Skip to main content
Erschienen in: Wireless Personal Communications 2/2020

06.05.2020

LoRa-Based WSNs Construction and Low-Power Data Collection Strategy for Wetland Environmental Monitoring

verfasst von: Yuchen Jia

Erschienen in: Wireless Personal Communications | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The wetland that known as "the kidney of the earth" is an ecological system with many resources. Monitoring of wetland environment includes the monitoring of water quality, air and soil. The parameters of temperature, pH value, turbidity, dissolved oxygen (DO), water level, conductivity of water, illuminance, PM2.5, harmful gas, and soil moisture is particularly important for the survival of animals in wetland. Real-time monitoring wetland environment is conducive to understanding the causes and trends of environmental change in the whole region, so as to make environmental change emergency strategies timely. The author introduces a real-time monitoring system based on Multi-sensor Combination Module (MSCM) and LoRa. This system has two types of MSCM, one is for water and the other is for air. The MSCM for water consists of six sensors, such as water temperature sensor, pH sensor, turbidity sensor, dissolved oxygen sensor, conductivity sensor, and water level sensor, and stm32 core processor, which has the advantages of low power consumption and high speed. The data collection node uploads the collected data to the base station through a LoRa module with low power consumption, high speed and wide coverage. The base station and the collection node are connected in a star. The LoRaWan protocol is used to realize the communication between acquisition nodes and sink. In the case of code rate is 4/5, bandwidth is 500 kHz and spreading factor is 12, the effective throughput of the system can reach 1172 bps. At the same time, a data fusion algorithm based on fuzzy decision is designed for data processing on the acquisition nodes to reduce the amount of uploaded data, reduce power consumption and improve network throughput. Experiments show that the system has strong stability, flexible networking, low power consumption, long communication distance, and is suitable for wetland environmental monitoring.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Urbaniec, K., Mikulčić, H., Rosen, M. A., & Duić, N. (2017). A holistic approach to sustainable development of energy, water and environment systems. Journal of Cleaner Production, 155(1), 1–11.CrossRef Urbaniec, K., Mikulčić, H., Rosen, M. A., & Duić, N. (2017). A holistic approach to sustainable development of energy, water and environment systems. Journal of Cleaner Production, 155(1), 1–11.CrossRef
2.
Zurück zum Zitat Shokri, R., Poturalski, M., Ravot, G., Papadimitratos, P., Hubaux, J.-P. (2009). A practical secure neighbour verification protocol for wireless sensor networks. In Stockholm: Proceedings of the 2nd ACM conference on wireless network security (pp. 192–200). Shokri, R., Poturalski, M., Ravot, G., Papadimitratos, P., Hubaux, J.-P. (2009). A practical secure neighbour verification protocol for wireless sensor networks. In Stockholm: Proceedings of the 2nd ACM conference on wireless network security (pp. 192–200).
3.
Zurück zum Zitat Szewczyk R., et al. (2004) Lessons from a sensor network expedition. In Proceedings of the 1st European workshop wireless sensor networks, Berlin (pp. 307–322) Szewczyk R., et al. (2004) Lessons from a sensor network expedition. In Proceedings of the 1st European workshop wireless sensor networks, Berlin (pp. 307–322)
4.
Zurück zum Zitat Li, T., Xia, M., Chen, J., Zhao, Y., & de Silva, C. (2017). Automated water quality survey and evaluation using an IoT platform with mobile sensor nodes. Sensors, 17, 1735.CrossRef Li, T., Xia, M., Chen, J., Zhao, Y., & de Silva, C. (2017). Automated water quality survey and evaluation using an IoT platform with mobile sensor nodes. Sensors, 17, 1735.CrossRef
5.
Zurück zum Zitat Adu-Manu, K. S., Tapparello, C., Heinzelman, W., Apietu Katsriku, F., & Abdulai, J.-D. (2017). Water quality monitoring using wireless sensor networks: Current trends and future research directions. ACM Transactions on Sensor Networks, 13, 1. https://doi.org/10.1145/3005719.CrossRef Adu-Manu, K. S., Tapparello, C., Heinzelman, W., Apietu Katsriku, F., & Abdulai, J.-D. (2017). Water quality monitoring using wireless sensor networks: Current trends and future research directions. ACM Transactions on Sensor Networks, 13, 1. https://​doi.​org/​10.​1145/​3005719.CrossRef
7.
Zurück zum Zitat Sun, L., Chun Wong, K., Wei, P., et al. (2016). Development and application of a next generation air sensor network for the Hong Kong Marathon 2015 air quality monitoring. Sensors, 16(2), 211.CrossRef Sun, L., Chun Wong, K., Wei, P., et al. (2016). Development and application of a next generation air sensor network for the Hong Kong Marathon 2015 air quality monitoring. Sensors, 16(2), 211.CrossRef
8.
Zurück zum Zitat Villagrán, V., Montecinos, A., Franco, C., & Muñoz, R. C. (2017). Environmental monitoring network along a mountain valley using embedded controllers. Measurement, 106, 221–235.CrossRef Villagrán, V., Montecinos, A., Franco, C., & Muñoz, R. C. (2017). Environmental monitoring network along a mountain valley using embedded controllers. Measurement, 106, 221–235.CrossRef
9.
Zurück zum Zitat Demattê, J. A. M., Horák-Terra, I., Beirigo, R. M., Terra, F. D. S., Marques, K. P. P., Fongaro, C. T., et al. (2017). Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring. Journal of Environmental Management, 197, 50–62. https://doi.org/10.1016/j.jenvman.CrossRef Demattê, J. A. M., Horák-Terra, I., Beirigo, R. M., Terra, F. D. S., Marques, K. P. P., Fongaro, C. T., et al. (2017). Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring. Journal of Environmental Management, 197, 50–62. https://​doi.​org/​10.​1016/​j.​jenvman.CrossRef
11.
Zurück zum Zitat Lee, C. H., Chuang, W. Y., Cowan, M. A., Wu, W. J., & Lin, C. T. (2014). A low-power integrated humidity CMOS sensor by printing-on-chip technology. Sensors, 14(5), 9247.CrossRef Lee, C. H., Chuang, W. Y., Cowan, M. A., Wu, W. J., & Lin, C. T. (2014). A low-power integrated humidity CMOS sensor by printing-on-chip technology. Sensors, 14(5), 9247.CrossRef
12.
Zurück zum Zitat Sánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2012). An ultra-low power and flexible acoustic modem design to develop energy-efficient underwater sensor networks. Sensors, 12(6), 6837–6856.CrossRef Sánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2012). An ultra-low power and flexible acoustic modem design to develop energy-efficient underwater sensor networks. Sensors, 12(6), 6837–6856.CrossRef
13.
Zurück zum Zitat Tomasini, M., Benatti, S., Milosevic, B., Farella, E., & Benini, L. (2016). Power line interference removal for high-quality continuous biosignal monitoring with low-power wearable devices. IEEE Sensors Journal, 16(10), 3887–3895.CrossRef Tomasini, M., Benatti, S., Milosevic, B., Farella, E., & Benini, L. (2016). Power line interference removal for high-quality continuous biosignal monitoring with low-power wearable devices. IEEE Sensors Journal, 16(10), 3887–3895.CrossRef
14.
Zurück zum Zitat Okon-Fafara, M., & Kawalec, A. (2017). Prototype of wideband air sonar based on STM32. Archives of Acoustics, 42(4), 761–765.CrossRef Okon-Fafara, M., & Kawalec, A. (2017). Prototype of wideband air sonar based on STM32. Archives of Acoustics, 42(4), 761–765.CrossRef
15.
Zurück zum Zitat Kaplan, E., & Hegarty, C. (2005). Understanding GPS: Principles and Applications. Norwood, MA: Artech House. Kaplan, E., & Hegarty, C. (2005). Understanding GPS: Principles and Applications. Norwood, MA: Artech House.
16.
Zurück zum Zitat Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M. N., et al. (2008). Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics, 25, 425–466.CrossRef Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M. N., et al. (2008). Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics, 25, 425–466.CrossRef
17.
Zurück zum Zitat Wang, J., Ren, X.-l., Shen, Y.-l., & Liu, S.-y. (2010). A remote wireless sensor networks for water quality monitoring. In Proceedings of the Asia-Pacific conference on innovative computing and communication and the international conference on information technology and ocean engineering (CICC-ITOE’10) (pp. 7–12). IEEE, Los Alamitos. Wang, J., Ren, X.-l., Shen, Y.-l., & Liu, S.-y. (2010). A remote wireless sensor networks for water quality monitoring. In Proceedings of the Asia-Pacific conference on innovative computing and communication and the international conference on information technology and ocean engineering (CICC-ITOE’10) (pp. 7–12). IEEE, Los Alamitos.
18.
Zurück zum Zitat Silva, C. A. G. D., Santos, E. L. D., & Ferrari, A. C. K. (2017). A study of the mesh topology in a ZigBee network for home automation applications. IEEE Latin America Transactions, 15(5), 935–942.CrossRef Silva, C. A. G. D., Santos, E. L. D., & Ferrari, A. C. K. (2017). A study of the mesh topology in a ZigBee network for home automation applications. IEEE Latin America Transactions, 15(5), 935–942.CrossRef
20.
Zurück zum Zitat George, D. M., Sanislav, T., Corneliu Folea, S., & Zeadally, S. (2018). Performance evaluation of energy-autonomous sensors using power-harvesting beacons for environmental monitoring in internet of things (IoT). Sensors, 18, 1709.CrossRef George, D. M., Sanislav, T., Corneliu Folea, S., & Zeadally, S. (2018). Performance evaluation of energy-autonomous sensors using power-harvesting beacons for environmental monitoring in internet of things (IoT). Sensors, 18, 1709.CrossRef
21.
Zurück zum Zitat Li, X., Tao, X., & Mao, G. (2017). Unbalanced expander based compressive data gathering in clustered wireless sensor networks. IEEE Access, 5, 7553–7566.CrossRef Li, X., Tao, X., & Mao, G. (2017). Unbalanced expander based compressive data gathering in clustered wireless sensor networks. IEEE Access, 5, 7553–7566.CrossRef
22.
Zurück zum Zitat SX1276/77/78/79 DATASHEET. %3cwww. semtech. com%3e. Accessed 22 February 2018. SX1276/77/78/79 DATASHEET. %3cwww. semtech. com%3e. Accessed 22 February 2018.
23.
Zurück zum Zitat Augustin, A., Yi, J., Clausen, T., & Townsley, W. M. (2016). A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. Sensors, 16(5), 1466.CrossRef Augustin, A., Yi, J., Clausen, T., & Townsley, W. M. (2016). A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. Sensors, 16(5), 1466.CrossRef
25.
Zurück zum Zitat Abdulsalam, H. M. (2013). BA Ali (2013) W-LEACH based dynamic adaptive data aggregation algorithm for wireless sensor networks. International Journal of Distributed Sensor Networks, 11, 1098–1101. Abdulsalam, H. M. (2013). BA Ali (2013) W-LEACH based dynamic adaptive data aggregation algorithm for wireless sensor networks. International Journal of Distributed Sensor Networks, 11, 1098–1101.
26.
Zurück zum Zitat Abdulsalam, H. M., Ali, B. A., & Alyatama, A. (2016). Air quality monitoring using a LEACH-based data aggregation technique in wireless sensor network. Adhoc & Sensor Wireless Networks, 32, 275–300. Abdulsalam, H. M., Ali, B. A., & Alyatama, A. (2016). Air quality monitoring using a LEACH-based data aggregation technique in wireless sensor network. Adhoc & Sensor Wireless Networks, 32, 275–300.
27.
Zurück zum Zitat Sha, C., & Hongju, G. (2016). In network data fusion for agricultural information on wireless sensor nodes based on JN5139. Journal of Agricultural Mechanization Research, 38(5), 6–14. Sha, C., & Hongju, G. (2016). In network data fusion for agricultural information on wireless sensor nodes based on JN5139. Journal of Agricultural Mechanization Research, 38(5), 6–14.
28.
Zurück zum Zitat Luo, J. (2017). A ZigBee and sip-based smart home system design and implementation. International Journal of Online Engineering, 13(1), 42–60.CrossRef Luo, J. (2017). A ZigBee and sip-based smart home system design and implementation. International Journal of Online Engineering, 13(1), 42–60.CrossRef
29.
Zurück zum Zitat Zhang, M., & Shen, M. (2014). Research of WSN-based data fusion in water quality monitoring. Computer Engineering and Applications, 23, 108–119. Zhang, M., & Shen, M. (2014). Research of WSN-based data fusion in water quality monitoring. Computer Engineering and Applications, 23, 108–119.
Metadaten
Titel
LoRa-Based WSNs Construction and Low-Power Data Collection Strategy for Wetland Environmental Monitoring
verfasst von
Yuchen Jia
Publikationsdatum
06.05.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07437-5

Weitere Artikel der Ausgabe 2/2020

Wireless Personal Communications 2/2020 Zur Ausgabe