Skip to main content
Erschienen in: International Journal of Computer Vision 7/2020

04.03.2020

Deep Image Prior

verfasst von: Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky

Erschienen in: International Journal of Computer Vision | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep convolutional networks have become a popular tool for image generation and restoration. Generally, their excellent performance is imputed to their ability to learn realistic image priors from a large number of example images. In this paper, we show that, on the contrary, the structure of a generator network is sufficient to capture a great deal of low-level image statistics prior to any learning. In order to do so, we show that a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, super-resolution, and inpainting. Furthermore, the same prior can be used to invert deep neural representations to diagnose them, and to restore images based on flash-no flash input pairs. Apart from its diverse applications, our approach highlights the inductive bias captured by standard generator network architectures. It also bridges the gap between two very popular families of image restoration methods: learning-based methods using deep convolutional networks and learning-free methods based on handcrafted image priors such as self-similarity (Code and supplementary material are available at https://​dmitryulyanov.​github.​io/​deep_​image_​prior).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Equation (2) can also be thought of as a regularizer R(x) in the style of (1), where \(R(x)=0\) for all images that can be generated by a deep ConvNet of a certain architecture with the weights being not too far from random initialization, and \(R(x)=+\infty \) for all other signals.
 
Literatur
Zurück zum Zitat Athar, S., Burnaev, E., & Lempitsky, V. S. (2018). Latent convolutional models. In CoRR. Athar, S., Burnaev, E., & Lempitsky, V. S. (2018). Latent convolutional models. In CoRR.
Zurück zum Zitat Bahat, Y., Efrat, N., & Irani, M. (2017). Non-uniform blind deblurring by reblurring. In Proceedings of CVPR (pp. 3286–3294). IEEE Computer Society. Bahat, Y., Efrat, N., & Irani, M. (2017). Non-uniform blind deblurring by reblurring. In Proceedings of CVPR (pp. 3286–3294). IEEE Computer Society.
Zurück zum Zitat Bevilacqua, M., Roumy, A., Guillemot, C., & Alberi-Morel, M. (2012) Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC (pp. 1–10). Bevilacqua, M., Roumy, A., Guillemot, C., & Alberi-Morel, M. (2012) Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC (pp. 1–10).
Zurück zum Zitat Bojanowski, P., Joulin, A., Lopez-Paz, D., & Szlam, A. (2017). Optimizing the latent space of generative networks. In CoRR. Bojanowski, P., Joulin, A., Lopez-Paz, D., & Szlam, A. (2017). Optimizing the latent space of generative networks. In CoRR.
Zurück zum Zitat Boominathan, L., Maniparambil, M., Gupta, H., Baburajan, R., & Mitra, K. (2018). Phase retrieval for fourier ptychography under varying amount of measurements. In CoRR. Boominathan, L., Maniparambil, M., Gupta, H., Baburajan, R., & Mitra, K. (2018). Phase retrieval for fourier ptychography under varying amount of measurements. In CoRR.
Zurück zum Zitat Bristow, H., Eriksson, A. P., & Lucey, S. (2013). Fast convolutional sparse coding. In CVPR (pp. 391–398). IEEE Computer Society. Bristow, H., Eriksson, A. P., & Lucey, S. (2013). Fast convolutional sparse coding. In CVPR (pp. 391–398). IEEE Computer Society.
Zurück zum Zitat Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. In Proceedings of CVPR (Vol. 2, pp. 60–65). IEEE Computer Society. Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. In Proceedings of CVPR (Vol. 2, pp. 60–65). IEEE Computer Society.
Zurück zum Zitat Burger, M., Osher, S. J., Xu, J., & Gilboa, G. (2005). Nonlinear inverse scale space methods for image restoration. In Variational, geometric, and level set methods in computer vision, third international workshop, VLSM (pp. 25–36). Burger, M., Osher, S. J., Xu, J., & Gilboa, G. (2005). Nonlinear inverse scale space methods for image restoration. In Variational, geometric, and level set methods in computer vision, third international workshop, VLSM (pp. 25–36).
Zurück zum Zitat Burger, H. C., Schuler, C. J., & Harmeling, S. (2012). Image denoising: Can plain neural networks compete with bm3d? In CVPR (pp. 2392–2399). Burger, H. C., Schuler, C. J., & Harmeling, S. (2012). Image denoising: Can plain neural networks compete with bm3d? In CVPR (pp. 2392–2399).
Zurück zum Zitat Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.MathSciNetCrossRef Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.MathSciNetCrossRef
Zurück zum Zitat Dong, C., Loy, C.C., He, K., & Tang, X. (2014). Learning a deep convolutional network for image super-resolution. In Proceedings of ECCV (pp. 184–199). Dong, C., Loy, C.C., He, K., & Tang, X. (2014). Learning a deep convolutional network for image super-resolution. In Proceedings of ECCV (pp. 184–199).
Zurück zum Zitat Dosovitskiy, A., & Brox, T. (2016a). Generating images with perceptual similarity metrics based on deep networks. In NIPS (pp. 658–666). Dosovitskiy, A., & Brox, T. (2016a). Generating images with perceptual similarity metrics based on deep networks. In NIPS (pp. 658–666).
Zurück zum Zitat Dosovitskiy, A., & Brox, T. (2016b). Inverting convolutional networks with convolutional networks. In CVPR. IEEE Computer Society. Dosovitskiy, A., & Brox, T. (2016b). Inverting convolutional networks with convolutional networks. In CVPR. IEEE Computer Society.
Zurück zum Zitat Dosovitskiy, A., Tobias Springenberg, J., & Brox, T. (2015). Learning to generate chairs with convolutional neural networks. In Proceedings of CVPR (pp. 1538–1546). Dosovitskiy, A., Tobias Springenberg, J., & Brox, T. (2015). Learning to generate chairs with convolutional neural networks. In Proceedings of CVPR (pp. 1538–1546).
Zurück zum Zitat Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-layer features of a deep network. Tech. Rep. Technical Report 1341, University of Montreal. Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-layer features of a deep network. Tech. Rep. Technical Report 1341, University of Montreal.
Zurück zum Zitat Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Josa A, 4(12), 2379–2394.CrossRef Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Josa A, 4(12), 2379–2394.CrossRef
Zurück zum Zitat Glasner, D., Bagon, S., & Irani, M. (2009). Super-resolution from a single image. In Proceedings of ICCV (pp. 349–356). Glasner, D., Bagon, S., & Irani, M. (2009). Super-resolution from a single image. In Proceedings of ICCV (pp. 349–356).
Zurück zum Zitat Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Proceedings of NIPS (pp. 2672–2680). Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Proceedings of NIPS (pp. 2672–2680).
Zurück zum Zitat Grosse, R. B., Raina, R., Kwong, H., & Ng, A. Y. (2007). Shift-invariance sparse coding for audio classification. In UAI (pp. 149–158). AUAI Press. Grosse, R. B., Raina, R., Kwong, H., & Ng, A. Y. (2007). Shift-invariance sparse coding for audio classification. In UAI (pp. 149–158). AUAI Press.
Zurück zum Zitat Gu, S., Zuo, W., Xie, Q., Meng, D., Feng, X., & Zhang, L. (2015). Convolutional sparse coding for image super-resolution. In ICCV (pp. 1823–1831). IEEE Computer Society. Gu, S., Zuo, W., Xie, Q., Meng, D., Feng, X., & Zhang, L. (2015). Convolutional sparse coding for image super-resolution. In ICCV (pp. 1823–1831). IEEE Computer Society.
Zurück zum Zitat He, K., Sun, J., & Tang, X. (2013). Guided image filtering. T-PAMI, 35(6), 1397–1409.CrossRef He, K., Sun, J., & Tang, X. (2013). Guided image filtering. T-PAMI, 35(6), 1397–1409.CrossRef
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In CVPR (pp. 1026–1034). IEEE Computer Society. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In CVPR (pp. 1026–1034). IEEE Computer Society.
Zurück zum Zitat Heide, F., Heidrich, W., & Wetzstein, G. (2015). Fast and flexible convolutional sparse coding. In CVPR (pp. 5135–5143). IEEE Computer Society. Heide, F., Heidrich, W., & Wetzstein, G. (2015). Fast and flexible convolutional sparse coding. In CVPR (pp. 5135–5143). IEEE Computer Society.
Zurück zum Zitat Huang, J., & Mumford, D. (1999). Statistics of natural images and models. In CVPR (pp. 1541–1547). IEEE Computer Society. Huang, J., & Mumford, D. (1999). Statistics of natural images and models. In CVPR (pp. 1541–1547). IEEE Computer Society.
Zurück zum Zitat Huang, J.B., Singh, A., & Ahuja, N. (2015). Single image super-resolution from transformed self-exemplars. In CVPR (pp. 5197–5206). IEEE Computer Society. Huang, J.B., Singh, A., & Ahuja, N. (2015). Single image super-resolution from transformed self-exemplars. In CVPR (pp. 5197–5206). IEEE Computer Society.
Zurück zum Zitat Iizuka, S., Simo-Serra, E., & Ishikawa, H. (2017). Globally and locally consistent image completion. ACM Transactions on Graphics (Proceedings of SIGGRAPH)36(4), 107:1–107:14 (2017) Iizuka, S., Simo-Serra, E., & Ishikawa, H. (2017). Globally and locally consistent image completion. ACM Transactions on Graphics (Proceedings of SIGGRAPH)36(4), 107:1–107:14 (2017)
Zurück zum Zitat Ilyas, A., Jalal, A., Asteri, E., Daskalakis, C., & Dimakis, A. G. (2017). The robust manifold defense: Adversarial training using generative models. In CoRR. Ilyas, A., Jalal, A., Asteri, E., Daskalakis, C., & Dimakis, A. G. (2017). The robust manifold defense: Adversarial training using generative models. In CoRR.
Zurück zum Zitat Kim, J., Lee, J. K., & Lee, K. M. (2016). Accurate image super-resolution using very deep convolutional networks. In CVPR (pp. 1646–1654). IEEE Computer Society. Kim, J., Lee, J. K., & Lee, K. M. (2016). Accurate image super-resolution using very deep convolutional networks. In CVPR (pp. 1646–1654). IEEE Computer Society.
Zurück zum Zitat Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. In CoRR. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. In CoRR.
Zurück zum Zitat Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In Proceedings of ICLR. Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In Proceedings of ICLR.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, K. Q. Weinberger (Eds.) Advances in neural information processing systems (Vol. 25, pp. 1097–1105). New York:Curran Associates, Inc. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, K. Q. Weinberger (Eds.) Advances in neural information processing systems (Vol. 25, pp. 1097–1105). New York:Curran Associates, Inc.
Zurück zum Zitat Lai, W. S., Huang, J. B., Ahuja, N., & Yang, M. H. (2017). Deep laplacian pyramid networks for fast and accurate super-resolution. In CVPR. IEEE Computer Society. Lai, W. S., Huang, J. B., Ahuja, N., & Yang, M. H. (2017). Deep laplacian pyramid networks for fast and accurate super-resolution. In CVPR. IEEE Computer Society.
Zurück zum Zitat Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., et al. (2017). Photo-realistic single image super-resolution using a generative adversarial network. In CVPR. IEEE Computer Society. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., et al. (2017). Photo-realistic single image super-resolution using a generative adversarial network. In CVPR. IEEE Computer Society.
Zurück zum Zitat Lefkimmiatis, S. (2016). Non-local color image denoising with convolutional neural networks. In CVPR. IEEE Computer Society. Lefkimmiatis, S. (2016). Non-local color image denoising with convolutional neural networks. In CVPR. IEEE Computer Society.
Zurück zum Zitat Mahendran, A., & Vedaldi, A. (2015). Understanding deep image representations by inverting them. In CVPR. IEEE Computer Society. Mahendran, A., & Vedaldi, A. (2015). Understanding deep image representations by inverting them. In CVPR. IEEE Computer Society.
Zurück zum Zitat Mahendran, A., & Vedaldi, A. (2016). Visualizing deep convolutional neural networks using natural pre-images. In IJCV. Mahendran, A., & Vedaldi, A. (2016). Visualizing deep convolutional neural networks using natural pre-images. In IJCV.
Zurück zum Zitat Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11(Jan), 19–60.MathSciNetMATH Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11(Jan), 19–60.MathSciNetMATH
Zurück zum Zitat Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet representation. PAMI, 11(7), 674–693.CrossRef Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet representation. PAMI, 11(7), 674–693.CrossRef
Zurück zum Zitat Marquina, A. (2009). Nonlinear inverse scale space methods for total variation blind deconvolution. SIAM Journal on Imaging Sciences, 2(1), 64–83.MathSciNetCrossRef Marquina, A. (2009). Nonlinear inverse scale space methods for total variation blind deconvolution. SIAM Journal on Imaging Sciences, 2(1), 64–83.MathSciNetCrossRef
Zurück zum Zitat Papyan, V., Romano, Y., & Elad, M. (2017). Convolutional neural networks analyzed via convolutional sparse coding. Journal of Machine Learning Research, 18(83), 1–52.MathSciNetMATH Papyan, V., Romano, Y., & Elad, M. (2017). Convolutional neural networks analyzed via convolutional sparse coding. Journal of Machine Learning Research, 18(83), 1–52.MathSciNetMATH
Zurück zum Zitat Papyan, V., Romano, Y., Sulam, J., & Elad, M. (2017). Convolutional dictionary learning via local processing. In ICCV. IEEE Computer Society. Papyan, V., Romano, Y., Sulam, J., & Elad, M. (2017). Convolutional dictionary learning via local processing. In ICCV. IEEE Computer Society.
Zurück zum Zitat Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M. F., Hoppe, H., & Toyama, K. (2004). Digital photography with flash and no-flash image pairs. ACM Transactions on Graphics, 23(3), 664–672.CrossRef Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M. F., Hoppe, H., & Toyama, K. (2004). Digital photography with flash and no-flash image pairs. ACM Transactions on Graphics, 23(3), 664–672.CrossRef
Zurück zum Zitat Plotz, T., & Roth, S. (2017). Benchmarking denoising algorithms with real photographs. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1586–1595). Plotz, T., & Roth, S. (2017). Benchmarking denoising algorithms with real photographs. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1586–1595).
Zurück zum Zitat Ren, J. S. J., Xu, L., Yan, Q., & Sun, W. (2015). Shepard convolutional neural networks. In NIPS (pp. 901–909). Ren, J. S. J., Xu, L., Yan, Q., & Sun, W. (2015). Shepard convolutional neural networks. In NIPS (pp. 901–909).
Zurück zum Zitat Roth, S., & Black, M. J. (2009). Fields of experts. CVPR, 82(2), 205–229. Roth, S., & Black, M. J. (2009). Fields of experts. CVPR, 82(2), 205–229.
Zurück zum Zitat Ruderman, D. L., & Bialek, W. (1993). Statistics of natural images: Scaling in the woods. In NIPS (pp. 551–558). Morgan Kaufmann. Ruderman, D. L., & Bialek, W. (1993). Statistics of natural images: Scaling in the woods. In NIPS (pp. 551–558). Morgan Kaufmann.
Zurück zum Zitat Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. In Proceedings of the eleventh annual international conference of the center for nonlinear studies on experimental mathematics : Computational issues in nonlinear science: Computational issues in nonlinear science (pp. 259–268). New York, NY, USA: Elsevier North-Holland, Inc. Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. In Proceedings of the eleventh annual international conference of the center for nonlinear studies on experimental mathematics : Computational issues in nonlinear science: Computational issues in nonlinear science (pp. 259–268). New York, NY, USA: Elsevier North-Holland, Inc.
Zurück zum Zitat Sajjadi, M. S. M., Scholkopf, B., & Hirsch, M. (2017). Enhancenet: Single image super-resolution through automated texture synthesis. In The IEEE international conference on computer vision (ICCV). Sajjadi, M. S. M., Scholkopf, B., & Hirsch, M. (2017). Enhancenet: Single image super-resolution through automated texture synthesis. In The IEEE international conference on computer vision (ICCV).
Zurück zum Zitat Scherzer, O., & Groetsch, C. W. (2001). Inverse scale space theory for inverse problems. In Scale-space and morphology in computer vision, third international conference (pp. 317–325). Scherzer, O., & Groetsch, C. W. (2001). Inverse scale space theory for inverse problems. In Scale-space and morphology in computer vision, third international conference (pp. 317–325).
Zurück zum Zitat Shedligeri, P. A., Shah, K., Kumar, D., & Mitra, K. (2018). Photorealistic image reconstruction from hybrid intensity and event based sensor. In CoRR. Shedligeri, P. A., Shah, K., Kumar, D., & Mitra, K. (2018). Photorealistic image reconstruction from hybrid intensity and event based sensor. In CoRR.
Zurück zum Zitat Shocher, A., Cohen, N., & Irani, M. (2018). “Zero-shot” super-resolution using deep internal learning. In CVPR: IEEE Computer Society.CrossRef Shocher, A., Cohen, N., & Irani, M. (2018). “Zero-shot” super-resolution using deep internal learning. In CVPR: IEEE Computer Society.CrossRef
Zurück zum Zitat Simoncelli, E. P., & Adelson, E. H. (1996). Noise removal via bayesian wavelet coring. In ICIP (1) (pp. 379–382). IEEE Computer Society. Simoncelli, E. P., & Adelson, E. H. (1996). Noise removal via bayesian wavelet coring. In ICIP (1) (pp. 379–382). IEEE Computer Society.
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. In CoRR. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. In CoRR.
Zurück zum Zitat Tai, Y., Yang, J., & Liu, X. (2017). Image super-resolution via deep recursive residual network. In CVPR. IEEE Computer Society. Tai, Y., Yang, J., & Liu, X. (2017). Image super-resolution via deep recursive residual network. In CVPR. IEEE Computer Society.
Zurück zum Zitat Turiel, A., Mato, G., Parga, N., & Nadal, J. (1997). Self-similarity properties of natural images. In NIPS (pp. 836–842). The MIT Press. Turiel, A., Mato, G., Parga, N., & Nadal, J. (1997). Self-similarity properties of natural images. In NIPS (pp. 836–842). The MIT Press.
Zurück zum Zitat Turkowski, K. (1990). Filters for common resampling-tasks. In A. S. Glassner (Ed.), Graphics gems (pp. 147–165). Cambridge: Academic Press.CrossRef Turkowski, K. (1990). Filters for common resampling-tasks. In A. S. Glassner (Ed.), Graphics gems (pp. 147–165). Cambridge: Academic Press.CrossRef
Zurück zum Zitat Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). Deep image prior. In CVPR. IEEE Computer Society. Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). Deep image prior. In CVPR. IEEE Computer Society.
Zurück zum Zitat Veen, D. V., Jalal, A., Price, E., Vishwanath, S., & Dimakis, A. G. (2018). Compressed sensing with deep image prior and learned regularization. In CoRR. Veen, D. V., Jalal, A., Price, E., Vishwanath, S., & Dimakis, A. G. (2018). Compressed sensing with deep image prior and learned regularization. In CoRR.
Zurück zum Zitat Zeiler, M. D., Krishnan, D., Taylor, G. W., & Fergus, R. (2010). Deconvolutional networks. In Proceedings of CVPR (pp. 2528–2535). IEEE Computer Society. Zeiler, M. D., Krishnan, D., Taylor, G. W., & Fergus, R. (2010). Deconvolutional networks. In Proceedings of CVPR (pp. 2528–2535). IEEE Computer Society.
Zurück zum Zitat Zeyde, R., Elad, M., & Protter, M. (2010). On single image scale-up using sparse-representations. In J. D. Boissonnat, A. Chenin, P. Cohen, C. Gout, T. Lyche, M.-L. Mazure, & L. L. Schumaker (Eds.), Curves and Surfaces (Vol. 6920, pp. 711–730)., Lecture Notes in Computer Science Berlin: Springer.CrossRef Zeyde, R., Elad, M., & Protter, M. (2010). On single image scale-up using sparse-representations. In J. D. Boissonnat, A. Chenin, P. Cohen, C. Gout, T. Lyche, M.-L. Mazure, & L. L. Schumaker (Eds.), Curves and Surfaces (Vol. 6920, pp. 711–730)., Lecture Notes in Computer Science Berlin: Springer.CrossRef
Zurück zum Zitat Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep learning requires rethinking generalization. In ICLR. Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep learning requires rethinking generalization. In ICLR.
Zurück zum Zitat Zhu, S. C., & Mumford, D. (1997). Prior learning and gibbs reaction–diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11), 1236–1250.CrossRef Zhu, S. C., & Mumford, D. (1997). Prior learning and gibbs reaction–diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11), 1236–1250.CrossRef
Metadaten
Titel
Deep Image Prior
verfasst von
Dmitry Ulyanov
Andrea Vedaldi
Victor Lempitsky
Publikationsdatum
04.03.2020
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 7/2020
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-020-01303-4

Weitere Artikel der Ausgabe 7/2020

International Journal of Computer Vision 7/2020 Zur Ausgabe

Premium Partner