Skip to main content
Erschienen in: The Journal of Supercomputing 7/2015

01.07.2015

Reversible logic based multiplication computing unit using binary tree data structure

verfasst von: Saurabh Kotiyal, Himanshu Thapliyal, Nagarajan Ranganathan

Erschienen in: The Journal of Supercomputing | Ausgabe 7/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reversible logic has emerged as a promising computing paradigm having applications in quantum computing, optical computing, dissipationless computing and low-power computing, etc. In reversible logic there exists a one-to-one mapping between the input and output vectors. Reversible circuits require constant ancilla inputs for reconfiguration of gate functions and garbage outputs that help in keeping reversibility. Reversible circuits of many qubits are extremely difficult to realize; thus, reduction in the number of ancilla inputs and the garbage outputs is the primary goal of optimization. In existing literature, researchers have proposed several designs of reversible multipliers based on reversible full adders and reversible half adders. The use of reversible full adders and half adders for the addition of partial products increases the overhead in terms of the number of ancilla inputs and garbage outputs. This paper presents a binary tree-based design methodology for an \(N \times N\) reversible multiplier. The proposed binary tree-based design methodology for \(N \times N\) reversible multiplier performs the addition of partial products in parallel using the reversible ripple adders with zero ancilla bit and zero garbage bit; thereby, minimizing the number of ancilla and garbage bits used in the design. The proposed design methodology shows a 17.86–60.34 % improvement in terms of ancilla inputs; and 21.43–52.17 % in terms of garbage outputs compared to all the existing reversible multiplier designs. The methodology is also extended to the design of \(N \times N\) reversible signed multiplier based on modified Baugh–Wooley multiplication methodology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, New YorkMATH Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, New YorkMATH
2.
Zurück zum Zitat Vedral V, Barenco A, Ekert A (1996) Quantum networks for elementary arithmetic operations. Phys Rev A 54(1):147–153MathSciNetCrossRef Vedral V, Barenco A, Ekert A (1996) Quantum networks for elementary arithmetic operations. Phys Rev A 54(1):147–153MathSciNetCrossRef
3.
Zurück zum Zitat Vos AD, Rentergem YV (2005) Power consumption in reversible logic addressed by a ramp voltage. In: Proceedings of the 15th international workshop patmos (2005) LNCS, vol 3728, pp 207–216 Vos AD, Rentergem YV (2005) Power consumption in reversible logic addressed by a ramp voltage. In: Proceedings of the 15th international workshop patmos (2005) LNCS, vol 3728, pp 207–216
4.
Zurück zum Zitat Ercan I, Anderson N (2011) Heat dissipation bounds for nanocomputing: theory and application to qca. In: Proceedings of 11th IEEE conference on nanotechnology (IEEE-NANO), pp 1289–1294 Ercan I, Anderson N (2011) Heat dissipation bounds for nanocomputing: theory and application to qca. In: Proceedings of 11th IEEE conference on nanotechnology (IEEE-NANO), pp 1289–1294
5.
Zurück zum Zitat Anderson N, Ercan I, Ganesh N (2012) Toward nanoprocessor thermodynamics. In: Proceedings of 12th IEEE conference on nanotechnology (IEEE-NANO), pp 1–6 Anderson N, Ercan I, Ganesh N (2012) Toward nanoprocessor thermodynamics. In: Proceedings of 12th IEEE conference on nanotechnology (IEEE-NANO), pp 1–6
6.
Zurück zum Zitat Stearns K, Anderson N (2013) Throughput-dissipation tradeoff in partially reversible nanocomputing: a case study. In: Proceedings of nanoscale architectures (NANOARCH), 2013 IEEE/ACM international symposium, pp 101–105 Stearns K, Anderson N (2013) Throughput-dissipation tradeoff in partially reversible nanocomputing: a case study. In: Proceedings of nanoscale architectures (NANOARCH), 2013 IEEE/ACM international symposium, pp 101–105
8.
Zurück zum Zitat Takahashi Y, Kunihiro N (2005) A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf Comput 5(6):440–448MATHMathSciNet Takahashi Y, Kunihiro N (2005) A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf Comput 5(6):440–448MATHMathSciNet
9.
Zurück zum Zitat Draper TG, Kutin SA, Rains EM, Svore KM (2006) A logarithmic-depth quantum carry-lookahead adder. Quantum Inf Comput 6(4):351–369MATHMathSciNet Draper TG, Kutin SA, Rains EM, Svore KM (2006) A logarithmic-depth quantum carry-lookahead adder. Quantum Inf Comput 6(4):351–369MATHMathSciNet
11.
Zurück zum Zitat Takahashi Y (2010) Quantum arithmetic circuits: a survey. In: Proceedings of IEICE transactions on fundamentals, vol E92-A, no 5, pp 276–1283 Takahashi Y (2010) Quantum arithmetic circuits: a survey. In: Proceedings of IEICE transactions on fundamentals, vol E92-A, no 5, pp 276–1283
12.
Zurück zum Zitat Desoete B, Vos AD (2002) A reversible carry-look-ahead adder using control gates. Integr VLSI J 33(1):89–104MATHCrossRef Desoete B, Vos AD (2002) A reversible carry-look-ahead adder using control gates. Integr VLSI J 33(1):89–104MATHCrossRef
13.
Zurück zum Zitat Biswas AK, Hasan MM, Chowdhury AR, Babu HMH (2008) Efficient approaches for designing reversible binary coded decimal adders. Microelectron J 39(12):1693–1703CrossRef Biswas AK, Hasan MM, Chowdhury AR, Babu HMH (2008) Efficient approaches for designing reversible binary coded decimal adders. Microelectron J 39(12):1693–1703CrossRef
14.
Zurück zum Zitat Kotiyal S, Thapliyal H, Ranganathan N (2011) Design of a reversible bidirectional barrel shifter. In: Proceedings of 11th IEEE conference on nanotechnology (IEEE-NANO), pp 463–468 Kotiyal S, Thapliyal H, Ranganathan N (2011) Design of a reversible bidirectional barrel shifter. In: Proceedings of 11th IEEE conference on nanotechnology (IEEE-NANO), pp 463–468
15.
Zurück zum Zitat Haghparast M, Jassbi S, Navi K, Hashemipour O (2008) Design of a novel reversible multiplier circuit using hng gate in nanotechnology. World App Sci J 3(6):974–978 Haghparast M, Jassbi S, Navi K, Hashemipour O (2008) Design of a novel reversible multiplier circuit using hng gate in nanotechnology. World App Sci J 3(6):974–978
16.
Zurück zum Zitat Sultana S, Radecka K (2011) Reversible adder/subtractor with overflow detector. In: Proceedings of circuits and systems (MWSCAS), 2011 IEEE 54th international midwest symposium, pp 1–4 Sultana S, Radecka K (2011) Reversible adder/subtractor with overflow detector. In: Proceedings of circuits and systems (MWSCAS), 2011 IEEE 54th international midwest symposium, pp 1–4
17.
Zurück zum Zitat Sultana S, Radecka K (2011) Reversible implementation of square-root circuit. In: Proceedings of electronics, circuits and systems (ICECS), 18th IEEE international conference, pp 141–144 Sultana S, Radecka K (2011) Reversible implementation of square-root circuit. In: Proceedings of electronics, circuits and systems (ICECS), 18th IEEE international conference, pp 141–144
18.
Zurück zum Zitat Sultana S, Radecka K (2013) Testing reversible adder/subtractor for missing control points. In: Proceedings of the 56th IEEE international midwest symposium on circuits and systems (MWSCAS), Columbus Sultana S, Radecka K (2013) Testing reversible adder/subtractor for missing control points. In: Proceedings of the 56th IEEE international midwest symposium on circuits and systems (MWSCAS), Columbus
19.
Zurück zum Zitat Shams M, Haghparast M, Navi K (2008) Novel reversible multiplier circuit in nanotechnology. World Appl Sci J 3:806–810 Shams M, Haghparast M, Navi K (2008) Novel reversible multiplier circuit in nanotechnology. World Appl Sci J 3:806–810
20.
Zurück zum Zitat Haghparast M, Mohammadi M, Navi K, Eshghi M (2009) Optimized reversible multiplier circuit. J Circuits Syst Comput 18(2):311–323CrossRef Haghparast M, Mohammadi M, Navi K, Eshghi M (2009) Optimized reversible multiplier circuit. J Circuits Syst Comput 18(2):311–323CrossRef
21.
Zurück zum Zitat Thapliyal H, Srinivas M (2006) Novel reversible multiplier architecture using reversible tsg gate. In: Proceedings of computer systems and applications, IEEE international conference, vol 8, pp 100–103 Thapliyal H, Srinivas M (2006) Novel reversible multiplier architecture using reversible tsg gate. In: Proceedings of computer systems and applications, IEEE international conference, vol 8, pp 100–103
22.
Zurück zum Zitat Thapliyal H, Srinivas M, Arabnia HR (2005) A reversible version of \(4 \times 4\) bit array multiplier with minimum gates and garbage outputs. In: Proceedings of the 2005 international conference on embedded systems and applications, ESA’05, pp 106–116 Thapliyal H, Srinivas M, Arabnia HR (2005) A reversible version of \(4 \times 4\) bit array multiplier with minimum gates and garbage outputs. In: Proceedings of the 2005 international conference on embedded systems and applications, ESA’05, pp 106–116
23.
Zurück zum Zitat Peres A (1985) Reversible logic and quantum computers. Phys Rev A Gen Phys 32(6):3266–3276 Peres A (1985) Reversible logic and quantum computers. Phys Rev A Gen Phys 32(6):3266–3276
25.
Zurück zum Zitat Zhou R, Shi Y, Wang H, Cao J (2011) Transistor realization of reversible “zs” series gates and reversible array multiplier. Microelectron J 42(2):305–315CrossRef Zhou R, Shi Y, Wang H, Cao J (2011) Transistor realization of reversible “zs” series gates and reversible array multiplier. Microelectron J 42(2):305–315CrossRef
26.
Zurück zum Zitat Thapliyal H, Jayashree H, Nagamani A, Arabnia H (2013) Progress in reversible processor design: a novel methodology for reversible carry look-ahead adder. In: Gavrilova M, Tan C (eds) Proceedings of transactions on computational science XVII, ser lecture notes in computer science, Springer, Berlin, vol 7420, pp 73–97 Thapliyal H, Jayashree H, Nagamani A, Arabnia H (2013) Progress in reversible processor design: a novel methodology for reversible carry look-ahead adder. In: Gavrilova M, Tan C (eds) Proceedings of transactions on computational science XVII, ser lecture notes in computer science, Springer, Berlin, vol 7420, pp 73–97
27.
Zurück zum Zitat Thapliyal H, Arabnia H (2006) Combined integer and floating point multiplication architecture (cifm) for fpgas and its reversible logic implementation. In: Proceedings of circuits and systems, MWSCAS’06, 49th IEEE international midwest symposium, vol 2, pp 438–442 Thapliyal H, Arabnia H (2006) Combined integer and floating point multiplication architecture (cifm) for fpgas and its reversible logic implementation. In: Proceedings of circuits and systems, MWSCAS’06, 49th IEEE international midwest symposium, vol 2, pp 438–442
28.
Zurück zum Zitat Bruce JW, Thornton MA, Shivakumaraiah L, Kokate PS, Li X (2002) Efficient adder circuits based on a conservative reversible logic gate. Proc IEEE Symp VLSI 2002:83–88 Bruce JW, Thornton MA, Shivakumaraiah L, Kokate PS, Li X (2002) Efficient adder circuits based on a conservative reversible logic gate. Proc IEEE Symp VLSI 2002:83–88
29.
Zurück zum Zitat Thapliyal H, Srinivas M, Arabnia HR (2005) Reversible logic synthesis of half, full and parallel subtractors. In: Proceedings of the 2005 international conference on embedded systems and applications, ESA’05, pp 165–172 Thapliyal H, Srinivas M, Arabnia HR (2005) Reversible logic synthesis of half, full and parallel subtractors. In: Proceedings of the 2005 international conference on embedded systems and applications, ESA’05, pp 165–172
30.
Zurück zum Zitat Akbar EPA, Haghparast M, Navi K (2011) Novel design of a fast reversible wallace sign multiplier circuit in nanotechnology. Microelectron J 42(8):973–981CrossRef Akbar EPA, Haghparast M, Navi K (2011) Novel design of a fast reversible wallace sign multiplier circuit in nanotechnology. Microelectron J 42(8):973–981CrossRef
31.
Zurück zum Zitat Thapliyal H, Srinivas MB, Arabnia HR (2005) A need of quantum computing: reversible logic synthesis of parallel binary adder-subtractor. In: Proceedings of the 2005 international conference on embedded systems and applications, ESA’05, pp 60–566 Thapliyal H, Srinivas MB, Arabnia HR (2005) A need of quantum computing: reversible logic synthesis of parallel binary adder-subtractor. In: Proceedings of the 2005 international conference on embedded systems and applications, ESA’05, pp 60–566
32.
Zurück zum Zitat Thapliyal H, Arabnia HR (2006) Reversible programmable logic array (rpla) using fredkin and feynman gates for industrial electronics and applications. arXiv:cs/0609029 Thapliyal H, Arabnia HR (2006) Reversible programmable logic array (rpla) using fredkin and feynman gates for industrial electronics and applications. arXiv:​cs/​0609029
33.
Zurück zum Zitat Babu HM, Chowdhury A (2006) Design of a compact reversible binary coded decimal adder circuit. Elsevier J Syst Arch 52:272–282CrossRef Babu HM, Chowdhury A (2006) Design of a compact reversible binary coded decimal adder circuit. Elsevier J Syst Arch 52:272–282CrossRef
34.
Zurück zum Zitat Mohammadi M, Eshghi M, Haghparast M, Bahrololoom A (2008) Design and optimization of reversible bcd adder/subtractor circuit for quantum and nanotechnology based systems. World Appl Sci J 4(6):787–792 Mohammadi M, Eshghi M, Haghparast M, Bahrololoom A (2008) Design and optimization of reversible bcd adder/subtractor circuit for quantum and nanotechnology based systems. World Appl Sci J 4(6):787–792
35.
Zurück zum Zitat Thapliyal H, Arabnia H, Srinivas M (2009) Efficient reversible logic design of bcd subtractors. In: Proceedings of transactions on computational sciences journal, LNCS 5300, vol 3. Springer, New York, pp 99–121 Thapliyal H, Arabnia H, Srinivas M (2009) Efficient reversible logic design of bcd subtractors. In: Proceedings of transactions on computational sciences journal, LNCS 5300, vol 3. Springer, New York, pp 99–121
36.
Zurück zum Zitat Mohammadi M, Haghparast M, Eshghi M, Navi K (2009) Minimization optimization of reversible bcd-full adder/subtractor using genetic algorithm and don’t care concept. Int J Quantum Inf 7(5):969–989MATHCrossRef Mohammadi M, Haghparast M, Eshghi M, Navi K (2009) Minimization optimization of reversible bcd-full adder/subtractor using genetic algorithm and don’t care concept. Int J Quantum Inf 7(5):969–989MATHCrossRef
37.
Zurück zum Zitat James RK, Jacob KP, Sasi S (2008) Reversible binary coded decimal adders using toffoli gates. In: Proceedings of advances in computational algorithms and data analysis, LNEE, vol 15, pp 117–131 James RK, Jacob KP, Sasi S (2008) Reversible binary coded decimal adders using toffoli gates. In: Proceedings of advances in computational algorithms and data analysis, LNEE, vol 15, pp 117–131
38.
Zurück zum Zitat Thapliyal H, Arabnia HR, Bajpai R, Sharma KK (2007) Partial reversible gates (prg) for reversible bcd arithmetic. arXiv:0711.2674 Thapliyal H, Arabnia HR, Bajpai R, Sharma KK (2007) Partial reversible gates (prg) for reversible bcd arithmetic. arXiv:​0711.​2674
39.
Zurück zum Zitat Rangaraju H, Suresh A, Muralidhara K (2013) Design of efficient reversible multiplier. In: Meghanathan N, Nagamalai D, Chaki N (eds) Proceedings of advances in computing and information technology, ser advances in intelligent systems and computing, vol 178. Springer, Berlin, pp 571–579 Rangaraju H, Suresh A, Muralidhara K (2013) Design of efficient reversible multiplier. In: Meghanathan N, Nagamalai D, Chaki N (eds) Proceedings of advances in computing and information technology, ser advances in intelligent systems and computing, vol 178. Springer, Berlin, pp 571–579
40.
Zurück zum Zitat Thapliyal H, Ranganathan N (2011) A new reversible design of bcd adder. In: Proceedings of design, automation test in Europe conference exhibition (DATE), pp 1–4 Thapliyal H, Ranganathan N (2011) A new reversible design of bcd adder. In: Proceedings of design, automation test in Europe conference exhibition (DATE), pp 1–4
41.
Zurück zum Zitat Bhardwaj K, Deshpande B (2013) K-algorithm: an improved booth’s recoding for optimal fault-tolerant reversible multiplier. In: Proceedings of VLSI design, 12th international conference on embedded systems (VLSID), 26th international conference, pp 362–367 Bhardwaj K, Deshpande B (2013) K-algorithm: an improved booth’s recoding for optimal fault-tolerant reversible multiplier. In: Proceedings of VLSI design, 12th international conference on embedded systems (VLSID), 26th international conference, pp 362–367
Metadaten
Titel
Reversible logic based multiplication computing unit using binary tree data structure
verfasst von
Saurabh Kotiyal
Himanshu Thapliyal
Nagarajan Ranganathan
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 7/2015
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-015-1410-3

Weitere Artikel der Ausgabe 7/2015

The Journal of Supercomputing 7/2015 Zur Ausgabe

Premium Partner