Skip to main content
Erschienen in: Wireless Networks 8/2022

16.08.2022 | Original Paper

A PUF-based anonymous authentication protocol for wireless medical sensor networks

verfasst von: Xiaowei Shao, Yajun Guo, Yimin Guo

Erschienen in: Wireless Networks | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless medical sensor networks (WMSNs) play a major role in remote medical monitoring systems. Generally, in a WMSN, professionals need to obtain real-time physiological data of patients, and these data often encounter various security and privacy issues during the transmission process. Thus, the secure transmission of data is particularly critical. To ensure data security and patient privacy, many authentication schemes have been proposed. However, most of the existing schemes either cannot withstand known attacks (such as privileged-insider attack, desynchronization attack, etc.) or require more communication and computation costs, and are not suitable for resource-constrained WMSNs. Therefore, this paper proposes a new anonymous physically unclonable function (PUF)-based authentication protocol for WMSNs by using PUFs, fuzzy extractor, cryptographic one-way hash functions, and bitwise XOR operations. Formal security analysis under the real-or-random model shows that this scheme is provably secure. And informal security analysis shows that our scheme is secure against various known attacks. At the same time, compared with other existing related schemes, the proposed scheme not only provides more security and functionality features, but also requires less communication (5360 bits) and computation costs (57.047 ms).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huang, Y.-M., Hsieh, M.-Y., Chao, H.-C., Hung, S.-H., & Park, J. H. (2009). Pervasive, secure access to a hierarchical sensor-based healthcare monitoring architecture in wireless heterogeneous networks. IEEE Journal on Selected Areas in Communications, 27(4), 400–411.CrossRef Huang, Y.-M., Hsieh, M.-Y., Chao, H.-C., Hung, S.-H., & Park, J. H. (2009). Pervasive, secure access to a hierarchical sensor-based healthcare monitoring architecture in wireless heterogeneous networks. IEEE Journal on Selected Areas in Communications, 27(4), 400–411.CrossRef
2.
Zurück zum Zitat Kumar, P., Lee, S.-G., & Lee, H.-J. (2012). E-SAP: Efficient-strong authentication protocol for healthcare applications using wireless medical sensor networks. Sensors, 12(2), 1625–1647.CrossRef Kumar, P., Lee, S.-G., & Lee, H.-J. (2012). E-SAP: Efficient-strong authentication protocol for healthcare applications using wireless medical sensor networks. Sensors, 12(2), 1625–1647.CrossRef
3.
Zurück zum Zitat Son, S., Lee, J., Kim, M., Yu, S., Das, A. K., & Park, Y. (2020). Design of secure authentication protocol for cloud-assisted telecare medical information system using blockchain. IEEE Access, 8, 192177–192191.CrossRef Son, S., Lee, J., Kim, M., Yu, S., Das, A. K., & Park, Y. (2020). Design of secure authentication protocol for cloud-assisted telecare medical information system using blockchain. IEEE Access, 8, 192177–192191.CrossRef
4.
Zurück zum Zitat Chen, F., Tang, Y., Cheng, X., Xie, D., Wang, T., & Zhao, C. (2021). Blockchain-based efficient device authentication protocol for medical cyber-physical systems. Security and Communication Networks, 6, 66. Chen, F., Tang, Y., Cheng, X., Xie, D., Wang, T., & Zhao, C. (2021). Blockchain-based efficient device authentication protocol for medical cyber-physical systems. Security and Communication Networks, 6, 66.
5.
Zurück zum Zitat Garg, N., Wazid, M., Das, A. K., Singh, D. P., Rodrigues, J. J., & Park, Y. (2020). BAKMP-IoMT: Design of blockchain enabled authenticated key management protocol for Internet of medical things deployment. IEEE Access, 8, 95956–95977.CrossRef Garg, N., Wazid, M., Das, A. K., Singh, D. P., Rodrigues, J. J., & Park, Y. (2020). BAKMP-IoMT: Design of blockchain enabled authenticated key management protocol for Internet of medical things deployment. IEEE Access, 8, 95956–95977.CrossRef
6.
Zurück zum Zitat Jiang, Q., Ma, J., Yang, C., Ma, X., Shen, J., & Chaudhry, S. A. (2017). Efficient end-to-end authentication protocol for wearable health monitoring systems. Computers & Electrical Engineering, 63, 182–195.CrossRef Jiang, Q., Ma, J., Yang, C., Ma, X., Shen, J., & Chaudhry, S. A. (2017). Efficient end-to-end authentication protocol for wearable health monitoring systems. Computers & Electrical Engineering, 63, 182–195.CrossRef
7.
Zurück zum Zitat Wu, F., Li, X., Xu, L., Kumari, S., Karuppiah, M., & Shen, J. (2017). A lightweight and privacy-preserving mutual authentication scheme for wearable devices assisted by cloud server. Computers & Electrical Engineering, 63, 168–181.CrossRef Wu, F., Li, X., Xu, L., Kumari, S., Karuppiah, M., & Shen, J. (2017). A lightweight and privacy-preserving mutual authentication scheme for wearable devices assisted by cloud server. Computers & Electrical Engineering, 63, 168–181.CrossRef
8.
Zurück zum Zitat Das, A. K., Pathak, P. H., Chuah, C.-N., & Mohapatra, P. (2016). Uncovering privacy leakage in ble network traffic of wearable fitness trackers. In Proceedings of the 17th international workshop on mobile computing systems and applications (pp. 99–104). Das, A. K., Pathak, P. H., Chuah, C.-N., & Mohapatra, P. (2016). Uncovering privacy leakage in ble network traffic of wearable fitness trackers. In Proceedings of the 17th international workshop on mobile computing systems and applications (pp. 99–104).
9.
Zurück zum Zitat Majumder, S., Mondal, T., & Deen, M. J. (2017). Wearable sensors for remote health monitoring. Sensors, 17(1), 130.CrossRef Majumder, S., Mondal, T., & Deen, M. J. (2017). Wearable sensors for remote health monitoring. Sensors, 17(1), 130.CrossRef
10.
Zurück zum Zitat Pantelopoulos, A., & Bourbakis, N. G. (2009). A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Transactions on Systems, Man, and Cybernetics Part C (Applications and Reviews), 40(1), 1–12.CrossRef Pantelopoulos, A., & Bourbakis, N. G. (2009). A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Transactions on Systems, Man, and Cybernetics Part C (Applications and Reviews), 40(1), 1–12.CrossRef
11.
Zurück zum Zitat Kalid, N., Zaidan, A., Zaidan, B., Salman, O. H., Hashim, M., & Muzammil, H. (2018). Based real time remote health monitoring systems: A review on patients prioritization and related" big data" using body sensors information and communication technology. Journal of Medical Systems, 42(2), 30.CrossRef Kalid, N., Zaidan, A., Zaidan, B., Salman, O. H., Hashim, M., & Muzammil, H. (2018). Based real time remote health monitoring systems: A review on patients prioritization and related" big data" using body sensors information and communication technology. Journal of Medical Systems, 42(2), 30.CrossRef
12.
Zurück zum Zitat Shuwandy, M. L., Zaidan, B., Zaidan, A., & Albahri, A. S. (2019). Sensor-based mHealth authentication for real-time remote healthcare monitoring system: A multilayer systematic review. Journal of Medical Systems, 43(2), 33.CrossRef Shuwandy, M. L., Zaidan, B., Zaidan, A., & Albahri, A. S. (2019). Sensor-based mHealth authentication for real-time remote healthcare monitoring system: A multilayer systematic review. Journal of Medical Systems, 43(2), 33.CrossRef
13.
Zurück zum Zitat Darwish, A., & Hassanien, A. E. (2011). Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors, 11(6), 5561–5595.CrossRef Darwish, A., & Hassanien, A. E. (2011). Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors, 11(6), 5561–5595.CrossRef
14.
Zurück zum Zitat Xu, G., Wang, F., Zhang, M., & Peng, J. (2020). Efficient and provably secure anonymous user authentication scheme for patient monitoring using wireless medical sensor networks. IEEE Access, 8, 47282–47294.CrossRef Xu, G., Wang, F., Zhang, M., & Peng, J. (2020). Efficient and provably secure anonymous user authentication scheme for patient monitoring using wireless medical sensor networks. IEEE Access, 8, 47282–47294.CrossRef
15.
Zurück zum Zitat Li, X., Peng, J., Obaidat, M. S., Wu, F., Khan, M. K., & Chen, C. (2019). A secure three-factor user authentication protocol with forward secrecy for wireless medical sensor network systems. IEEE Systems Journal, 14(1), 39–50.CrossRef Li, X., Peng, J., Obaidat, M. S., Wu, F., Khan, M. K., & Chen, C. (2019). A secure three-factor user authentication protocol with forward secrecy for wireless medical sensor network systems. IEEE Systems Journal, 14(1), 39–50.CrossRef
16.
Zurück zum Zitat Srinivas, J., Das, A. K., Kumar, N., & Rodrigues, J. J. (2018). Cloud centric authentication for wearable healthcare monitoring system. IEEE Transactions on Dependable and Secure Computing, 17(5), 942–956.CrossRef Srinivas, J., Das, A. K., Kumar, N., & Rodrigues, J. J. (2018). Cloud centric authentication for wearable healthcare monitoring system. IEEE Transactions on Dependable and Secure Computing, 17(5), 942–956.CrossRef
17.
Zurück zum Zitat Chen, Y., Ge, Y., Wang, Y., & Zeng, Z. (2019). An improved three-factor user authentication and key agreement scheme for wireless medical sensor networks. IEEE Access, 7, 85440–85451.CrossRef Chen, Y., Ge, Y., Wang, Y., & Zeng, Z. (2019). An improved three-factor user authentication and key agreement scheme for wireless medical sensor networks. IEEE Access, 7, 85440–85451.CrossRef
18.
Zurück zum Zitat Ali, R., Pal, A. K., Kumari, S., Sangaiah, A. K., Li, X., & Wu, F. (2018). An enhanced three factor based authentication protocol using wireless medical sensor networks for healthcare monitoring. Journal of Ambient Intelligence and Humanized Computing, 66, 1–22. Ali, R., Pal, A. K., Kumari, S., Sangaiah, A. K., Li, X., & Wu, F. (2018). An enhanced three factor based authentication protocol using wireless medical sensor networks for healthcare monitoring. Journal of Ambient Intelligence and Humanized Computing, 66, 1–22.
19.
Zurück zum Zitat Wu, F., et al. (2018). A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. Future Generation Computer Systems, 82, 727–737.CrossRef Wu, F., et al. (2018). A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. Future Generation Computer Systems, 82, 727–737.CrossRef
20.
Zurück zum Zitat Chandrakar, P. (2019). A secure remote user authentication protocol for healthcare monitoring using wireless medical sensor networks. International Journal of Ambient Computing and Intelligence (IJACI), 10(1), 96–116.CrossRef Chandrakar, P. (2019). A secure remote user authentication protocol for healthcare monitoring using wireless medical sensor networks. International Journal of Ambient Computing and Intelligence (IJACI), 10(1), 96–116.CrossRef
21.
Zurück zum Zitat Far, H. A. N., Bayat, M., Das, A. K., Fotouhi, M., Pournaghi, S. M., & Doostari, M.-A. (2021). LAPTAS: Lightweight anonymous privacy-preserving three-factor authentication scheme for WSN-based IIoT. Wireless Networks, 27(2), 1389–1412.CrossRef Far, H. A. N., Bayat, M., Das, A. K., Fotouhi, M., Pournaghi, S. M., & Doostari, M.-A. (2021). LAPTAS: Lightweight anonymous privacy-preserving three-factor authentication scheme for WSN-based IIoT. Wireless Networks, 27(2), 1389–1412.CrossRef
22.
Zurück zum Zitat Jiang, Q., Chen, Z., Li, B., Shen, J., Yang, L., & Ma, J. (2018). Security analysis and improvement of bio-hashing based three-factor authentication scheme for telecare medical information systems. Journal of Ambient Intelligence and Humanized Computing, 9(4), 1061–1073.CrossRef Jiang, Q., Chen, Z., Li, B., Shen, J., Yang, L., & Ma, J. (2018). Security analysis and improvement of bio-hashing based three-factor authentication scheme for telecare medical information systems. Journal of Ambient Intelligence and Humanized Computing, 9(4), 1061–1073.CrossRef
23.
Zurück zum Zitat Jiang, Q., Qian, Y., Ma, J., Ma, X., Cheng, Q., & Wei, F. (2019). User centric three-factor authentication protocol for cloud-assisted wearable devices. International Journal of Communication Systems, 32(6), e3900.CrossRef Jiang, Q., Qian, Y., Ma, J., Ma, X., Cheng, Q., & Wei, F. (2019). User centric three-factor authentication protocol for cloud-assisted wearable devices. International Journal of Communication Systems, 32(6), e3900.CrossRef
24.
Zurück zum Zitat De Smet, R., Vandervelden, T., Steenhaut, K., & Braeken, A. (2021). Lightweight PUF based authentication scheme for fog architecture. Wireless Networks, 27(2), 947–959.CrossRef De Smet, R., Vandervelden, T., Steenhaut, K., & Braeken, A. (2021). Lightweight PUF based authentication scheme for fog architecture. Wireless Networks, 27(2), 947–959.CrossRef
25.
Zurück zum Zitat He, D., Kumar, N., Chen, J., Lee, C.-C., Chilamkurti, N., & Yeo, S.-S. (2015). Robust anonymous authentication protocol for health-care applications using wireless medical sensor networks. Multimedia Systems, 21(1), 49–60.CrossRef He, D., Kumar, N., Chen, J., Lee, C.-C., Chilamkurti, N., & Yeo, S.-S. (2015). Robust anonymous authentication protocol for health-care applications using wireless medical sensor networks. Multimedia Systems, 21(1), 49–60.CrossRef
26.
Zurück zum Zitat Li, X., Niu, J., Kumari, S., Liao, J., Liang, W., & Khan, M. K. (2016). A new authentication protocol for healthcare applications using wireless medical sensor networks with user anonymity. Security and Communication Networks, 9(15), 2643–2655.CrossRef Li, X., Niu, J., Kumari, S., Liao, J., Liang, W., & Khan, M. K. (2016). A new authentication protocol for healthcare applications using wireless medical sensor networks with user anonymity. Security and Communication Networks, 9(15), 2643–2655.CrossRef
27.
Zurück zum Zitat Das, A. K., Sutrala, A. K., Odelu, V., & Goswami, A. (2017). A secure smartcard-based anonymous user authentication scheme for healthcare applications using wireless medical sensor networks. Wireless Personal Communications, 94(3), 1899–1933.CrossRef Das, A. K., Sutrala, A. K., Odelu, V., & Goswami, A. (2017). A secure smartcard-based anonymous user authentication scheme for healthcare applications using wireless medical sensor networks. Wireless Personal Communications, 94(3), 1899–1933.CrossRef
28.
Zurück zum Zitat Amin, R., Islam, S. H., Biswas, G., Khan, M. K., & Kumar, N. (2018). A robust and anonymous patient monitoring system using wireless medical sensor networks. Future Generation Computer Systems, 80, 483–495.CrossRef Amin, R., Islam, S. H., Biswas, G., Khan, M. K., & Kumar, N. (2018). A robust and anonymous patient monitoring system using wireless medical sensor networks. Future Generation Computer Systems, 80, 483–495.CrossRef
29.
Zurück zum Zitat Shuai, M., Liu, B., Yu, N., & Xiong, L. (2019). Lightweight and secure three-factor authentication scheme for remote patient monitoring using on-body wireless networks. Security and Communication Networks, 6, 66. Shuai, M., Liu, B., Yu, N., & Xiong, L. (2019). Lightweight and secure three-factor authentication scheme for remote patient monitoring using on-body wireless networks. Security and Communication Networks, 6, 66.
30.
Zurück zum Zitat Mo, J., Hu, Z., & Lin, Y. (2020). Cryptanalysis and security improvement of two authentication schemes for healthcare systems using wireless medical sensor networks. Security and Communication Networks, 6, 66. Mo, J., Hu, Z., & Lin, Y. (2020). Cryptanalysis and security improvement of two authentication schemes for healthcare systems using wireless medical sensor networks. Security and Communication Networks, 6, 66.
31.
Zurück zum Zitat Hayajneh, T., Mohd, B. J., Imran, M., Almashaqbeh, G., & Vasilakos, A. V. (2016). Secure authentication for remote patient monitoring with wireless medical sensor networks. Sensors, 16(4), 424.CrossRef Hayajneh, T., Mohd, B. J., Imran, M., Almashaqbeh, G., & Vasilakos, A. V. (2016). Secure authentication for remote patient monitoring with wireless medical sensor networks. Sensors, 16(4), 424.CrossRef
32.
Zurück zum Zitat Mao, D., Zhang, L., Li, X., & Mu, D. (2018). Trusted authority assisted three-factor authentication and key agreement protocol for the implantable medical system. Wireless Communications and Mobile Computing, 6, 66. Mao, D., Zhang, L., Li, X., & Mu, D. (2018). Trusted authority assisted three-factor authentication and key agreement protocol for the implantable medical system. Wireless Communications and Mobile Computing, 6, 66.
33.
Zurück zum Zitat Challa, S., et al. (2018). An efficient ECC-based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks. Computers & Electrical Engineering, 69, 534–554.CrossRef Challa, S., et al. (2018). An efficient ECC-based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks. Computers & Electrical Engineering, 69, 534–554.CrossRef
34.
Zurück zum Zitat Soni, P., Pal, A. K., & Islam, S. H. (2019). An improved three-factor authentication scheme for patient monitoring using WSN in remote health-care system. Computer Methods and Programs in Biomedicine, 182, 105054.CrossRef Soni, P., Pal, A. K., & Islam, S. H. (2019). An improved three-factor authentication scheme for patient monitoring using WSN in remote health-care system. Computer Methods and Programs in Biomedicine, 182, 105054.CrossRef
35.
Zurück zum Zitat Ji, S., Gui, Z., Zhou, T., Yan, H., & Shen, J. (2018). An efficient and certificateless conditional privacy-preserving authentication scheme for wireless body area networks big data services. IEEE Access, 6, 69603–69611.CrossRef Ji, S., Gui, Z., Zhou, T., Yan, H., & Shen, J. (2018). An efficient and certificateless conditional privacy-preserving authentication scheme for wireless body area networks big data services. IEEE Access, 6, 69603–69611.CrossRef
36.
Zurück zum Zitat Xie, Y., Zhang, S., Li, X., Li, Y., & Chai, Y. (2019). Cascp: Efficient and secure certificateless authentication scheme for wireless body area networks with conditional privacy-preserving. Security and Communication Networks, 6, 66. Xie, Y., Zhang, S., Li, X., Li, Y., & Chai, Y. (2019). Cascp: Efficient and secure certificateless authentication scheme for wireless body area networks with conditional privacy-preserving. Security and Communication Networks, 6, 66.
37.
Zurück zum Zitat Kumar, D. A., Mohammad, W., Neeraj, K., Khurram, K. M., Raymond, C.K.-K., & YoungHo, P. (2017). Design of secure and lightweight authentication protocol for wearable devices environment. IEEE Journal of Biomedical and Health Informatics, 6, 66. Kumar, D. A., Mohammad, W., Neeraj, K., Khurram, K. M., Raymond, C.K.-K., & YoungHo, P. (2017). Design of secure and lightweight authentication protocol for wearable devices environment. IEEE Journal of Biomedical and Health Informatics, 6, 66.
38.
Zurück zum Zitat Shen, J., Gui, Z., Ji, S., Shen, J., Tan, H., & Tang, Y. (2018). Cloud-aided lightweight certificateless authentication protocol with anonymity for wireless body area networks. Journal of Network and Computer Applications, 106, 117–123.CrossRef Shen, J., Gui, Z., Ji, S., Shen, J., Tan, H., & Tang, Y. (2018). Cloud-aided lightweight certificateless authentication protocol with anonymity for wireless body area networks. Journal of Network and Computer Applications, 106, 117–123.CrossRef
39.
Zurück zum Zitat Gupta, A., Tripathi, M., Shaikh, T. J., & Sharma, A. (2019). A lightweight anonymous user authentication and key establishment scheme for wearable devices. Computer Networks, 149, 29–42.CrossRef Gupta, A., Tripathi, M., Shaikh, T. J., & Sharma, A. (2019). A lightweight anonymous user authentication and key establishment scheme for wearable devices. Computer Networks, 149, 29–42.CrossRef
40.
Zurück zum Zitat Bringer, J., Chabanne, H., & Icart, T. (2008). Improved privacy of the tree-based hash protocols using physically unclonable function. In International conference on security and cryptography for networks (pp. 77–91). Springer. Bringer, J., Chabanne, H., & Icart, T. (2008). Improved privacy of the tree-based hash protocols using physically unclonable function. In International conference on security and cryptography for networks (pp. 77–91). Springer.
41.
Zurück zum Zitat Lee, Y. S., Lee, H. J., & Alasaarela, E. (2013). Mutual authentication in wireless body sensor networks (WBSN) based on physical unclonable function (PUF). In 2013 9th International wireless communications and mobile computing conference (IWCMC) (pp. 1314–1318). IEEE. Lee, Y. S., Lee, H. J., & Alasaarela, E. (2013). Mutual authentication in wireless body sensor networks (WBSN) based on physical unclonable function (PUF). In 2013 9th International wireless communications and mobile computing conference (IWCMC) (pp. 1314–1318). IEEE.
42.
Zurück zum Zitat Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., & Yung, M. (2015). End-to-end design of a PUF-based privacy preserving authentication protocol. In International workshop on cryptographic hardware and embedded systems (pp. 556–576). Springer. Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., & Yung, M. (2015). End-to-end design of a PUF-based privacy preserving authentication protocol. In International workshop on cryptographic hardware and embedded systems (pp. 556–576). Springer.
43.
Zurück zum Zitat Gope, P., Lee, J., & Quek, T. Q. (2018). Lightweight and practical anonymous authentication protocol for RFID systems using physically unclonable functions. IEEE Transactions on Information Forensics and Security, 13(11), 2831–2843.CrossRef Gope, P., Lee, J., & Quek, T. Q. (2018). Lightweight and practical anonymous authentication protocol for RFID systems using physically unclonable functions. IEEE Transactions on Information Forensics and Security, 13(11), 2831–2843.CrossRef
44.
Zurück zum Zitat Chatterjee, U., et al. (2018). Building PUF based authentication and key exchange protocol for IoT without explicit CRPs in verifier database. IEEE Transactions on Dependable and Secure Computing, 16(3), 424–437.CrossRef Chatterjee, U., et al. (2018). Building PUF based authentication and key exchange protocol for IoT without explicit CRPs in verifier database. IEEE Transactions on Dependable and Secure Computing, 16(3), 424–437.CrossRef
45.
Zurück zum Zitat Chatterjee, U., Chakraborty, R. S., & Mukhopadhyay, D. (2017). A PUF-based secure communication protocol for IoT. ACM Transactions on Embedded Computing Systems (TECS), 16(3), 1–25.CrossRef Chatterjee, U., Chakraborty, R. S., & Mukhopadhyay, D. (2017). A PUF-based secure communication protocol for IoT. ACM Transactions on Embedded Computing Systems (TECS), 16(3), 1–25.CrossRef
46.
Zurück zum Zitat Gope, P., & Sikdar, B. (2018). Lightweight and privacy-preserving two-factor authentication scheme for IoT devices. IEEE Internet of Things Journal, 6(1), 580–589.CrossRef Gope, P., & Sikdar, B. (2018). Lightweight and privacy-preserving two-factor authentication scheme for IoT devices. IEEE Internet of Things Journal, 6(1), 580–589.CrossRef
47.
Zurück zum Zitat Aman, M. N., Basheer, M. H., & Sikdar, B. (2018). Two-factor authentication for IoT with location information. IEEE Internet of Things Journal, 6(2), 3335–3351.CrossRef Aman, M. N., Basheer, M. H., & Sikdar, B. (2018). Two-factor authentication for IoT with location information. IEEE Internet of Things Journal, 6(2), 3335–3351.CrossRef
48.
Zurück zum Zitat Banerjee, S., Odelu, V., Das, A. K., Chattopadhyay, S., Rodrigues, J. J., & Park, Y. (2019). Physically secure lightweight anonymous user authentication protocol for internet of things using physically unclonable functions. IEEE Access, 7, 85627–85644.CrossRef Banerjee, S., Odelu, V., Das, A. K., Chattopadhyay, S., Rodrigues, J. J., & Park, Y. (2019). Physically secure lightweight anonymous user authentication protocol for internet of things using physically unclonable functions. IEEE Access, 7, 85627–85644.CrossRef
49.
Zurück zum Zitat Aman, M. N., Javaid, U., & Sikdar, B. (2020). A privacy-preserving and scalable authentication protocol for the internet of vehicles. IEEE Internet of Things Journal, 8(2), 1123–1139.CrossRef Aman, M. N., Javaid, U., & Sikdar, B. (2020). A privacy-preserving and scalable authentication protocol for the internet of vehicles. IEEE Internet of Things Journal, 8(2), 1123–1139.CrossRef
50.
Zurück zum Zitat Sarkar, P. (2010). A simple and generic construction of authenticated encryption with associated data. ACM Transactions on Information and System Security (TISSEC), 13(4), 1–16.CrossRef Sarkar, P. (2010). A simple and generic construction of authenticated encryption with associated data. ACM Transactions on Information and System Security (TISSEC), 13(4), 1–16.CrossRef
51.
Zurück zum Zitat Gope, P., Das, A. K., Kumar, N., & Cheng, Y. (2019). Lightweight and physically secure anonymous mutual authentication protocol for real-time data access in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 15(9), 4957–4968.CrossRef Gope, P., Das, A. K., Kumar, N., & Cheng, Y. (2019). Lightweight and physically secure anonymous mutual authentication protocol for real-time data access in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 15(9), 4957–4968.CrossRef
52.
Zurück zum Zitat Dodis, Y., Reyzin, L., & Smith, A. (2004). Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In International conference on the theory and applications of cryptographic techniques (pp. 523–540). Springer. Dodis, Y., Reyzin, L., & Smith, A. (2004). Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In International conference on the theory and applications of cryptographic techniques (pp. 523–540). Springer.
53.
Zurück zum Zitat Juels, A., & Wattenberg, M. (1999). A fuzzy commitment scheme. In Proceedings of the 6th ACM conference on computer and communications security (pp. 28–36). Juels, A., & Wattenberg, M. (1999). A fuzzy commitment scheme. In Proceedings of the 6th ACM conference on computer and communications security (pp. 28–36).
54.
Zurück zum Zitat Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on Information Theory, 29(2), 198–208.MathSciNetMATHCrossRef Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on Information Theory, 29(2), 198–208.MathSciNetMATHCrossRef
55.
Zurück zum Zitat Canetti, R., & Krawczyk, H. (2002). Universally composable notions of key exchange and secure channels. In International conference on the theory and applications of cryptographic techniques (pp. 337–351). Springer. Canetti, R., & Krawczyk, H. (2002). Universally composable notions of key exchange and secure channels. In International conference on the theory and applications of cryptographic techniques (pp. 337–351). Springer.
56.
Zurück zum Zitat Messerges, T. S., Dabbish, E. A., & Sloan, R. H. (2002). Examining smart-card security under the threat of power analysis attacks. IEEE Transactions on Computers, 51(5), 541–552.MathSciNetMATHCrossRef Messerges, T. S., Dabbish, E. A., & Sloan, R. H. (2002). Examining smart-card security under the threat of power analysis attacks. IEEE Transactions on Computers, 51(5), 541–552.MathSciNetMATHCrossRef
57.
Zurück zum Zitat Roy, S., Chatterjee, S., Das, A. K., Chattopadhyay, S., Kumar, N., & Vasilakos, A. V. (2017). On the design of provably secure lightweight remote user authentication scheme for mobile cloud computing services. IEEE Access, 5, 25808–25825.CrossRef Roy, S., Chatterjee, S., Das, A. K., Chattopadhyay, S., Kumar, N., & Vasilakos, A. V. (2017). On the design of provably secure lightweight remote user authentication scheme for mobile cloud computing services. IEEE Access, 5, 25808–25825.CrossRef
58.
Zurück zum Zitat Chatterjee, S., Roy, S., Das, A. K., Chattopadhyay, S., Kumar, N., & Vasilakos, A. V. (2016). Secure biometric-based authentication scheme using Chebyshev chaotic map for multi-server environment. IEEE Transactions on Dependable and Secure Computing, 15(5), 824–839.CrossRef Chatterjee, S., Roy, S., Das, A. K., Chattopadhyay, S., Kumar, N., & Vasilakos, A. V. (2016). Secure biometric-based authentication scheme using Chebyshev chaotic map for multi-server environment. IEEE Transactions on Dependable and Secure Computing, 15(5), 824–839.CrossRef
59.
Zurück zum Zitat Wazid, M., Das, A. K., Odelu, V., Kumar, N., Conti, M., & Jo, M. (2017). Design of secure user authenticated key management protocol for generic IoT networks. IEEE Internet of Things Journal, 5(1), 269–282. CrossRef Wazid, M., Das, A. K., Odelu, V., Kumar, N., Conti, M., & Jo, M. (2017). Design of secure user authenticated key management protocol for generic IoT networks. IEEE Internet of Things Journal, 5(1), 269–282. CrossRef
60.
Zurück zum Zitat Padmavathy, R., & Rajkumar, M.-N. (2022). Secured cloud communication using lightweight hash authentication with PUF. Computer Systems Science and Engineering, 43(1), 233–243.CrossRef Padmavathy, R., & Rajkumar, M.-N. (2022). Secured cloud communication using lightweight hash authentication with PUF. Computer Systems Science and Engineering, 43(1), 233–243.CrossRef
61.
Zurück zum Zitat Chaterjee, U., Mukhopadhyay, D., & Chakraborty, R. S. (2020). 3PAA: A private PUF protocol for anonymous authentication. IEEE Transactions on Information Forensics and Security, 16, 756–769.CrossRef Chaterjee, U., Mukhopadhyay, D., & Chakraborty, R. S. (2020). 3PAA: A private PUF protocol for anonymous authentication. IEEE Transactions on Information Forensics and Security, 16, 756–769.CrossRef
62.
Zurück zum Zitat Gao, Y., Van Dijk, M., Xu, L., et al. (2020). TREVERSE: Trial-and-error lightweight secure reverse authentication with simulatable PUFs. IEEE Transactions on Dependable and Secure Computing, 6, 66. Gao, Y., Van Dijk, M., Xu, L., et al. (2020). TREVERSE: Trial-and-error lightweight secure reverse authentication with simulatable PUFs. IEEE Transactions on Dependable and Secure Computing, 6, 66.
63.
Zurück zum Zitat Qureshi, M. A., & Munir, A. (2021). PUF-RAKE: A PUF-based robust and lightweight authentication and key establishment protocol. IEEE Transactions on Dependable and Secure Computing, 6, 66. Qureshi, M. A., & Munir, A. (2021). PUF-RAKE: A PUF-based robust and lightweight authentication and key establishment protocol. IEEE Transactions on Dependable and Secure Computing, 6, 66.
64.
Zurück zum Zitat Abdalla, M., Fouque, P.-A., & Pointcheval, D. (2005). Password-based authenticated key exchange in the three-party setting. In International workshop on public key cryptography (pp. 65–84). Springer. Abdalla, M., Fouque, P.-A., & Pointcheval, D. (2005). Password-based authenticated key exchange in the three-party setting. In International workshop on public key cryptography (pp. 65–84). Springer.
65.
Zurück zum Zitat Chang, C.-C., & Le, H.-D. (2015). A provably secure, efficient, and flexible authentication scheme for ad hoc wireless sensor networks. IEEE Transactions on Wireless Communications, 15(1), 357–366.CrossRef Chang, C.-C., & Le, H.-D. (2015). A provably secure, efficient, and flexible authentication scheme for ad hoc wireless sensor networks. IEEE Transactions on Wireless Communications, 15(1), 357–366.CrossRef
66.
Zurück zum Zitat Guo, Y., Zhang, Z., & Guo, Y. (2021). Anonymous authenticated key agreement and group proof protocol for wearable computing. IEEE Transactions on Mobile Computing, 6, 66. Guo, Y., Zhang, Z., & Guo, Y. (2021). Anonymous authenticated key agreement and group proof protocol for wearable computing. IEEE Transactions on Mobile Computing, 6, 66.
67.
Zurück zum Zitat Guo, Y., Zhang, Z., & Guo, Y. (2020). Fog-centric authenticated key agreement scheme without trusted parties. IEEE Systems Journal, 6, 66. Guo, Y., Zhang, Z., & Guo, Y. (2020). Fog-centric authenticated key agreement scheme without trusted parties. IEEE Systems Journal, 6, 66.
68.
Zurück zum Zitat Xie, Q., Wong, D. S., Wang, G., Tan, X., Chen, K., & Fang, L. (2017). Provably secure dynamic ID-based anonymous two-factor authenticated key exchange protocol with extended security model. IEEE Transactions on Information Forensics and Security, 12(6), 1382–1392.CrossRef Xie, Q., Wong, D. S., Wang, G., Tan, X., Chen, K., & Fang, L. (2017). Provably secure dynamic ID-based anonymous two-factor authenticated key exchange protocol with extended security model. IEEE Transactions on Information Forensics and Security, 12(6), 1382–1392.CrossRef
69.
Zurück zum Zitat Roy, S., Das, A. K., Chatterjee, S., Kumar, N., Chattopadhyay, S., & Rodrigues, J. J. (2018). Provably secure fine-grained data access control over multiple cloud servers in mobile cloud computing based healthcare applications. IEEE Transactions on Industrial Informatics, 15(1), 457–468.CrossRef Roy, S., Das, A. K., Chatterjee, S., Kumar, N., Chattopadhyay, S., & Rodrigues, J. J. (2018). Provably secure fine-grained data access control over multiple cloud servers in mobile cloud computing based healthcare applications. IEEE Transactions on Industrial Informatics, 15(1), 457–468.CrossRef
70.
Zurück zum Zitat Wazid, M., Das, A. K., Kumar, N., & Vasilakos, A. V. (2019). Design of secure key management and user authentication scheme for fog computing services. Future Generation Computer Systems, 91, 475–492.CrossRef Wazid, M., Das, A. K., Kumar, N., & Vasilakos, A. V. (2019). Design of secure key management and user authentication scheme for fog computing services. Future Generation Computer Systems, 91, 475–492.CrossRef
71.
Zurück zum Zitat Jia, X., He, D., Kumar, N., & Choo, K.-K.R. (2019). Authenticated key agreement scheme for fog-driven IoT healthcare system. Wireless Networks, 25(8), 4737–4750.CrossRef Jia, X., He, D., Kumar, N., & Choo, K.-K.R. (2019). Authenticated key agreement scheme for fog-driven IoT healthcare system. Wireless Networks, 25(8), 4737–4750.CrossRef
72.
Zurück zum Zitat Naoui, S., Elhdhili, M. E., & Saidane, L. A. (2019). Lightweight and secure password based smart home authentication protocol: LSP-SHAP. Journal of Network and Systems Management, 66, 1. Naoui, S., Elhdhili, M. E., & Saidane, L. A. (2019). Lightweight and secure password based smart home authentication protocol: LSP-SHAP. Journal of Network and Systems Management, 66, 1.
73.
Zurück zum Zitat Guo, Y., & Guo, Y. (2021). FogHA: An efficient handover authentication for mobile devices in fog computing. Computers & Security, 66, 102358.CrossRef Guo, Y., & Guo, Y. (2021). FogHA: An efficient handover authentication for mobile devices in fog computing. Computers & Security, 66, 102358.CrossRef
74.
Zurück zum Zitat Guo, Y., Zhang, Z., & Guo, Y. (2022). SecFHome: Secure remote authentication in fog-enabled smart home environment. Computer Networks, 207, 108818.CrossRef Guo, Y., Zhang, Z., & Guo, Y. (2022). SecFHome: Secure remote authentication in fog-enabled smart home environment. Computer Networks, 207, 108818.CrossRef
75.
Zurück zum Zitat Shen, J., Chang, S., Shen, J., Liu, Q., & Sun, X. (2018). A lightweight multi-layer authentication protocol for wireless body area networks. Future Generation Computer Systems, 78, 956–963.CrossRef Shen, J., Chang, S., Shen, J., Liu, Q., & Sun, X. (2018). A lightweight multi-layer authentication protocol for wireless body area networks. Future Generation Computer Systems, 78, 956–963.CrossRef
76.
Zurück zum Zitat Shuai, M., Yu, N., Wang, H., & Xiong, L. (2019). Anonymous authentication scheme for smart home environment with provable security. Computers & Security, 86, 132–146.CrossRef Shuai, M., Yu, N., Wang, H., & Xiong, L. (2019). Anonymous authentication scheme for smart home environment with provable security. Computers & Security, 86, 132–146.CrossRef
77.
Zurück zum Zitat Sikder, A. K., Aksu, H., & Uluagac, A. S. (2019). A context-aware framework for detecting sensor-based threats on smart devices. IEEE Transactions on Mobile Computing, 66, 245–261. Sikder, A. K., Aksu, H., & Uluagac, A. S. (2019). A context-aware framework for detecting sensor-based threats on smart devices. IEEE Transactions on Mobile Computing, 66, 245–261.
Metadaten
Titel
A PUF-based anonymous authentication protocol for wireless medical sensor networks
verfasst von
Xiaowei Shao
Yajun Guo
Yimin Guo
Publikationsdatum
16.08.2022
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2022
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-03070-1

Weitere Artikel der Ausgabe 8/2022

Wireless Networks 8/2022 Zur Ausgabe