Skip to main content
Erschienen in: Wireless Networks 5/2021

21.05.2021 | Original Paper

Optimal relay selection for UAV-assisted V2V communications

verfasst von: Xiying Fan, Di Liu, Bin Fu, Shaojie Wen

Erschienen in: Wireless Networks | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In Internet of Vehicles (IoV), frequent link switching and channel interference will increase transmission delay and decrease network throughput. Unmanned Aerial Vehicles (UAVs) can avoid shadowing effect and provide line-of-sight communication to enhance IoV performance, which can help reduce communication handovers. This study introduces UAVs to assist ground vehicular network for collaborative communication and focuses on relay selection to achieve effective data dissemination. The relay selection problem is formulated as a multi-objective optimization problem related to link transmission rate, communication handovers, and node transmit power. To solve the problem, we propose an interference-aware relay selection mechanism, which is a distributed strategy to make decisions at the sender. The mechanism applies the dual decomposition method to decompose the problem into two convex optimization subproblems. The first subproblem jointly optimizes communication handovers and link transmission rate while the second subproblem optimizes node transmit power under the premise of ensuring link reliability. Simulations verify the effectiveness of the proposed relay selection mechanism in terms of data delivery ratio, average end-to-end delay and network throughput.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahmed, E., & Gharavi, H. (2018). Cooperative vehicular networking: A survey. IEEE Transactions on Intelligent Transportation Systems, 19(3), 996–1014.CrossRef Ahmed, E., & Gharavi, H. (2018). Cooperative vehicular networking: A survey. IEEE Transactions on Intelligent Transportation Systems, 19(3), 996–1014.CrossRef
2.
Zurück zum Zitat Singh, P. K., Nandi, S. K., & Nandi, S. (2019). A tutorial survey on vehicular communication state of the art, and future research directions. Vehicular Communications, 18, 1–39.CrossRef Singh, P. K., Nandi, S. K., & Nandi, S. (2019). A tutorial survey on vehicular communication state of the art, and future research directions. Vehicular Communications, 18, 1–39.CrossRef
3.
Zurück zum Zitat Wang, H., Zhao, H., Zhang, J., Ma, D., Li, J., & Wei, J. (2020). Survey on unmanned aerial vehicle networks: A cyber physical system perspective. IEEE Communications Surveys and Tutorials, 22(2), 1027–1070.CrossRef Wang, H., Zhao, H., Zhang, J., Ma, D., Li, J., & Wei, J. (2020). Survey on unmanned aerial vehicle networks: A cyber physical system perspective. IEEE Communications Surveys and Tutorials, 22(2), 1027–1070.CrossRef
4.
Zurück zum Zitat Zhang, N., Zhang, S., Yang, P., Alhussein, O., Zhuang, W., & Shen, X. S. (2017). Software defined space-air-ground integrated vehicular networks: Challenges and solutions. IEEE Communications Magazine, 55(7), 101–109.CrossRef Zhang, N., Zhang, S., Yang, P., Alhussein, O., Zhuang, W., & Shen, X. S. (2017). Software defined space-air-ground integrated vehicular networks: Challenges and solutions. IEEE Communications Magazine, 55(7), 101–109.CrossRef
5.
Zurück zum Zitat Zhu, Y., & Zheng, H. (2008). Understanding the impact of interference on collaborative relays. IEEE Transactions on Mobile Computing, 7(6), 724–736.CrossRef Zhu, Y., & Zheng, H. (2008). Understanding the impact of interference on collaborative relays. IEEE Transactions on Mobile Computing, 7(6), 724–736.CrossRef
6.
Zurück zum Zitat Ma, R., Chang, Y., Chen, H., & Chiu, C. (2017). On relay selection schemes for relay-assisted D2D communications in LTE-A systems. IEEE Transactions on Vehicular Technology, 66(9), 8303–8314.CrossRef Ma, R., Chang, Y., Chen, H., & Chiu, C. (2017). On relay selection schemes for relay-assisted D2D communications in LTE-A systems. IEEE Transactions on Vehicular Technology, 66(9), 8303–8314.CrossRef
7.
Zurück zum Zitat Yu, W., & Zhang, B. (2018). A heterogeneous network selection algorithm based on network attribute and user preference. Ad Hoc Networks, 72, 68–80.CrossRef Yu, W., & Zhang, B. (2018). A heterogeneous network selection algorithm based on network attribute and user preference. Ad Hoc Networks, 72, 68–80.CrossRef
8.
Zurück zum Zitat Ghorai, C., & Banerjee, I. (2018). A robust forwarding node selection mechanism for efficient communication in urban VANETs. Vehicular Communications, 14, 109–121.CrossRef Ghorai, C., & Banerjee, I. (2018). A robust forwarding node selection mechanism for efficient communication in urban VANETs. Vehicular Communications, 14, 109–121.CrossRef
9.
Zurück zum Zitat Wang, Y., Liu, Y., Zhang, J., Ye, H., & Tan, Z. (2017). Cooperative store-carry-forward scheme for intermittently connected vehicular networks. IEEE Transactions Vehicular Technology, 66(1), 777–784. Wang, Y., Liu, Y., Zhang, J., Ye, H., & Tan, Z. (2017). Cooperative store-carry-forward scheme for intermittently connected vehicular networks. IEEE Transactions Vehicular Technology, 66(1), 777–784.
10.
Zurück zum Zitat Liu, X., Qiu, M., Wang, X., et al. (2015). Optimization for communication energy efficiency of air-based information network while satisfying timing constraints. In IEEE International Conference on High Performance Computing and Communications (pp. 553–558). IEEE. Liu, X., Qiu, M., Wang, X., et al. (2015). Optimization for communication energy efficiency of air-based information network while satisfying timing constraints. In IEEE International Conference on High Performance Computing and Communications (pp. 553–558). IEEE.
11.
Zurück zum Zitat Raza, W., Javaid, N., Nasir, H., Alrajeh, N., & Guizani, N. (2018). Buffer-aided relay selection with equal-weight links in cooperative wireless networks. IEEE Communications Letters, 22(1), 133–136.CrossRef Raza, W., Javaid, N., Nasir, H., Alrajeh, N., & Guizani, N. (2018). Buffer-aided relay selection with equal-weight links in cooperative wireless networks. IEEE Communications Letters, 22(1), 133–136.CrossRef
12.
Zurück zum Zitat Dahmane, S., Kerrache, C. A., Lagraa, N., & Lorenz, P. (May 2017). WeiSTARS: A weighted truST-aware relay selection scheme for VANET. In IEEE International Conference on Communications, Paris, France (pp. 1–6). Dahmane, S., Kerrache, C. A., Lagraa, N., & Lorenz, P. (May 2017). WeiSTARS: A weighted truST-aware relay selection scheme for VANET. In IEEE International Conference on Communications, Paris, France (pp. 1–6).
13.
Zurück zum Zitat Hui, Y., Su, Z., Luan, T. H., & Cai, J. (2019). Content in motion: An edge computing based relay scheme for content dissemination in urban vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 20(8), 3115–3128.CrossRef Hui, Y., Su, Z., Luan, T. H., & Cai, J. (2019). Content in motion: An edge computing based relay scheme for content dissemination in urban vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 20(8), 3115–3128.CrossRef
14.
Zurück zum Zitat Ishikawa, H., Okamoto, E., Okada, H., & Makido, S. (2020). Performance improvement of V2I uplink transmission on far vehicles using frequency scheduling-based cooperative V2V relay transmission. In 2020 IEEE 17th annual consumer communications and networking conference (CCNC), Las Vegas, NV, USA (pp. 1–6). Ishikawa, H., Okamoto, E., Okada, H., & Makido, S. (2020). Performance improvement of V2I uplink transmission on far vehicles using frequency scheduling-based cooperative V2V relay transmission. In 2020 IEEE 17th annual consumer communications and networking conference (CCNC), Las Vegas, NV, USA (pp. 1–6).
15.
Zurück zum Zitat Rivoirard, L., Wahl, M., & Sondi, P. (2020). Multipoint relaying versus chain-branch-leaf clustering performance in optimized link state routing-based vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 21(3), 1034–1043.CrossRef Rivoirard, L., Wahl, M., & Sondi, P. (2020). Multipoint relaying versus chain-branch-leaf clustering performance in optimized link state routing-based vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 21(3), 1034–1043.CrossRef
16.
Zurück zum Zitat Li, Z., Xiang, L., Ge, X., Mao, G., & Chao, H. (2020). Latency and reliability of mmWave multi-Hop V2V communications under relay selections. IEEE Transactions on Vehicular Technology, 69(9), 9807–9821.CrossRef Li, Z., Xiang, L., Ge, X., Mao, G., & Chao, H. (2020). Latency and reliability of mmWave multi-Hop V2V communications under relay selections. IEEE Transactions on Vehicular Technology, 69(9), 9807–9821.CrossRef
17.
Zurück zum Zitat Kassir, S., Garces, P. C., de Veciana, G., Wang, N., Wang, X., & Palacharla, P. (2021). An analytical model and performance evaluation of multihomed multilane VANETs. IEEE/ACM Transactions on Networking, 29(1), 346–359. Kassir, S., Garces, P. C., de Veciana, G., Wang, N., Wang, X., & Palacharla, P. (2021). An analytical model and performance evaluation of multihomed multilane VANETs. IEEE/ACM Transactions on Networking, 29(1), 346–359.
18.
Zurück zum Zitat Vemireddy, S., & Rout, R. R. (2020). Clustering based energy efficient multi-relay scheduling in green vehicular infrastructure. Vehicular Communications, 25, 100251.CrossRef Vemireddy, S., & Rout, R. R. (2020). Clustering based energy efficient multi-relay scheduling in green vehicular infrastructure. Vehicular Communications, 25, 100251.CrossRef
19.
Zurück zum Zitat Eshteiwi, K., Kaddoum, G., Selim, B., & Gagnon, F. (2020). Impact of co-channel interference and vehicles as obstacles on full-duplex V2V cooperative wireless network. IEEE Transactions on Vehicular Technology, 69(7), 7503–7517.CrossRef Eshteiwi, K., Kaddoum, G., Selim, B., & Gagnon, F. (2020). Impact of co-channel interference and vehicles as obstacles on full-duplex V2V cooperative wireless network. IEEE Transactions on Vehicular Technology, 69(7), 7503–7517.CrossRef
20.
Zurück zum Zitat Zhou, S., Xu, J., & Niu, Z. (2013). Interference-aware relay selection scheme for two-hop relay networks with multiple source-destination pairs. IEEE Transactions on Vehicular Technology, 62(5), 2327–2338.CrossRef Zhou, S., Xu, J., & Niu, Z. (2013). Interference-aware relay selection scheme for two-hop relay networks with multiple source-destination pairs. IEEE Transactions on Vehicular Technology, 62(5), 2327–2338.CrossRef
21.
Zurück zum Zitat Onalan, A. G., Salik, E. D., & Coleri, S. (2020). Relay selection, scheduling, and power control in wireless-powered cooperative communication networks. IEEE Transactions on Wireless Communications, 19(11), 7181–7195.CrossRef Onalan, A. G., Salik, E. D., & Coleri, S. (2020). Relay selection, scheduling, and power control in wireless-powered cooperative communication networks. IEEE Transactions on Wireless Communications, 19(11), 7181–7195.CrossRef
22.
Zurück zum Zitat Li, Y., Li, T., Li, Y., Ni, Q., & Zarakovitis, C. (2020). Sum-rate maximization based relay selection for cooperative NOMA over Nakagami-m fading. IEEE Transactions on Vehicular Technology, 69(11), 13985–13989. Li, Y., Li, T., Li, Y., Ni, Q., & Zarakovitis, C. (2020). Sum-rate maximization based relay selection for cooperative NOMA over Nakagami-m fading. IEEE Transactions on Vehicular Technology, 69(11), 13985–13989.
23.
Zurück zum Zitat Lyu, J., Zeng, Y., & Zhang, R. (2016). Cyclical multiple access in UAV-aided communications: A throughput-delay tradeoff. IEEE Wireless Communications Letters, 5(6), 600–603.CrossRef Lyu, J., Zeng, Y., & Zhang, R. (2016). Cyclical multiple access in UAV-aided communications: A throughput-delay tradeoff. IEEE Wireless Communications Letters, 5(6), 600–603.CrossRef
24.
Zurück zum Zitat Zeng, Y., Zhang, R., & Lim, T. J. (2016). Throughput maximization for UAV-enabled mobile relaying systems. IEEE Transactions on Communications, 64(12), 4983–4996.CrossRef Zeng, Y., Zhang, R., & Lim, T. J. (2016). Throughput maximization for UAV-enabled mobile relaying systems. IEEE Transactions on Communications, 64(12), 4983–4996.CrossRef
25.
Zurück zum Zitat Cheng, C., Hsiao, P. H., Kung, H. T., et al. (2007). Maximizing throughput of UAV-relaying networks with the load-carry-and-deliver paradigm. In IEEE wireless communications and networking conference (pp. 4417–4424). IEEE Computer Society. Cheng, C., Hsiao, P. H., Kung, H. T., et al. (2007). Maximizing throughput of UAV-relaying networks with the load-carry-and-deliver paradigm. In IEEE wireless communications and networking conference (pp. 4417–4424). IEEE Computer Society.
26.
Zurück zum Zitat Cheng, N., Quan, W., Shi, W., et al. (2020). A comprehensive simulation platform for space-air-ground integrated network. IEEE Wireless Communications, 27(1), 178–185.CrossRef Cheng, N., Quan, W., Shi, W., et al. (2020). A comprehensive simulation platform for space-air-ground integrated network. IEEE Wireless Communications, 27(1), 178–185.CrossRef
27.
Zurück zum Zitat Khabbaz, M., Antoun, J., Sharafeddine, S., & Assi, C. (2020). Modeling and delay analysis of intermittent V2U communication in secluded areas. IEEE Transactions on Wireless Communications, 19(5), 3228–3240.CrossRef Khabbaz, M., Antoun, J., Sharafeddine, S., & Assi, C. (2020). Modeling and delay analysis of intermittent V2U communication in secluded areas. IEEE Transactions on Wireless Communications, 19(5), 3228–3240.CrossRef
28.
Zurück zum Zitat Lu, R., Zhang, R., Cheng, X., & Yang, L. (2019). Relay in the sky: A UAV-aided cooperative data dissemination scheduling strategy in VANETs. In ICC 2019 - 2019 IEEE international conference on communications (ICC) (pp. 1–6). Shanghai, China. Lu, R., Zhang, R., Cheng, X., & Yang, L. (2019). Relay in the sky: A UAV-aided cooperative data dissemination scheduling strategy in VANETs. In ICC 2019 - 2019 IEEE international conference on communications (ICC) (pp. 1–6). Shanghai, China.
29.
Zurück zum Zitat He, Y., Zhai, D., Zhang, R., et al. (2019). An anti-interference scheme for UAV data links in air-ground integrated vehicular networks. Sensors, 19(21), 4742.CrossRef He, Y., Zhai, D., Zhang, R., et al. (2019). An anti-interference scheme for UAV data links in air-ground integrated vehicular networks. Sensors, 19(21), 4742.CrossRef
30.
Zurück zum Zitat He, Y., Zhai, D., Jiang, Y., & Zhang, R. (2020). Relay selection for UAV-assisted urban vehicular ad hoc networks. IEEE Wireless Communications Letters, 19(9), 1379–1383.CrossRef He, Y., Zhai, D., Jiang, Y., & Zhang, R. (2020). Relay selection for UAV-assisted urban vehicular ad hoc networks. IEEE Wireless Communications Letters, 19(9), 1379–1383.CrossRef
31.
Zurück zum Zitat Lin, N., Fu, L., Zhao, L., Min, G., Al-Dubai, A., & Gacanin, H. (2020). A novel multimodal collaborative drone-assisted VANET networking model. IEEE Transactions on Wireless Communications, 19(7), 4919–4933.CrossRef Lin, N., Fu, L., Zhao, L., Min, G., Al-Dubai, A., & Gacanin, H. (2020). A novel multimodal collaborative drone-assisted VANET networking model. IEEE Transactions on Wireless Communications, 19(7), 4919–4933.CrossRef
32.
Zurück zum Zitat Oubbati, O. S., Chaib, N., Lakas, A., Lorenz, P., & Rachedi, A. (2019). UAV-assisted supporting services connectivity in urban VANETs. IEEE Transactions on Vehicle Technology, 68(4), 3944–3951.CrossRef Oubbati, O. S., Chaib, N., Lakas, A., Lorenz, P., & Rachedi, A. (2019). UAV-assisted supporting services connectivity in urban VANETs. IEEE Transactions on Vehicle Technology, 68(4), 3944–3951.CrossRef
33.
Zurück zum Zitat Shi, Y., Xia, Y., & Gao, Y. (2021). Joint gateway selection and resource allocation for cross-tier communication in space-air-ground integrated IoT networks. IEEE Access, 9, 4303–4314.CrossRef Shi, Y., Xia, Y., & Gao, Y. (2021). Joint gateway selection and resource allocation for cross-tier communication in space-air-ground integrated IoT networks. IEEE Access, 9, 4303–4314.CrossRef
34.
Zurück zum Zitat Zhong, X., Guo, Y., Li, N., & Li, S. (2020). Joint relay assignment and channel allocation for opportunistic UAVs-aided dynamic networks: A mood-driven approach. IEEE Transactions on Vehicular Technology, 69(12), 15019–15034.CrossRef Zhong, X., Guo, Y., Li, N., & Li, S. (2020). Joint relay assignment and channel allocation for opportunistic UAVs-aided dynamic networks: A mood-driven approach. IEEE Transactions on Vehicular Technology, 69(12), 15019–15034.CrossRef
35.
Zurück zum Zitat Wan, P., Frieder, O., Jia, X., Yao, F., Xu, X., & Tang, S. (2011). Wireless link scheduling under physical interference model. In 2011 Proceedings IEEE INFOCOM, Shanghai, China (pp. 838–845). Wan, P., Frieder, O., Jia, X., Yao, F., Xu, X., & Tang, S. (2011). Wireless link scheduling under physical interference model. In 2011 Proceedings IEEE INFOCOM, Shanghai, China (pp. 838–845).
36.
Zurück zum Zitat Zhang, H., Che, X., Liu, X., & Ju, X. (2014). Adaptive instantiation of the protocol interference model in wireless networked sensing and control. ACM Transactions on Sensor Networks, 10(2), Art. no. 28. Zhang, H., Che, X., Liu, X., & Ju, X. (2014). Adaptive instantiation of the protocol interference model in wireless networked sensing and control. ACM Transactions on Sensor Networks, 10(2), Art. no. 28.
37.
Zurück zum Zitat Li, C., Zhang, H., Zhang, T., Rao, J., Wang, L. Y., & Yin, G. (2020). Cyber-physical scheduling for predictable reliability of inter-vehicle communications. IEEE Transactions on Vehicular Technology, 69(4), 4192–4206.CrossRef Li, C., Zhang, H., Zhang, T., Rao, J., Wang, L. Y., & Yin, G. (2020). Cyber-physical scheduling for predictable reliability of inter-vehicle communications. IEEE Transactions on Vehicular Technology, 69(4), 4192–4206.CrossRef
38.
Zurück zum Zitat Cong, Y., Zhou, X., & Kennedy, R. A. (2015). Interference prediction in mobile ad hoc networks with a general mobility model. IEEE Transactions on Wireless Communications, 14(8), 4277–4290.CrossRef Cong, Y., Zhou, X., & Kennedy, R. A. (2015). Interference prediction in mobile ad hoc networks with a general mobility model. IEEE Transactions on Wireless Communications, 14(8), 4277–4290.CrossRef
39.
Zurück zum Zitat Wan, P., Ma, C., Wang, Z., Xu, B., Li, M., & Jia, X. (2011). Weighted wireless link scheduling without information of positions and interference/communication radii. In 2011 Proceedings IEEE INFOCOM, Shanghai, China (pp. 2327–2335). Wan, P., Ma, C., Wang, Z., Xu, B., Li, M., & Jia, X. (2011). Weighted wireless link scheduling without information of positions and interference/communication radii. In 2011 Proceedings IEEE INFOCOM, Shanghai, China (pp. 2327–2335).
40.
Zurück zum Zitat Li, L., Zhao, G., Lin, S., & Chen, Z. (2018). Max-SIR scheduling algorithm: An interference management algorithm in cache-enabled D2D networks. In 2018 IEEE global communications conference (GLOBECOM), Abu Dhabi, United Arab Emirates (pp. 1–6). Li, L., Zhao, G., Lin, S., & Chen, Z. (2018). Max-SIR scheduling algorithm: An interference management algorithm in cache-enabled D2D networks. In 2018 IEEE global communications conference (GLOBECOM), Abu Dhabi, United Arab Emirates (pp. 1–6).
41.
Zurück zum Zitat Argyriou, A. (2013). Link scheduling for multiple multicast sessions in distributed wireless networks. IEEE Wireless Communications Letters, 2(3), 343–346.CrossRef Argyriou, A. (2013). Link scheduling for multiple multicast sessions in distributed wireless networks. IEEE Wireless Communications Letters, 2(3), 343–346.CrossRef
42.
Zurück zum Zitat Zhou, Y., Li, X., Liu, M., Mao, X., Tang, S., & Li, Z. (2014). Throughput optimizing localized link scheduling for multihop wireless networks under physical interference model. IEEE Transactions on Parallel and Distributed Systems, 25(10), 2708–2720.CrossRef Zhou, Y., Li, X., Liu, M., Mao, X., Tang, S., & Li, Z. (2014). Throughput optimizing localized link scheduling for multihop wireless networks under physical interference model. IEEE Transactions on Parallel and Distributed Systems, 25(10), 2708–2720.CrossRef
43.
Zurück zum Zitat Ricardo, G. I., de Rezende, J. F., & Barbosa, V. C. (2020). Scheduling wireless links in the physical interference model by fractional edge coloring. IEEE Wireless Communications Letters, 9(4), 528–532.CrossRef Ricardo, G. I., de Rezende, J. F., & Barbosa, V. C. (2020). Scheduling wireless links in the physical interference model by fractional edge coloring. IEEE Wireless Communications Letters, 9(4), 528–532.CrossRef
44.
Zurück zum Zitat Yuan, D., Lin, H.-Y., Widmer, J., & Hollick, M. (2020). Optimal and approximation algorithms for joint routing and scheduling in millimeter-wave cellular networks. IEEE/ACM Transactions on Networking, 28(5), 2188–2202.CrossRef Yuan, D., Lin, H.-Y., Widmer, J., & Hollick, M. (2020). Optimal and approximation algorithms for joint routing and scheduling in millimeter-wave cellular networks. IEEE/ACM Transactions on Networking, 28(5), 2188–2202.CrossRef
45.
Zurück zum Zitat Chen, R., Lu, H., & Gao, W. (2020). Minimizing wireless delay with a high-throughput side channel. IEEE Transactions on Mobile Computing, 19(7), 1634–1648.CrossRef Chen, R., Lu, H., & Gao, W. (2020). Minimizing wireless delay with a high-throughput side channel. IEEE Transactions on Mobile Computing, 19(7), 1634–1648.CrossRef
46.
Zurück zum Zitat Yu, J., et al. (2020). Efficient link scheduling in wireless networks under rayleigh-fading and multiuser interference. IEEE Transactions on Wireless Communications, 19(8), 5621–5634.CrossRef Yu, J., et al. (2020). Efficient link scheduling in wireless networks under rayleigh-fading and multiuser interference. IEEE Transactions on Wireless Communications, 19(8), 5621–5634.CrossRef
47.
Zurück zum Zitat Capone, A., Li, Y., Pioro, M., & Yuan, D. (2019). Minimizing end-to-end delay in multi-hop wireless networks with optimized transmission scheduling. Ad Hoc Networks, 89, 236–248.CrossRef Capone, A., Li, Y., Pioro, M., & Yuan, D. (2019). Minimizing end-to-end delay in multi-hop wireless networks with optimized transmission scheduling. Ad Hoc Networks, 89, 236–248.CrossRef
48.
Zurück zum Zitat Wu, J., Lin, D., Li, G., Liu, Y., & Yin, Y. (2019). Distributed link scheduling algorithm based on successive interference cancellation in MIMO wireless networks. Wireless Communications and Mobile Computing, 2019, 9083282.CrossRef Wu, J., Lin, D., Li, G., Liu, Y., & Yin, Y. (2019). Distributed link scheduling algorithm based on successive interference cancellation in MIMO wireless networks. Wireless Communications and Mobile Computing, 2019, 9083282.CrossRef
49.
Zurück zum Zitat Ghiasian, A., Saidi, H., Omoomi, B., & Amiri, S. (2013). The impact of network topology on delay bound in wireless Ad Hoc networks. Wireless Networks, 19, 237–245.CrossRef Ghiasian, A., Saidi, H., Omoomi, B., & Amiri, S. (2013). The impact of network topology on delay bound in wireless Ad Hoc networks. Wireless Networks, 19, 237–245.CrossRef
50.
Zurück zum Zitat Tychogiorgos, G., & Leung, K. K. (2014). Optimization-based resource allocation in communication networks. Computer Networks, 66, 32–45.CrossRef Tychogiorgos, G., & Leung, K. K. (2014). Optimization-based resource allocation in communication networks. Computer Networks, 66, 32–45.CrossRef
51.
Zurück zum Zitat Qiu, F., Bai, J., & Xue, Y. (2014). Optimal rate allocation in wireless networks with delay constraints. Ad Hoc Networks, 13, 282–295.CrossRef Qiu, F., Bai, J., & Xue, Y. (2014). Optimal rate allocation in wireless networks with delay constraints. Ad Hoc Networks, 13, 282–295.CrossRef
52.
Zurück zum Zitat Borst, S. C., Markakis, M. G., & Saniee, I. (2014). Nonconcave utility maximization in locally coupled systems, with applications to wireless and wireline networks. IEEE/ACM Transactions on Networking, 22(2), 674–687.CrossRef Borst, S. C., Markakis, M. G., & Saniee, I. (2014). Nonconcave utility maximization in locally coupled systems, with applications to wireless and wireline networks. IEEE/ACM Transactions on Networking, 22(2), 674–687.CrossRef
53.
Zurück zum Zitat Haklay, M., & Weber, P. (2008). OpenStreetMap: User-generated street maps. IEEE Pervasive Computing, 7(4), 12–18.CrossRef Haklay, M., & Weber, P. (2008). OpenStreetMap: User-generated street maps. IEEE Pervasive Computing, 7(4), 12–18.CrossRef
55.
Zurück zum Zitat Wen, S., Deng, L., & Liu, Y. (2020). Distributed optimization via primal and dual decompositions for delay-constrained FANETs. Ad Hoc Networks, 109, 102288.CrossRef Wen, S., Deng, L., & Liu, Y. (2020). Distributed optimization via primal and dual decompositions for delay-constrained FANETs. Ad Hoc Networks, 109, 102288.CrossRef
Metadaten
Titel
Optimal relay selection for UAV-assisted V2V communications
verfasst von
Xiying Fan
Di Liu
Bin Fu
Shaojie Wen
Publikationsdatum
21.05.2021
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2021
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-021-02644-9

Weitere Artikel der Ausgabe 5/2021

Wireless Networks 5/2021 Zur Ausgabe

Neuer Inhalt