitat T. A. Collings, “The effect of observed climatic conditoins pn the moisture equilibrium level of fibre-reinforced plastics,” Composites, 17, No. 1, 33-41 (1986).CrossRef T. A. Collings, “The effect of observed climatic conditoins pn the moisture equilibrium level of fibre-reinforced plastics,” Composites, 17, No. 1, 33-41 (1986).CrossRef
3.
Zurück zum Zitat D. J. Baker, Ten-Year Ground Exposure of Composite Materials Used on the Bell Model 206L Helicopter Flight Service Program, Nasa Technical Paper 3468, 54 p. (1994). D. J. Baker, Ten-Year Ground Exposure of Composite Materials Used on the Bell Model 206L Helicopter Flight Service Program, Nasa Technical Paper 3468, 54 p. (1994).
4.
Zurück zum Zitat R. Vodichka, “Environmental exposure of boron-epoxy composite material,” DSTO Aeronautical and Maritime Res. Lab., Melbourn, Australia, DSTO-TN-0309, 23 p. (2000). R. Vodichka, “Environmental exposure of boron-epoxy composite material,” DSTO Aeronautical and Maritime Res. Lab., Melbourn, Australia, DSTO-TN-0309, 23 p. (2000).
5.
Zurück zum Zitat I. Nishizaki, H. Sakurada, and T. Tomiyama, “Durability of pultruded GFPR through ten-year outdoor exposure test,” Polymers, 7, 2494-2503 (2015).CrossRef I. Nishizaki, H. Sakurada, and T. Tomiyama, “Durability of pultruded GFPR through ten-year outdoor exposure test,” Polymers, 7, 2494-2503 (2015).CrossRef
6.
Zurück zum Zitat K. V. Pochiraju, G. A Schoeppner., and G. P. Tandon, Long-Term Durability of Polymeric Matrix Composites, Ed. K. V. Pochiraju, G. P. Tandon, G. A. Schoeppner, Boston, MA: Springer US. (2012). K. V. Pochiraju, G. A Schoeppner., and G. P. Tandon, Long-Term Durability of Polymeric Matrix Composites, Ed. K. V. Pochiraju, G. P. Tandon, G. A. Schoeppner, Boston, MA: Springer US. (2012).
7.
Zurück zum Zitat Ageing of Composites, Ed. R. Martin, Cambridje: Woodhead Publ. Ltd. (2008). Ageing of Composites, Ed. R. Martin, Cambridje: Woodhead Publ. Ltd. (2008).
8.
Zurück zum Zitat O. V. Startsev, G. P. Mashinskaya, and V. A. Yartsev, “Molecular mobility and relaxation processes in an epoxy matrix, 2. Effects of weathering in humid subtropical climate,” Mech. Compos. Mater., 20, No. 4, 406-409 (1985).CrossRef O. V. Startsev, G. P. Mashinskaya, and V. A. Yartsev, “Molecular mobility and relaxation processes in an epoxy matrix, 2. Effects of weathering in humid subtropical climate,” Mech. Compos. Mater., 20, No. 4, 406-409 (1985).CrossRef
9.
Zurück zum Zitat V. N. Bulmanis and O. V. Startsev, “Prediction of changes in the strength of polymer fiber composites as a result of climatic impact,” Yakutsk: Yakut. branch of the Siberian Branch of the USSR Academy of Sciences, Institute of Physics and Technology. problems of the North., 32 p. (1988). V. N. Bulmanis and O. V. Startsev, “Prediction of changes in the strength of polymer fiber composites as a result of climatic impact,” Yakutsk: Yakut. branch of the Siberian Branch of the USSR Academy of Sciences, Institute of Physics and Technology. problems of the North., 32 p. (1988).
10.
Zurück zum Zitat Y. M. Vapirov, V. V. Krivonos, and O. V. Startsev, “Interpretation of the anomalous change in the properties of carbonfiber-reinforced plastic KMU-1u during aging in different climatic regions,” Mech. Compos. Mater., 30, No. 2, 190-194 (1994).CrossRef Y. M. Vapirov, V. V. Krivonos, and O. V. Startsev, “Interpretation of the anomalous change in the properties of carbonfiber-reinforced plastic KMU-1u during aging in different climatic regions,” Mech. Compos. Mater., 30, No. 2, 190-194 (1994).CrossRef
11.
Zurück zum Zitat E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite materials: 1. Aging mechanisms,” Russ. Metallurgy (Metally), No. 10, 993-1000 (2011). E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite materials: 1. Aging mechanisms,” Russ. Metallurgy (Metally), No. 10, 993-1000 (2011).
12.
Zurück zum Zitat E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite aviation materials: 2. Relaxation of the initial structural nenequilibrium and through thickness gradient of properties,” Russ. Metallurgy (Metally), No. 10, 1001-1007 (2011). E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite aviation materials: 2. Relaxation of the initial structural nenequilibrium and through thickness gradient of properties,” Russ. Metallurgy (Metally), No. 10, 1001-1007 (2011).
13.
Zurück zum Zitat E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite aviation materials: 3. Significant aging factors,” Russ. Metallurgy (Metally), No. 4, 323-329 (2012). E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite aviation materials: 3. Significant aging factors,” Russ. Metallurgy (Metally), No. 4, 323-329 (2012).
14.
Zurück zum Zitat V. O. Startsev and A. V. Slavin, “Resistance of carbon plastics and fiberglass plastics based on melt binders to the effects of moderately cold and moderately warm climates,” Tr. VIAM: Electron. Scientific and Technical Zhurn., No. 5, Art. 12 (2021). URL: http://www.viam-works.ru (date of access: 20.06.2021). DOI: 10.18577 / 2307-6046-2021-0-5-114-126 V. O. Startsev and A. V. Slavin, “Resistance of carbon plastics and fiberglass plastics based on melt binders to the effects of moderately cold and moderately warm climates,” Tr. VIAM: Electron. Scientific and Technical Zhurn., No. 5, Art. 12 (2021). URL: http://​www.​viam-works.​ru (date of access: 20.06.2021). DOI: 10.18577 / 2307-6046-2021-0-5-114-126
15.
Zurück zum Zitat L. T. Startseva, S. V. Panin, O. V. Startsev, and A. S. Krotov, “Moisture diffusion in glass-fiber-reinforced plastics after their climatic ageing,” Dokl. Phys. Chem., 456, No. 1, 77-81 (2014).CrossRef L. T. Startseva, S. V. Panin, O. V. Startsev, and A. S. Krotov, “Moisture diffusion in glass-fiber-reinforced plastics after their climatic ageing,” Dokl. Phys. Chem., 456, No. 1, 77-81 (2014).CrossRef
16.
Zurück zum Zitat , E. N. Kablov and V.O. Startsev, “System analysis of the effect of climate on the mechanical properties of polymer composite materials according to the data of domestic and foreign sources (review),” Aviat. Materials and Technologies., No. 2, 47-58 (2018). DOI: https://doi.org/10.18577/2071-9140-2018-0-2-47-58 , E. N. Kablov and V.O. Startsev, “System analysis of the effect of climate on the mechanical properties of polymer composite materials according to the data of domestic and foreign sources (review),” Aviat. Materials and Technologies., No. 2, 47-58 (2018). DOI: https://​doi.​org/​10.​18577/​2071-9140-2018-0-2-47-58
18.
Zurück zum Zitat L. Belec, T. H. Nguyen, D. L. Nguyen, and J. F. Chailan, “Comparative effects of humid tropical weathering and artificial ageing on a model composite properties from nano- to macro-scale,” Composites: Part A, 68, No. 1, P. 235-241 (2015).CrossRef L. Belec, T. H. Nguyen, D. L. Nguyen, and J. F. Chailan, “Comparative effects of humid tropical weathering and artificial ageing on a model composite properties from nano- to macro-scale,” Composites: Part A, 68, No. 1, P. 235-241 (2015).CrossRef
19.
Zurück zum Zitat F. Awaja, S. Zhang, M. Tripathi, A. Nikiforov, and N. Pugno, “Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair,” Progress in Mater. Sci., 83, 536-573 (2016).CrossRef F. Awaja, S. Zhang, M. Tripathi, A. Nikiforov, and N. Pugno, “Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair,” Progress in Mater. Sci., 83, 536-573 (2016).CrossRef
20.
Zurück zum Zitat H. Fang, Y. Bai, W. Liu, Y. Qi, and J. Wang, “Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments,” Composites: Part B, 164, 129-143 (2019).CrossRef H. Fang, Y. Bai, W. Liu, Y. Qi, and J. Wang, “Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments,” Composites: Part B, 164, 129-143 (2019).CrossRef
21.
Zurück zum Zitat E. N. Kablov and V. O. Startsev, “Climatic aging of polymer composite materials for aviation. 1. Assessment of the influence of significant influencing factors,” Deformation and Destruction of Materials, No. 12, 7-16 (2019). E. N. Kablov and V. O. Startsev, “Climatic aging of polymer composite materials for aviation. 1. Assessment of the influence of significant influencing factors,” Deformation and Destruction of Materials, No. 12, 7-16 (2019).
22.
Zurück zum Zitat E. N. Kablov and V. O. Startsev, “Climatic aging of polymer composite materials for aviation. 2. Development of research methods for the early stages of aging,” Deformation and Destruction of Materials, No. 1, 15-21 (2020). E. N. Kablov and V. O. Startsev, “Climatic aging of polymer composite materials for aviation. 2. Development of research methods for the early stages of aging,” Deformation and Destruction of Materials, No. 1, 15-21 (2020).
23.
Zurück zum Zitat O. V. Startsev, M. P. Lebedev, and A. K. Kychkin, “Aging of polymer composite materials in an extremely cold climate,” Izv. Altai. State Univ., No. 1 (111), 41-51 (2020). O. V. Startsev, M. P. Lebedev, and A. K. Kychkin, “Aging of polymer composite materials in an extremely cold climate,” Izv. Altai. State Univ., No. 1 (111), 41-51 (2020).
24.
Zurück zum Zitat P. K. Dutta, “Structural fiber composite materials for cold regions,” J. Cold Regions Eng., 2, No. 3, 124-134 (1988).CrossRef P. K. Dutta, “Structural fiber composite materials for cold regions,” J. Cold Regions Eng., 2, No. 3, 124-134 (1988).CrossRef
25.
Zurück zum Zitat Bazli, Ashrafi, Jafari, Zhao, Raman, and Bai, “Effect of fibers configuration and thickness on tensile behavior of GFRP laminates exposed to harsh environment,” Polymers, 11, No. 9, (2019). Bazli, Ashrafi, Jafari, Zhao, Raman, and Bai, “Effect of fibers configuration and thickness on tensile behavior of GFRP laminates exposed to harsh environment,” Polymers, 11, No. 9, (2019).
26.
Zurück zum Zitat P. K. Dutta and D. Hui, “Low-temperature and freeze-thaw durability of thick composites,” Composites: Part B, 27, No. 3-4, 371-379 (1996).CrossRef P. K. Dutta and D. Hui, “Low-temperature and freeze-thaw durability of thick composites,” Composites: Part B, 27, No. 3-4, 371-379 (1996).CrossRef
27.
Zurück zum Zitat V. O. Startsev, “Across-the-thickness gradient of the interlaminar shear strength of a cfrp after its long-term exposure to a marine climate,” Mech. Compos. Mater., 52, No. 2, 171-176 (2016).CrossRef V. O. Startsev, “Across-the-thickness gradient of the interlaminar shear strength of a cfrp after its long-term exposure to a marine climate,” Mech. Compos. Mater., 52, No. 2, 171-176 (2016).CrossRef
28.
Zurück zum Zitat A. Baker, S. Dutton, and D. Kelly, Composite Materials for Aircraft Structures, 2nd ed., Reston (2004). A. Baker, S. Dutton, and D. Kelly, Composite Materials for Aircraft Structures, 2nd ed., Reston (2004).
29.
Zurück zum Zitat H. T. Hahn, “Residual Stresses in Polymer Matrix Composite Laminates,” J. Compos. Mater., 10, No. 4, 266-278 (1976).CrossRef H. T. Hahn, “Residual Stresses in Polymer Matrix Composite Laminates,” J. Compos. Mater., 10, No. 4, 266-278 (1976).CrossRef
30.
Zurück zum Zitat N. Hancox, “Thermal effects on polymer matrix composites: Part 1. Thermal cycling,” Mater. Des., 19, No. 3, 85-91 (1998).CrossRef N. Hancox, “Thermal effects on polymer matrix composites: Part 1. Thermal cycling,” Mater. Des., 19, No. 3, 85-91 (1998).CrossRef
31.
Zurück zum Zitat J. A. Nairn, “Thermoelastic analysis of residual stresses in unidirectional, high-performance composites,” Polym. Compos., 6, No. 2, 123-130 (1985).CrossRef J. A. Nairn, “Thermoelastic analysis of residual stresses in unidirectional, high-performance composites,” Polym. Compos., 6, No. 2, 123-130 (1985).CrossRef
32.
Zurück zum Zitat E. C. Peterson, R. R. Patil, A. R. Kallmeyer, and K. G. Kellogg, “A micromechanical damage model for carbon fiber composites at reduced temperatures,” J. Compos. Mater., 42, No. 19, 2063-2082 (2008).CrossRef E. C. Peterson, R. R. Patil, A. R. Kallmeyer, and K. G. Kellogg, “A micromechanical damage model for carbon fiber composites at reduced temperatures,” J. Compos. Mater., 42, No. 19, 2063-2082 (2008).CrossRef
33.
Zurück zum Zitat L. G. Zhao, N. A. Warrior, and A. C. Long, “A micromechanical study of residual stress and its effect on transverse failure in polymer-matrix composites,” Int. J. Solids Struct., 43, No. 18-19, 5449-5467 (2006).CrossRef L. G. Zhao, N. A. Warrior, and A. C. Long, “A micromechanical study of residual stress and its effect on transverse failure in polymer-matrix composites,” Int. J. Solids Struct., 43, No. 18-19, 5449-5467 (2006).CrossRef
34.
Zurück zum Zitat L. Yang, Y. Yan, J. Ma, and B. Liu, “Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer-matrix composites,” Comput. Mater. Sci., 68, 255-262 2013.CrossRef L. Yang, Y. Yan, J. Ma, and B. Liu, “Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer-matrix composites,” Comput. Mater. Sci., 68, 255-262 2013.CrossRef
35.
Zurück zum Zitat M. M. Shokrieh, A. Daneshvar, and S. Akbari, “Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes,” Mater. Des., 53, 209-216 (2014).CrossRef M. M. Shokrieh, A. Daneshvar, and S. Akbari, “Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes,” Mater. Des., 53, 209-216 (2014).CrossRef
36.
Zurück zum Zitat M. A. Umarfarooq, P. S. S. Gouda, A. Nandibewoor, N. R Banapurmath., and G. B. V. Kumar, “Determination of residual stresses in GFRP composite using incremental slitting method by the aid of strain gauge,” AIP Conf. Proc., 2057, Article 020038 (2019). M. A. Umarfarooq, P. S. S. Gouda, A. Nandibewoor, N. R Banapurmath., and G. B. V. Kumar, “Determination of residual stresses in GFRP composite using incremental slitting method by the aid of strain gauge,” AIP Conf. Proc., 2057, Article 020038 (2019).
37.
Zurück zum Zitat A. Jafarpour, M Safarabadi., M. Haghighi-Yazdi, and A. Yousefi, “Numerical study of curing thermal residual stresses in GF/CNF/epoxy nanocomposite using a random generator model,” Mech. Adv. Mater. Struct., 1, No. 11 (2020). A. Jafarpour, M Safarabadi., M. Haghighi-Yazdi, and A. Yousefi, “Numerical study of curing thermal residual stresses in GF/CNF/epoxy nanocomposite using a random generator model,” Mech. Adv. Mater. Struct., 1, No. 11 (2020).
38.
Zurück zum Zitat O. V. Startsev, I. I. Perepechko, L. T. Startseva, and G. P. Mashinskaya, “Structural changes in plasticized reticular amorphose polymer,” Vysokomol. Soed., Ser. B, 25, No. 6, 457-461 (1983). O. V. Startsev, I. I. Perepechko, L. T. Startseva, and G. P. Mashinskaya, “Structural changes in plasticized reticular amorphose polymer,” Vysokomol. Soed., Ser. B, 25, No. 6, 457-461 (1983).
39.
Zurück zum Zitat M. J. Adamson, “Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials,” J. Mater. Sci., 15, No. 7, 1736-1745 (1980).CrossRef M. J. Adamson, “Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials,” J. Mater. Sci., 15, No. 7, 1736-1745 (1980).CrossRef
40.
Zurück zum Zitat J. P. Komorowski, “Hygrothermal effects in continuos fibre reinforced composites: part 2: Physical properties,” Nat. Res. Council Canada, Nat. Aeronautical Establishment, Structures and Mater. Lab.,Aeronautical Note NAE-AN-10, NRC no 22700, Ottawa (1983). J. P. Komorowski, “Hygrothermal effects in continuos fibre reinforced composites: part 2: Physical properties,” Nat. Res. Council Canada, Nat. Aeronautical Establishment, Structures and Mater. Lab.,Aeronautical Note NAE-AN-10, NRC no 22700, Ottawa (1983).
41.
Zurück zum Zitat B. D. Harper and Y. Weitsman, “On the effects of environmental conditioning on residual stresses in composite laminates,” Int. J. Solids Struct., 21, No. 8, 907-926 (1985).CrossRef B. D. Harper and Y. Weitsman, “On the effects of environmental conditioning on residual stresses in composite laminates,” Int. J. Solids Struct., 21, No. 8, 907-926 (1985).CrossRef
42.
Zurück zum Zitat K. Liao and Y.-M. Tan, “Influence of moisture-induced stress on in situ fiber strength degradation of unidirectional polymer composite,” Composites: Part B, 32, No. 4, 365-370 (2001).CrossRef K. Liao and Y.-M. Tan, “Influence of moisture-induced stress on in situ fiber strength degradation of unidirectional polymer composite,” Composites: Part B, 32, No. 4, 365-370 (2001).CrossRef
43.
Zurück zum Zitat Residual Stresses in Composite Materials, Ed. M. M. Shokrieh (2014). Residual Stresses in Composite Materials, Ed. M. M. Shokrieh (2014).
44.
Zurück zum Zitat R. Ghaedamini, A. Ghassemi, and A. Atrian, “A comparative experimental study for determination of residual stress in laminated composites using ring core, incremental hole drilling, and slitting methods,” Mater. Res. Express., 6, No. 2, Article 025205 (2018). R. Ghaedamini, A. Ghassemi, and A. Atrian, “A comparative experimental study for determination of residual stress in laminated composites using ring core, incremental hole drilling, and slitting methods,” Mater. Res. Express., 6, No. 2, Article 025205 (2018).
45.
Zurück zum Zitat K. K. Mahato, M. J. Shukla, D. S. Kumar, and B. C. Ray, “In- service performance of fiber reinforced polymer composite in different environmental conditions: A review,” J. Adv. Res. Manufacturing, Mater. Sci. Metall. Eng., 1, No. 2, 55-88 (2014). K. K. Mahato, M. J. Shukla, D. S. Kumar, and B. C. Ray, “In- service performance of fiber reinforced polymer composite in different environmental conditions: A review,” J. Adv. Res. Manufacturing, Mater. Sci. Metall. Eng., 1, No. 2, 55-88 (2014).
46.
Zurück zum Zitat W. B. Liau and F. P. Tseng, “The effect of long-term ultraviolet light irradiation on polymer matrix composites,” Polym. Compos., 19, No. 4, 440-445 (1998).CrossRef W. B. Liau and F. P. Tseng, “The effect of long-term ultraviolet light irradiation on polymer matrix composites,” Polym. Compos., 19, No. 4, 440-445 (1998).CrossRef
47.
Zurück zum Zitat J. Cinquin and B. Medda, “Influence of laminate thickness on composite durability for long term utilisation at intermediate temperature (100-150°C),” Composites Science and Technology, 69, No. 9, 1432-1436 (2009).CrossRef J. Cinquin and B. Medda, “Influence of laminate thickness on composite durability for long term utilisation at intermediate temperature (100-150°C),” Composites Science and Technology, 69, No. 9, 1432-1436 (2009).CrossRef
48.
Zurück zum Zitat F. Azimpour-Shishevan, H. Akbulut, and M. A. Mohtadi-Bonab, “Effect of thermal cycling on mechanical and thermal properties of basalt fibre-reinforced epoxy composites,” Bulletin Mater. Sci., 43, No. 1, 88 (2020).CrossRef F. Azimpour-Shishevan, H. Akbulut, and M. A. Mohtadi-Bonab, “Effect of thermal cycling on mechanical and thermal properties of basalt fibre-reinforced epoxy composites,” Bulletin Mater. Sci., 43, No. 1, 88 (2020).CrossRef
49.
Zurück zum Zitat C. T. Herakovich and M. W. Hyer, “Damage-induced property changes in composites subjected to cyclic thermal loading,” Eng. Fracture Mech., 25, No. 5-6, 779-791 (1986).CrossRef C. T. Herakovich and M. W. Hyer, “Damage-induced property changes in composites subjected to cyclic thermal loading,” Eng. Fracture Mech., 25, No. 5-6, 779-791 (1986).CrossRef
50.
Zurück zum Zitat A. A Fahmy. and T. G. Cunningham, “Investigation of thermal fatigue in fiber composite materials,” NASA CR-2641, 60 p. (1976). A. A Fahmy. and T. G. Cunningham, “Investigation of thermal fatigue in fiber composite materials,” NASA CR-2641, 60 p. (1976).
51.
Zurück zum Zitat M. Lafarie-Frenot and S. Rouquie, “Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling,” Compos. Sci. Technol., 64, No. 10-11, 1725-1735 (2004).CrossRef M. Lafarie-Frenot and S. Rouquie, “Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling,” Compos. Sci. Technol., 64, No. 10-11, 1725-1735 (2004).CrossRef
52.
Zurück zum Zitat M. C. Lafarie-Frenot, S. Rouquié, N. Q. Ho, and V. Bellenger, “Comparison of damage development in C/epoxy laminates during isothermal ageing or thermal cycling,” Composites: Part A, 37, No. 4, 662-671 (2006).CrossRef M. C. Lafarie-Frenot, S. Rouquié, N. Q. Ho, and V. Bellenger, “Comparison of damage development in C/epoxy laminates during isothermal ageing or thermal cycling,” Composites: Part A, 37, No. 4, 662-671 (2006).CrossRef
53.
Zurück zum Zitat S. Y. Park, H. S. Choi, W. J. Choi, and H. Kwon, “Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber/epoxy composites for low earth orbit space applications,” Composites: Part B, 43, No. 2, 726-738 (2012).CrossRef S. Y. Park, H. S. Choi, W. J. Choi, and H. Kwon, “Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber/epoxy composites for low earth orbit space applications,” Composites: Part B, 43, No. 2, 726-738 (2012).CrossRef
54.
Zurück zum Zitat S. Mahdavi, S. K. Gupta, and M. Hojjati, “Thermal cycling of composite laminates made of out-of-autoclave materials,” Sci. Eng. Compos. Mater., 25, No. 6, 1145-1156 (2018).CrossRef S. Mahdavi, S. K. Gupta, and M. Hojjati, “Thermal cycling of composite laminates made of out-of-autoclave materials,” Sci. Eng. Compos. Mater., 25, No. 6, 1145-1156 (2018).CrossRef
55.
Zurück zum Zitat A. Jafari, H. Ashrafi, M. Bazli, and T. Ozbakkaloglu, “Effect of thermal cycles on mechanical response of pultruded glass fiber reinforced polymer profiles of different geometries,” Compos. Struct., 223, 110959 (2019).CrossRef A. Jafari, H. Ashrafi, M. Bazli, and T. Ozbakkaloglu, “Effect of thermal cycles on mechanical response of pultruded glass fiber reinforced polymer profiles of different geometries,” Compos. Struct., 223, 110959 (2019).CrossRef
56.
Zurück zum Zitat S. A. Grammatikos, R. G. Jones, M. Evernden, and J. R. Correia, “Thermal cycling effects on the durability of a pultruded GFRP material for off-shore civil engineering structures,” Compos. Struct., 153, 297-310 (2016).CrossRef S. A. Grammatikos, R. G. Jones, M. Evernden, and J. R. Correia, “Thermal cycling effects on the durability of a pultruded GFRP material for off-shore civil engineering structures,” Compos. Struct., 153, 297-310 (2016).CrossRef
57.
Zurück zum Zitat J. M. Sousa, J. R. Correia, S. Cabral-Fonseca, and A. C. Diogo, “Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications,” Compos. Struct., 116, No. 1, 720-731 (2014).CrossRef J. M. Sousa, J. R. Correia, S. Cabral-Fonseca, and A. C. Diogo, “Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications,” Compos. Struct., 116, No. 1, 720-731 (2014).CrossRef
58.
Zurück zum Zitat T. K. Tsotsis, “Effects of sub-freezing temperatures on graphite/epoxy composite materials,” J. Eng. Mater. Techn., 111, No. 4, 438-439 (1989).CrossRef T. K. Tsotsis, “Effects of sub-freezing temperatures on graphite/epoxy composite materials,” J. Eng. Mater. Techn., 111, No. 4, 438-439 (1989).CrossRef
59.
Zurück zum Zitat C. J. Jones, R. F. Dickson, T. Adam, H. Reiter, and B. Harris, “The environmental fatigue behaviour of reinforced plastics,” Proc. R. Soc. London, Ser. A, 396, No. 1811, 315-338 (1984).CrossRef C. J. Jones, R. F. Dickson, T. Adam, H. Reiter, and B. Harris, “The environmental fatigue behaviour of reinforced plastics,” Proc. R. Soc. London, Ser. A, 396, No. 1811, 315-338 (1984).CrossRef
60.
Zurück zum Zitat J. Degrieck and W. Van Paepegem, “Fatigue damage modeling of fibre-reinforced composite materials: Review,” Appl. Mech. Rev., 54, No. 4, 279-300 (2001).CrossRef J. Degrieck and W. Van Paepegem, “Fatigue damage modeling of fibre-reinforced composite materials: Review,” Appl. Mech. Rev., 54, No. 4, 279-300 (2001).CrossRef
61.
Zurück zum Zitat J. Gomez and B. Casto, “Freeze-thaw durability of composite materials,” Report No. VTRC 96-R25, 13 p. (1996). J. Gomez and B. Casto, “Freeze-thaw durability of composite materials,” Report No. VTRC 96-R25, 13 p. (1996).
62.
Zurück zum Zitat M. Alkhader, X. Zhai, and F.-P. Chiang, “Experimental investigation of the synergistic effects of moisture and freezethaw cycles on carbon fiber vinyl-ester composites,” J. Compos. Mater., 52, No. 7, 919-930 (2018).CrossRef M. Alkhader, X. Zhai, and F.-P. Chiang, “Experimental investigation of the synergistic effects of moisture and freezethaw cycles on carbon fiber vinyl-ester composites,” J. Compos. Mater., 52, No. 7, 919-930 (2018).CrossRef
63.
Zurück zum Zitat V. M. Karbhari, “Response of fiber reinforced polymer confined concrete exposed to freeze and freeze-thaw regimes,” J. Composit. Construction., 6, No. 1, 35-40 (2002).CrossRef V. M. Karbhari, “Response of fiber reinforced polymer confined concrete exposed to freeze and freeze-thaw regimes,” J. Composit. Construction., 6, No. 1, 35-40 (2002).CrossRef
64.
Zurück zum Zitat H. Katogi, K. Takemura, and N. Iijima, “Residual flexural property of water absorbed CFRP during thermal cycling,” High Performance and Optimum Design of Structures and Materials II, 1, 277-286 (2016).CrossRef H. Katogi, K. Takemura, and N. Iijima, “Residual flexural property of water absorbed CFRP during thermal cycling,” High Performance and Optimum Design of Structures and Materials II, 1, 277-286 (2016).CrossRef
65.
Zurück zum Zitat S. Li, Y. Y. Lu, and H. T. Ren, “Durability of E-glass fiber reinforced polymer subjected to freeze-thaw cycle and sustained load,” Adv. Mater. Res., 163-167, 3219-3222 (2010).CrossRef S. Li, Y. Y. Lu, and H. T. Ren, “Durability of E-glass fiber reinforced polymer subjected to freeze-thaw cycle and sustained load,” Adv. Mater. Res., 163-167, 3219-3222 (2010).CrossRef
66.
Zurück zum Zitat S. Y. Park, W. J. Choi, C. H. Choi, and H. S. Choi, “An experimental study into aging unidirectional carbon fiber epoxy composite under thermal cycling and moisture absorption,” Compos. Struct., 207, 81-92 (2019).CrossRef S. Y. Park, W. J. Choi, C. H. Choi, and H. S. Choi, “An experimental study into aging unidirectional carbon fiber epoxy composite under thermal cycling and moisture absorption,” Compos. Struct., 207, 81-92 (2019).CrossRef
67.
Zurück zum Zitat T. G. Sorina and G. M. Gunyaev, “Structural carbon-fibre-reinforced plastics and their properties,” Polymer Matrix Composites, Chapman&Hall, 132-198 (1995). T. G. Sorina and G. M. Gunyaev, “Structural carbon-fibre-reinforced plastics and their properties,” Polymer Matrix Composites, Chapman&Hall, 132-198 (1995).
68.
Zurück zum Zitat K. D. Cowley and P. W. R. Beaumont, “The measurement and prediction of residual stresses in carbon-fibre/polymer composites,” Compos. Sci. Technol., 57, No. 11, 1445-1455 (1997).CrossRef K. D. Cowley and P. W. R. Beaumont, “The measurement and prediction of residual stresses in carbon-fibre/polymer composites,” Compos. Sci. Technol., 57, No. 11, 1445-1455 (1997).CrossRef
69.
Zurück zum Zitat O. V. Startsev, K. O. Prokopenko, A. A. Litvinov, A. S. Krotov, L. I. Anikhovskaya, and L. A. Dement’eva, “Study of thermohumid aging of aircraft fiberglass plastic,” Polym. Sci. Ser. D, 3, No. 1, 58-61 (2010).CrossRef O. V. Startsev, K. O. Prokopenko, A. A. Litvinov, A. S. Krotov, L. I. Anikhovskaya, and L. A. Dement’eva, “Study of thermohumid aging of aircraft fiberglass plastic,” Polym. Sci. Ser. D, 3, No. 1, 58-61 (2010).CrossRef
70.
Zurück zum Zitat K. Aniskevich, V. Korkhov, J. Faitelsone, and J. Jansons, “Mechanical properties of pultruded glass fiber reinforced plastic after freeze-thaw cycling,” J. Reinf. Plast. Compos., 31, No. 22, 1554-1563 (2012).CrossRef K. Aniskevich, V. Korkhov, J. Faitelsone, and J. Jansons, “Mechanical properties of pultruded glass fiber reinforced plastic after freeze-thaw cycling,” J. Reinf. Plast. Compos., 31, No. 22, 1554-1563 (2012).CrossRef
71.
Zurück zum Zitat H. W. Lord and P. K. Dutta, “On the design of polymeric composite structures for cold regions applications,” J. Reinf. Plast. Compos., 7, No. 5, 435-458 (1988).CrossRef H. W. Lord and P. K. Dutta, “On the design of polymeric composite structures for cold regions applications,” J. Reinf. Plast. Compos., 7, No. 5, 435-458 (1988).CrossRef
72.
Zurück zum Zitat O. V. Startsev and E. F. Nikishin, “Aging of polymer composite materials exposed to the conditions in outer space,” Mech. Compos. Mater., 29, No. 4, 338-346 (1994).CrossRef O. V. Startsev and E. F. Nikishin, “Aging of polymer composite materials exposed to the conditions in outer space,” Mech. Compos. Mater., 29, No. 4, 338-346 (1994).CrossRef
73.
Zurück zum Zitat T. Reynolds and H. McManus, “Accelerated Tests of Environmental Degradation in Composite Materials,” Composite Structures: Theory and Practice, Ed. P. Grant and C. Rousseau, West Conshohocken, PA: ASTM Int., 513-525 (2001). T. Reynolds and H. McManus, “Accelerated Tests of Environmental Degradation in Composite Materials,” Composite Structures: Theory and Practice, Ed. P. Grant and C. Rousseau, West Conshohocken, PA: ASTM Int., 513-525 (2001).
74.
Zurück zum Zitat V. Issoupov, O. V. Startsev, C. Lacabanne, P. Demont, V. Viel-Ingutmbert, M. Dinguirard, and E. F. Nikishin, “Combined effect of thermal and mechanical stresses on the viscoelastic properties of a composite material for space structures,” Protection of Materials and Structures from Space Environment, Dordrecht: Kluwer Acad. Publ., 271-281 (2006). V. Issoupov, O. V. Startsev, C. Lacabanne, P. Demont, V. Viel-Ingutmbert, M. Dinguirard, and E. F. Nikishin, “Combined effect of thermal and mechanical stresses on the viscoelastic properties of a composite material for space structures,” Protection of Materials and Structures from Space Environment, Dordrecht: Kluwer Acad. Publ., 271-281 (2006).
75.
Zurück zum Zitat O. V. Startsev, A. Yu. Makhonkov, I. S. Deev, and E. F. Nikishin, “Aging of CFRP KMU-4L after 12 years of exposure at the International Space Station by the method of dynamic mechanical analysis. 2. Influence of the location of plates in multilayer packs,” Vopr. Materialoved., No. 4, P. 69-76 (2013). O. V. Startsev, A. Yu. Makhonkov, I. S. Deev, and E. F. Nikishin, “Aging of CFRP KMU-4L after 12 years of exposure at the International Space Station by the method of dynamic mechanical analysis. 2. Influence of the location of plates in multilayer packs,” Vopr. Materialoved., No. 4, P. 69-76 (2013).
76.
Zurück zum Zitat O. V. Startsev, Y. M. Vapirov, I. S. Deev, V. A. Yartsev, V. V. Krivonos, E. A. Mitrofanova, and M. A. Chubarova, “Effect of prolonged atmospheric aging on the properties and structure of carbon plastic,” Mech. Compos. Mater., 22, No. 4, 444-449 (1987).CrossRef O. V. Startsev, Y. M. Vapirov, I. S. Deev, V. A. Yartsev, V. V. Krivonos, E. A. Mitrofanova, and M. A. Chubarova, “Effect of prolonged atmospheric aging on the properties and structure of carbon plastic,” Mech. Compos. Mater., 22, No. 4, 444-449 (1987).CrossRef
77.
Zurück zum Zitat Aviation materials: Handbook in 13 volumes. V. 13. Climatic and microbiological resistance of non-metallic materials [in Russian], Ed. E. N. Kablova, M., 270 p. (2015). Aviation materials: Handbook in 13 volumes. V. 13. Climatic and microbiological resistance of non-metallic materials [in Russian], Ed. E. N. Kablova, M., 270 p. (2015).
78.
Zurück zum Zitat V. O. Startsev, V. I. Plotnikov, and Yu. V. Antipov, “Reversible effects of moisture in determining the mechanical properties of PCM under climatic influences,” Tr. VIAM: Elektron. Nauch. Teckhn. Zhurn (2018). URL: http://www.viam-works.ru (date of access 20.06.2021). - 2018. - No. 5. - Art. 12. DOI :. 10.18577 / 2307-6046-2018-0-5-110-118 V. O. Startsev, V. I. Plotnikov, and Yu. V. Antipov, “Reversible effects of moisture in determining the mechanical properties of PCM under climatic influences,” Tr. VIAM: Elektron. Nauch. Teckhn. Zhurn (2018). URL: http://​www.​viam-works.​ru (date of access 20.06.2021). - 2018. - No. 5. - Art. 12. DOI :. 10.18577 / 2307-6046-2018-0-5-110-118
Metadaten
Titel
The Influence of Internal Stresses on the Aging of Polymer Composite Materials: a Review
verfasst von
E. N. Kablov
V. O. Startsev
Publikationsdatum
20.11.2021
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 5/2021
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-021-09979-6

Weitere Artikel der Ausgabe 5/2021

Mechanics of Composite Materials 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.