Skip to main content
Erschienen in: Metal Science and Heat Treatment 5-6/2018

06.10.2018 | STRUCTURAL STEELS

Transformations of Supercooled Austenite in Promising High-Hardenability Machine Steels

verfasst von: M. V. Maisuradze, M. A. Ryzhkov, O. A. Surnaeva

Erschienen in: Metal Science and Heat Treatment | Ausgabe 5-6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study special features of the transformation of supercooled austenite under the continuous cooling of Si – Mn steels with reduced contents of nickel as compared with traditionally used machine steels. The temperature ranges of the phase and structural transformations running under the conditions of heating and cooling of steels are determined by the dilatometric method. We plot the thermokinetic diagrams of transformations of supercooled austenite. The microstructural components formed in the investigated steels are analyzed both qualitatively and quantitatively. We also propose the chemical compositions of promising steels characterized by a high stability of supercooled austenite and high hardenability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. S. Zubchenko (ed.), Grades of Steels and Alloys [in Russian], Mashinostroenie, Moscow (2001). A. S. Zubchenko (ed.), Grades of Steels and Alloys [in Russian], Mashinostroenie, Moscow (2001).
2.
Zurück zum Zitat L. E. Popova and A. A. Popov, Diagrams of the Transformation of Austenite in Steels and Beta-Solution in Titanium Alloys [in Russian], Metallurgiya, Moscow (1991). L. E. Popova and A. A. Popov, Diagrams of the Transformation of Austenite in Steels and Beta-Solution in Titanium Alloys [in Russian], Metallurgiya, Moscow (1991).
3.
Zurück zum Zitat ASM Handbook. Vol. 1. Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International, Metals Park (2008). ASM Handbook. Vol. 1. Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International, Metals Park (2008).
4.
Zurück zum Zitat F. G. Caballero, “Carbide-free bainite in steels,” in: E. Pereloma and D. V. Edmonds (eds.), Phase Transformations in Steels, Woodhead Publ., Oxford (2012), Vol. 1, pp. 436 – 467. F. G. Caballero, “Carbide-free bainite in steels,” in: E. Pereloma and D. V. Edmonds (eds.), Phase Transformations in Steels, Woodhead Publ., Oxford (2012), Vol. 1, pp. 436 – 467.
5.
Zurück zum Zitat M. Soliman and H. Palkowski, “Microstructure development and mechanical properties of medium carbon carbide-free bainite steels,” Proc. Eng., 81, 1306 – 1311 (2014).CrossRef M. Soliman and H. Palkowski, “Microstructure development and mechanical properties of medium carbon carbide-free bainite steels,” Proc. Eng., 81, 1306 – 1311 (2014).CrossRef
6.
Zurück zum Zitat X. Y. Long, J. Kang, B. Lv, and F. C. Zhang, “Carbide-free bainite in medium carbon steel,” Mater. Design, 64, 237 – 245 (2014).CrossRef X. Y. Long, J. Kang, B. Lv, and F. C. Zhang, “Carbide-free bainite in medium carbon steel,” Mater. Design, 64, 237 – 245 (2014).CrossRef
7.
Zurück zum Zitat J. G. Speer, E. De Moor, and A. J. Clarke, “Critical assessment 7: Quenching and partitioning,” Mater. Sci. Tech., 31, 3 – 9 (2015).CrossRef J. G. Speer, E. De Moor, and A. J. Clarke, “Critical assessment 7: Quenching and partitioning,” Mater. Sci. Tech., 31, 3 – 9 (2015).CrossRef
8.
Zurück zum Zitat Y. Toji, G. Miyamoto, and D. Raabe, “Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation,” Acta Mater., 86, 137 – 147 (2015).CrossRef Y. Toji, G. Miyamoto, and D. Raabe, “Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation,” Acta Mater., 86, 137 – 147 (2015).CrossRef
9.
Zurück zum Zitat J. Sun, H. Yu, S. Wang, et al., “Study of microstructural evolution, microstructure-mechanical properties correlation, and collaborative deformation-transformation behavior of quenching and partitioning (Q&P) steel,” Mater. Sci. Eng. A, 596, 89 – 97 (2014).CrossRef J. Sun, H. Yu, S. Wang, et al., “Study of microstructural evolution, microstructure-mechanical properties correlation, and collaborative deformation-transformation behavior of quenching and partitioning (Q&P) steel,” Mater. Sci. Eng. A, 596, 89 – 97 (2014).CrossRef
10.
Zurück zum Zitat A. Arlazarov, O. Bouaziz, J. Masse, et al., “Characterization and modeling of mechanical behavior of quenching and partitioning steels,” Mater. Sci. Eng. A, 620, 293 – 300 (2015).CrossRef A. Arlazarov, O. Bouaziz, J. Masse, et al., “Characterization and modeling of mechanical behavior of quenching and partitioning steels,” Mater. Sci. Eng. A, 620, 293 – 300 (2015).CrossRef
11.
Zurück zum Zitat M. Jahazi and G. Ebrahimi, “The influence of flow-forming parameters and microstructure on the quality of a D6ac steel,” J. Mater. Proc. Tech., 103(3), 362 – 366 (2000).CrossRef M. Jahazi and G. Ebrahimi, “The influence of flow-forming parameters and microstructure on the quality of a D6ac steel,” J. Mater. Proc. Tech., 103(3), 362 – 366 (2000).CrossRef
12.
Zurück zum Zitat J. Pritchard and S. Rush, Vacuum hardening high strength steels: oil versus gas quenching, Heat Treating Progr., Nos. 5 – 6, 19 – 23 (2007). J. Pritchard and S. Rush, Vacuum hardening high strength steels: oil versus gas quenching, Heat Treating Progr., Nos. 5 – 6, 19 – 23 (2007).
13.
Zurück zum Zitat J. Chiang, J. D. Boyd, and A. K. Pilkey, “Effect of microstructure on retained austenite stability and tensile behavior in an aluminum-alloyed TRIP steel,” Mater. Sci. Eng. A, 638, 132 – 142 (2015).CrossRef J. Chiang, J. D. Boyd, and A. K. Pilkey, “Effect of microstructure on retained austenite stability and tensile behavior in an aluminum-alloyed TRIP steel,” Mater. Sci. Eng. A, 638, 132 – 142 (2015).CrossRef
14.
Zurück zum Zitat P. Zhao, B. Zhang, C. Cheng, et al., “The significance of ultrafine film-like retained austenite in governing very high cycle fatigue behavior in an ultrahigh-strength Mn – Si – Cr – C steel,” Mater. Sci. Eng., 645, 116 – 121 (2015).CrossRef P. Zhao, B. Zhang, C. Cheng, et al., “The significance of ultrafine film-like retained austenite in governing very high cycle fatigue behavior in an ultrahigh-strength Mn – Si – Cr – C steel,” Mater. Sci. Eng., 645, 116 – 121 (2015).CrossRef
15.
Zurück zum Zitat A. Varshney, S. Sangal, S. Kundu, et al., “Super strong and highly ductile low alloy multiphase steels consisting of bainite, ferrite, and retained austenite,” Mater. Design, 95, 75 – 88 (2016).CrossRef A. Varshney, S. Sangal, S. Kundu, et al., “Super strong and highly ductile low alloy multiphase steels consisting of bainite, ferrite, and retained austenite,” Mater. Design, 95, 75 – 88 (2016).CrossRef
16.
Zurück zum Zitat È. A. Gudremon, Special Steels [in Russian], Metallurgiya, Moscow (1966), Vol. 1. È. A. Gudremon, Special Steels [in Russian], Metallurgiya, Moscow (1966), Vol. 1.
17.
Zurück zum Zitat È. A. Gudremon, Special Steels [in Russian], Metallurgiya, Moscow (1966), Vol. 2. È. A. Gudremon, Special Steels [in Russian], Metallurgiya, Moscow (1966), Vol. 2.
18.
Zurück zum Zitat Yu. V. Yudin, M. A. Gervas’ev, and T. A. Kansafarova, “Influence of chromium and nickel on the stability of supercooled austenite in chromium-nickel-molybdenum steels,” Fiz. Met. Metalloved., 87(4), 99 – 102 (1999). Yu. V. Yudin, M. A. Gervas’ev, and T. A. Kansafarova, “Influence of chromium and nickel on the stability of supercooled austenite in chromium-nickel-molybdenum steels,” Fiz. Met. Metalloved., 87(4), 99 – 102 (1999).
19.
Zurück zum Zitat V. A. Malyshevskii, T. G. Semicheva, and E. I. Khlusova, “Influence of alloying elements and structure on the properties of low-carbon improvable steels,” Metalloved. Term. Obrab. Met., No. 9, 5 – 9 (2001). V. A. Malyshevskii, T. G. Semicheva, and E. I. Khlusova, “Influence of alloying elements and structure on the properties of low-carbon improvable steels,” Metalloved. Term. Obrab. Met., No. 9, 5 – 9 (2001).
20.
Zurück zum Zitat S. Goto, C. Kami, and S. Kawamura, “Effect of alloying elements and hot-rolling conditions on microstructure of bainitic-ferrite_martensite dual phase steel with high toughness,” Mater. Sci. Eng. A, 648, 436 – 442 (2015).CrossRef S. Goto, C. Kami, and S. Kawamura, “Effect of alloying elements and hot-rolling conditions on microstructure of bainitic-ferrite_martensite dual phase steel with high toughness,” Mater. Sci. Eng. A, 648, 436 – 442 (2015).CrossRef
21.
Zurück zum Zitat E. M. Grinberg, G. G. Laricheva, and E. S. Miroshnik, “Influence of boron on the transformations of steel in the course of tempering,” Metalloved. Term. Obrab. Met., No. 9, 4 – 6 (1991). E. M. Grinberg, G. G. Laricheva, and E. S. Miroshnik, “Influence of boron on the transformations of steel in the course of tempering,” Metalloved. Term. Obrab. Met., No. 9, 4 – 6 (1991).
22.
Zurück zum Zitat D. Li, Y. Feng, S. Song, et al., “Influences of Nb-microalloying on microstructure and mechanical properties of Fe – 25Mn – 3Si – 3Al TWIP steel,” Mater. Design, 84, 238 – 244 (2015).CrossRef D. Li, Y. Feng, S. Song, et al., “Influences of Nb-microalloying on microstructure and mechanical properties of Fe – 25Mn – 3Si – 3Al TWIP steel,” Mater. Design, 84, 238 – 244 (2015).CrossRef
23.
Zurück zum Zitat S. Sadeghpour, A. Kermanpur, and A. Najafizadeh, “Influence of Ti microalloying on the formation of nanocrystalline structure in the 201L austenitic stainless steel during martensite thermomechanical treatment,” Mater. Sci. Eng. A, 584, 177 – 183 (2013).CrossRef S. Sadeghpour, A. Kermanpur, and A. Najafizadeh, “Influence of Ti microalloying on the formation of nanocrystalline structure in the 201L austenitic stainless steel during martensite thermomechanical treatment,” Mater. Sci. Eng. A, 584, 177 – 183 (2013).CrossRef
24.
Zurück zum Zitat M. A. Ryzhkov and A. A. Popov, “Methodological aspects of plotting of thermokinetic diagrams of transformation of supercooled austenite in low-alloy steels,” Metal Sci. Heat Treat., 52, 612 – 616 (2011). M. A. Ryzhkov and A. A. Popov, “Methodological aspects of plotting of thermokinetic diagrams of transformation of supercooled austenite in low-alloy steels,” Metal Sci. Heat Treat., 52, 612 – 616 (2011).
25.
Zurück zum Zitat T. A. Kop, J. Sietsma, and S. Van Der Zwaag, “Dilatometric analysis of phase transformations in hypo-eutectoid steels,” J. Mater. Sci., 36, 519 – 526 (2001).CrossRef T. A. Kop, J. Sietsma, and S. Van Der Zwaag, “Dilatometric analysis of phase transformations in hypo-eutectoid steels,” J. Mater. Sci., 36, 519 – 526 (2001).CrossRef
26.
Zurück zum Zitat M. V. Maisuradze, Yu. V. Yudin, and M. A. Ryzhkov, “Numerical simulation of pearlitic transformation in steel 45Kh5MF,” Metal Sci. Heat Treat., 56, 512 – 516 (2015).CrossRef M. V. Maisuradze, Yu. V. Yudin, and M. A. Ryzhkov, “Numerical simulation of pearlitic transformation in steel 45Kh5MF,” Metal Sci. Heat Treat., 56, 512 – 516 (2015).CrossRef
27.
Zurück zum Zitat L. Huiping, Z. Guoqun, and N. Shanting, “FEM simulation of quenching process and experimental verification of simulation results,” Mater. Sci. Eng. A, 452 – 453, 705 – 714 (2007).CrossRef L. Huiping, Z. Guoqun, and N. Shanting, “FEM simulation of quenching process and experimental verification of simulation results,” Mater. Sci. Eng. A, 452 – 453, 705 – 714 (2007).CrossRef
28.
Zurück zum Zitat J. C. Ion, K. E. Easterling, and M. F. Ashby, “Asecond report on diagrams of microstructure and hardness for heat-affected zones in welds,” Acta Metall., 32, 1949 – 1962 (1984).CrossRef J. C. Ion, K. E. Easterling, and M. F. Ashby, “Asecond report on diagrams of microstructure and hardness for heat-affected zones in welds,” Acta Metall., 32, 1949 – 1962 (1984).CrossRef
29.
Zurück zum Zitat V. D. Sadovskii, Structural Heredity of Steels [in Russian], Metallurgiya, Moscow (1973). V. D. Sadovskii, Structural Heredity of Steels [in Russian], Metallurgiya, Moscow (1973).
30.
Zurück zum Zitat M. A. Ryzhkov,M. V. Maisuradze, Yu. V. Yudin, et al., “Experience in improving silicon steel component heat treatment quality,” Metallurgist, 59, 401 – 405 (2015).CrossRef M. A. Ryzhkov,M. V. Maisuradze, Yu. V. Yudin, et al., “Experience in improving silicon steel component heat treatment quality,” Metallurgist, 59, 401 – 405 (2015).CrossRef
31.
Zurück zum Zitat M. A. Smirnov, V. M. Schastlivtsev, L. G. Zhuravlev, Fundamentals of Thermal Treatment of Steels [in Russian], UrD RAS, Ekaterinburg (1999). M. A. Smirnov, V. M. Schastlivtsev, L. G. Zhuravlev, Fundamentals of Thermal Treatment of Steels [in Russian], UrD RAS, Ekaterinburg (1999).
32.
Zurück zum Zitat Y. Li, Y. Lu, C. Wang, et al., “Phase stability of residual austenite in 60Si2Mn steels treated by quenching and partitioning,” J. Iron Steel Res. Int., 18, 70 – 74 (2011).CrossRef Y. Li, Y. Lu, C. Wang, et al., “Phase stability of residual austenite in 60Si2Mn steels treated by quenching and partitioning,” J. Iron Steel Res. Int., 18, 70 – 74 (2011).CrossRef
33.
Zurück zum Zitat M. J. Santofimia, L. Zhao, R. Petrov, et al., “Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel,” Mater. Charact., 59, 1758 – 1764 (2008).CrossRef M. J. Santofimia, L. Zhao, R. Petrov, et al., “Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel,” Mater. Charact., 59, 1758 – 1764 (2008).CrossRef
34.
Zurück zum Zitat D. P. Koistinen and R. E. Marburger, “A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,” Acta Metallurg., 7(1), 59 – 60 (1959).CrossRef D. P. Koistinen and R. E. Marburger, “A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,” Acta Metallurg., 7(1), 59 – 60 (1959).CrossRef
35.
Zurück zum Zitat T. Domañski, W. Piekarska, and M. Kubiak, “Determination of the final microstructure during processing carbon steel hardening,” Proc. Eng., 136, 77 – 81 (2016).CrossRef T. Domañski, W. Piekarska, and M. Kubiak, “Determination of the final microstructure during processing carbon steel hardening,” Proc. Eng., 136, 77 – 81 (2016).CrossRef
Metadaten
Titel
Transformations of Supercooled Austenite in Promising High-Hardenability Machine Steels
verfasst von
M. V. Maisuradze
M. A. Ryzhkov
O. A. Surnaeva
Publikationsdatum
06.10.2018
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 5-6/2018
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-018-0281-7

Weitere Artikel der Ausgabe 5-6/2018

Metal Science and Heat Treatment 5-6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.