Skip to main content
Erschienen in: Wireless Personal Communications 3/2020

05.08.2020

Assessment of Denim and Photo Paper Substrate-Based Microstrip Antennas for Wearable Biomedical Sensing

verfasst von: Nikita Jattalwar, Suresh S. Balpande, J. A. Shrawankar

Erschienen in: Wireless Personal Communications | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The medical field has witnessed an exponential growth of wearable devices mainly due to the advancement in wireless communication and antenna technology. There is a demand for wearable antennas, which are lightweight, flexible, and ease of integration into the fabric which suits on-body applications. Therefore, this work presents the design, fabrication, and analysis of two microstrip antennas using denim cloth and stacked photo paper as substrate material. The novelty of these antennas is the use of silver fabric as ground and radiating patch-conducting layer, which has resulted in significant improvement in overall antenna performance. It is observed that our fabricated antennas have exhibited a gain of 8.71 dB with VSWR of 1.32 for denim and gain of 2.45 dB with VSWR of 1.03 for photo paper substrates respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Laura, C., et al. (2017). Wearable antennas for remote health care monitoring systems. International Journal of Antennas and Propagation, 2017. Article ID 3012341. Laura, C., et al. (2017). Wearable antennas for remote health care monitoring systems. International Journal of Antennas and Propagation, 2017. Article ID 3012341.
2.
Zurück zum Zitat Cote, G. L., Lec, R. M., & Pishko, M. V. (2003). Emerging biomedical sensing technologies and their applications. IEEE Sensors Journal, 3(3), 251–266.CrossRef Cote, G. L., Lec, R. M., & Pishko, M. V. (2003). Emerging biomedical sensing technologies and their applications. IEEE Sensors Journal, 3(3), 251–266.CrossRef
3.
Zurück zum Zitat Balpande, S. S., Kalambe, J. P., & Pande, R. S. (2019). Development of strain energy harvester as an alternative power source for the wearable biomedical diagnostic system. Micro & Nano Letters, 14(7), 777–781.CrossRef Balpande, S. S., Kalambe, J. P., & Pande, R. S. (2019). Development of strain energy harvester as an alternative power source for the wearable biomedical diagnostic system. Micro & Nano Letters, 14(7), 777–781.CrossRef
4.
Zurück zum Zitat Lande, S. B., & Balpande, S. S. (2018). FPAA based design of assistive listening device for hearing disorders people. Helix, 8(6), 4446–4452.CrossRef Lande, S. B., & Balpande, S. S. (2018). FPAA based design of assistive listening device for hearing disorders people. Helix, 8(6), 4446–4452.CrossRef
5.
Zurück zum Zitat Balpande, S. S., Kalambe, J., & Pande, R. S. (2018). Vibration energy harvester driven wearable biomedical diagnostic system. In 2018 IEEE 13th annual international conference on nano/micro engineered and molecular systems (NEMS), Singapore (pp. 448–451). Balpande, S. S., Kalambe, J., & Pande, R. S. (2018). Vibration energy harvester driven wearable biomedical diagnostic system. In 2018 IEEE 13th annual international conference on nano/micro engineered and molecular systems (NEMS), Singapore (pp. 448–451).
6.
Zurück zum Zitat El Hajj, W., Person, C., & Wiart, J. (2014). Novel investigation of a broadband integrated inverted-F antenna design; Application for wearable antenna. IEEE Transactions on Antennas and Propagation, 62(7), 3843–3846.CrossRef El Hajj, W., Person, C., & Wiart, J. (2014). Novel investigation of a broadband integrated inverted-F antenna design; Application for wearable antenna. IEEE Transactions on Antennas and Propagation, 62(7), 3843–3846.CrossRef
7.
Zurück zum Zitat Kaur, G., et al. (2015). Antennas for biomedical applications. Biomedical Engineering Letters, 5(3), 203–212.CrossRef Kaur, G., et al. (2015). Antennas for biomedical applications. Biomedical Engineering Letters, 5(3), 203–212.CrossRef
8.
Zurück zum Zitat Balpande, S. S., et al. (2009). Modeling of cantilever based power harvester as an innovative power source for RFID tag. In IEEE International conference on emerging trends in engineering & technology (pp. 13–18). Balpande, S. S., et al. (2009). Modeling of cantilever based power harvester as an innovative power source for RFID tag. In IEEE International conference on emerging trends in engineering & technology (pp. 13–18).
9.
Zurück zum Zitat Kim, S., et al. (2012). Monopole antenna with inkjet-printed EBG array on paper substrate for wearable applications. IEEE Antennas and Wireless Propagation Letters, 11, 663–666.CrossRef Kim, S., et al. (2012). Monopole antenna with inkjet-printed EBG array on paper substrate for wearable applications. IEEE Antennas and Wireless Propagation Letters, 11, 663–666.CrossRef
10.
Zurück zum Zitat Carvalho, H., Catarino, A. P., Rocha, A., & Postolache, O. (2014). Health monitoring using textile sensors and electrodes: An overview and integration of technologies. In 2014 IEEE international symposium on medical measurements and applications (pp. 1–6). Carvalho, H., Catarino, A. P., Rocha, A., & Postolache, O. (2014). Health monitoring using textile sensors and electrodes: An overview and integration of technologies. In 2014 IEEE international symposium on medical measurements and applications (pp. 1–6).
11.
Zurück zum Zitat Balpande, S., & Yenorkar, S. (2019). Optimization of energy harvester for trapping maximum body motions to power wearables. Sensor Letters, 17(1), 46–54(9).CrossRef Balpande, S., & Yenorkar, S. (2019). Optimization of energy harvester for trapping maximum body motions to power wearables. Sensor Letters, 17(1), 46–54(9).CrossRef
12.
Zurück zum Zitat Dhone, M. D., Balpande, S., & Kalambe, J. (2019). Energy harvester: A green power source for wearable biosensors. Sensor Letters, 17(1), 55–63(9).CrossRef Dhone, M. D., Balpande, S., & Kalambe, J. (2019). Energy harvester: A green power source for wearable biosensors. Sensor Letters, 17(1), 55–63(9).CrossRef
13.
Zurück zum Zitat Balpande, S. S., Pande, R. S., & Patrikar, R. M. (2016). Design and low cost fabrication of green vibration energy harvester. Sensors and Actuators A: Physical, 251, 134–141.CrossRef Balpande, S. S., Pande, R. S., & Patrikar, R. M. (2016). Design and low cost fabrication of green vibration energy harvester. Sensors and Actuators A: Physical, 251, 134–141.CrossRef
14.
Zurück zum Zitat Balpande, S. S., Bhaiyya, M. L., & Pande, R. S. (2017). Low-cost fabrication of polymer substrate-based piezoelectric microgenerator with PPE, IDE and ME. Electronics Letters, 53(5), 341–343.CrossRef Balpande, S. S., Bhaiyya, M. L., & Pande, R. S. (2017). Low-cost fabrication of polymer substrate-based piezoelectric microgenerator with PPE, IDE and ME. Electronics Letters, 53(5), 341–343.CrossRef
15.
Zurück zum Zitat Simorangkir, R. B. V. B., Yang, Y., Matekovits, L., & Essell, K. P. (2017). Dual-band dual-mode textile antenna on PDMS substrate for body-centric communications. IEEE Antennas and Wireless Propagation Letters, 16, 677–680.CrossRef Simorangkir, R. B. V. B., Yang, Y., Matekovits, L., & Essell, K. P. (2017). Dual-band dual-mode textile antenna on PDMS substrate for body-centric communications. IEEE Antennas and Wireless Propagation Letters, 16, 677–680.CrossRef
16.
Zurück zum Zitat Elobaid, H. A. E., Rahim, S. K. A., Himdi, M., Castel, X., & Kasgari, M. A. (2017). A transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks. IEEE Antennas and Wireless Propagation Letters, 16, 1333–1336.CrossRef Elobaid, H. A. E., Rahim, S. K. A., Himdi, M., Castel, X., & Kasgari, M. A. (2017). A transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks. IEEE Antennas and Wireless Propagation Letters, 16, 1333–1336.CrossRef
17.
Zurück zum Zitat Balpande, S. S., & Pande, R. S. (2016). Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications. In AIP conference proceedings (Vol. 1724, p. 020099). https://doi.org/10.1063/1.4945219. Balpande, S. S., & Pande, R. S. (2016). Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications. In AIP conference proceedings (Vol. 1724, p. 020099). https://​doi.​org/​10.​1063/​1.​4945219.
18.
Zurück zum Zitat Saghlatoon, H., Björninen, T., Sydänheimo, L., Tentzeris, M. M., & Ukkonen, L. (2015). Inkjet-printed wideband planar monopole antenna on cardboard for RF energy-harvesting applications. IEEE Antennas and Wireless Propagation Letters, 14, 325–328.CrossRef Saghlatoon, H., Björninen, T., Sydänheimo, L., Tentzeris, M. M., & Ukkonen, L. (2015). Inkjet-printed wideband planar monopole antenna on cardboard for RF energy-harvesting applications. IEEE Antennas and Wireless Propagation Letters, 14, 325–328.CrossRef
19.
Zurück zum Zitat Dhone, M. D., Gawatre, P. G., & Balpande, S. S. (2018). Frequency band widening technique for cantilever-based vibration energy harvesters through dynamics of fluid motion. Materials Science for Energy Technologies, 1(1), 84–90.CrossRef Dhone, M. D., Gawatre, P. G., & Balpande, S. S. (2018). Frequency band widening technique for cantilever-based vibration energy harvesters through dynamics of fluid motion. Materials Science for Energy Technologies, 1(1), 84–90.CrossRef
21.
Zurück zum Zitat Chen, Z., et al. (2017). Stretchable conductive elastomer for wireless wearable communication applications. Scientific Reports, 7, 10958.CrossRef Chen, Z., et al. (2017). Stretchable conductive elastomer for wireless wearable communication applications. Scientific Reports, 7, 10958.CrossRef
22.
Zurück zum Zitat Moro, R., Agneessens, S., Rogier, H., & Bozzi, M. (2012). Wearable textile antenna in substrate integrated waveguide technology. Electronics Letters, 48(16), 985–987.CrossRef Moro, R., Agneessens, S., Rogier, H., & Bozzi, M. (2012). Wearable textile antenna in substrate integrated waveguide technology. Electronics Letters, 48(16), 985–987.CrossRef
23.
Zurück zum Zitat Ferreira, D., et al. (2017). Wearable textile antennas: Examining the effect of bending on their performance. IEEE Antennas and Propagation Magazine, 59(3), 54–59.CrossRef Ferreira, D., et al. (2017). Wearable textile antennas: Examining the effect of bending on their performance. IEEE Antennas and Propagation Magazine, 59(3), 54–59.CrossRef
24.
Zurück zum Zitat Jattalwar, N., Shrawankar, J., & Balpande, S. Assessment of different substrates for the design of microstrip antenna. In 2nd international conference on materials, applied physics & engineering (ICMAE), Indore, India. Jattalwar, N., Shrawankar, J., & Balpande, S. Assessment of different substrates for the design of microstrip antenna. In 2nd international conference on materials, applied physics & engineering (ICMAE), Indore, India.
25.
Zurück zum Zitat Siriya, P., Shrawankar, J. A., & Balpande, S. S. (2019). Design and development of inset feed microstrip patch antennas using various substrates. International Journal of Engineering and Advanced Technology (IJEAT), 8(5). ISSN: 2249-8958. Siriya, P., Shrawankar, J. A., & Balpande, S. S. (2019). Design and development of inset feed microstrip patch antennas using various substrates. International Journal of Engineering and Advanced Technology (IJEAT), 8(5). ISSN: 2249-8958.
26.
Zurück zum Zitat Balanis, C. A. Antenna theory: Analysis and design (3rd edn, pp. 817–820). Wiley India edition. Balanis, C. A. Antenna theory: Analysis and design (3rd edn, pp. 817–820). Wiley India edition.
27.
Zurück zum Zitat Pozar, D. M. (2012). Microwave engineering (pp. 148–149). Wiley. Pozar, D. M. (2012). Microwave engineering (pp. 148–149). Wiley.
Metadaten
Titel
Assessment of Denim and Photo Paper Substrate-Based Microstrip Antennas for Wearable Biomedical Sensing
verfasst von
Nikita Jattalwar
Suresh S. Balpande
J. A. Shrawankar
Publikationsdatum
05.08.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07665-9

Weitere Artikel der Ausgabe 3/2020

Wireless Personal Communications 3/2020 Zur Ausgabe

Neuer Inhalt