Skip to main content
Erschienen in: Wireless Personal Communications 1/2022

30.09.2021

Location-Free Void Avoidance Routing Protocol for Underwater Acoustic Sensor Networks

verfasst von: Pradeep Nazareth, B. R. Chandavarkar

Erschienen in: Wireless Personal Communications | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The field of Underwater Acoustic Sensor Networks (UASNs) is one of the emerging areas of communication due to the number of marine applications. However, UASNs face several fundamental challenges like node movement, high propagation delay, low throughput, high bit-error-rate, low bandwidth, and void-node during communication. Void-node during routing is one of the major problems during routing, which causes high end-to-end delay to route the packets to the sink. The void-node is a fundamental challenge in UASNs and directly influences the UASNs in terms of the end-to-end delay, packet loss, and reliability of the UASNs. The main objective of this paper is to design a void-aware routing protocol referred to as Location-Free Void Avoidance Routing (LFVAR) protocol. It develops void-awareness among nodes in the UASNs and prevents forwarding of the packets to void and trap nodes. Further, LFVAR capable of selecting the efficient void-recovery path for the void-nodes present in the UASNs. Thus, it aims at reducing the end-to-end delay, lower energy consumption, higher packet delivery ratio, and increasing throughput during routing. The LFVAR protocol is implemented in UnetStack and further compared with the state-of-the-art Interference-aware routing (Intar) protocol. The simulation result shows that the packets in LFVAR reach the sink 32.32 % faster, consumes 20.54 % lower energy, and 9.8 % higher packet delivery ratio than Intar.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akyildiz, I. F., Pompili, D., & Melodia, T. (2004). Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Review, 1(2), 3–8.CrossRef Akyildiz, I. F., Pompili, D., & Melodia, T. (2004). Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Review, 1(2), 3–8.CrossRef
2.
Zurück zum Zitat Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE communications magazine, 47(1), 84–89.CrossRef Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE communications magazine, 47(1), 84–89.CrossRef
3.
Zurück zum Zitat Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2017). Void-handling techniques for routing protocols in underwater sensor networks: Survey and challenges. IEEE Communications Surveys & Tutorials, 19(2), 800–827.CrossRef Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2017). Void-handling techniques for routing protocols in underwater sensor networks: Survey and challenges. IEEE Communications Surveys & Tutorials, 19(2), 800–827.CrossRef
4.
Zurück zum Zitat Shetty, S., Pai, R. M., & Pai, M. M. (2018). Energy efficient message priority based routing protocol for aquaculture applications using underwater sensor network. Wireless Personal Communications, 103(2), 1871–1894.CrossRef Shetty, S., Pai, R. M., & Pai, M. M. (2018). Energy efficient message priority based routing protocol for aquaculture applications using underwater sensor network. Wireless Personal Communications, 103(2), 1871–1894.CrossRef
5.
Zurück zum Zitat Tzu-Chiang C., Jia-Lin C., Yue-Fu T., Sha-Pai L. (2013) Greedy geographical void routing for wireless sensor networks. In Proceedings of World Academy of Science, Engineering and Technology, World Academy of Science, Engineering and Technology (WASET) (vol. 78, p. 1248). Tzu-Chiang C., Jia-Lin C., Yue-Fu T., Sha-Pai L. (2013) Greedy geographical void routing for wireless sensor networks. In Proceedings of World Academy of Science, Engineering and Technology, World Academy of Science, Engineering and Technology (WASET) (vol. 78, p. 1248).
6.
Zurück zum Zitat Kheirabadi, M. T., & Mohamad, M. M. (2013). Greedy routing in underwater acoustic sensor networks: A survey. International Journal of Distributed Sensor Networks, 9(7), 701834.CrossRef Kheirabadi, M. T., & Mohamad, M. M. (2013). Greedy routing in underwater acoustic sensor networks: A survey. International Journal of Distributed Sensor Networks, 9(7), 701834.CrossRef
7.
Zurück zum Zitat Javaid, N., Majid, A., Sher, A., Khan, W. Z., & Aalsalem, M. Y. (2018). Avoiding void holes and collisions with reliable and interference-aware routing in underwater wsns. Sensors, 18(9), 3038.CrossRef Javaid, N., Majid, A., Sher, A., Khan, W. Z., & Aalsalem, M. Y. (2018). Avoiding void holes and collisions with reliable and interference-aware routing in underwater wsns. Sensors, 18(9), 3038.CrossRef
8.
Zurück zum Zitat Erol-Kantarci, M., Mouftah, H. T., & Oktug, S. (2011). A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Communications Surveys & Tutorials, 13(3), 487–502.CrossRef Erol-Kantarci, M., Mouftah, H. T., & Oktug, S. (2011). A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Communications Surveys & Tutorials, 13(3), 487–502.CrossRef
9.
Zurück zum Zitat Noh, Y., Lee, U., Wang, P., Choi, B. S. C., & Gerla, M. (2012). VAPR: Void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12(5), 895–908.CrossRef Noh, Y., Lee, U., Wang, P., Choi, B. S. C., & Gerla, M. (2012). VAPR: Void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12(5), 895–908.CrossRef
10.
Zurück zum Zitat Xie, P., Zhou, Z., Peng, Z., Cui, J.-H., & Shi, Z. (2009). Void avoidance in three-dimensional mobile underwater sensor networks. Wireless Algorithms, Systems, and Applications (pp. 305–314). Berlin Heidelberg, Berlin, Heidelberg: Springer.CrossRef Xie, P., Zhou, Z., Peng, Z., Cui, J.-H., & Shi, Z. (2009). Void avoidance in three-dimensional mobile underwater sensor networks. Wireless Algorithms, Systems, and Applications (pp. 305–314). Berlin Heidelberg, Berlin, Heidelberg: Springer.CrossRef
11.
Zurück zum Zitat Xie, P., Zhou, Z., Nicolaou, N., See, A., Cui, J.-H., & Shi, Z. (2010). Efficient vector-based forwarding for underwater sensor networks. EURASIP Journal on Wireless Communications and Networking, 1, 195910.CrossRef Xie, P., Zhou, Z., Nicolaou, N., See, A., Cui, J.-H., & Shi, Z. (2010). Efficient vector-based forwarding for underwater sensor networks. EURASIP Journal on Wireless Communications and Networking, 1, 195910.CrossRef
12.
Zurück zum Zitat Haitao, Yu. J., & Nianmin Yao, L. (2015). An adaptive routing protocol in underwater sparse acoustic sensor networks. Ad Hoc Networks, 34, 121–143.CrossRef Haitao, Yu. J., & Nianmin Yao, L. (2015). An adaptive routing protocol in underwater sparse acoustic sensor networks. Ad Hoc Networks, 34, 121–143.CrossRef
14.
Zurück zum Zitat Lee, S., Bhattacharjee, B., & Banerjee, S. (2005). Efficient geographic routing in multihop wireless networks. In Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing (pp. 230–241) Lee, S., Bhattacharjee, B., & Banerjee, S. (2005). Efficient geographic routing in multihop wireless networks. In Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing (pp. 230–241)
15.
Zurück zum Zitat Noh, Y., Lee, U., Wang, P., Choi, B. S. C., & Gerla, M. (2013). Vapr: Void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12, 895–908.CrossRef Noh, Y., Lee, U., Wang, P., Choi, B. S. C., & Gerla, M. (2013). Vapr: Void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12, 895–908.CrossRef
17.
Zurück zum Zitat Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2016). A novel cooperative opportunistic routing scheme for underwater sensor networks. Sensors, 16(3), 297.CrossRef Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2016). A novel cooperative opportunistic routing scheme for underwater sensor networks. Sensors, 16(3), 297.CrossRef
18.
Zurück zum Zitat Barbeau M., Blouin S., Cervera G., Garcia-Alfaro J., Kranakis E. (2015) Location-free link state routing for underwater acoustic sensor networks. In 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE) (vol. 6, pp. 1544–1549). Barbeau M., Blouin S., Cervera G., Garcia-Alfaro J., Kranakis E. (2015) Location-free link state routing for underwater acoustic sensor networks. In 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE) (vol. 6, pp. 1544–1549).
19.
Zurück zum Zitat Noh, Y., Lee, U., Lee, S., Wang, P., Vieira, L. F. M., Cui, J., Gerla, M., & Kim, K. (2016). Hydrocast: Pressure routing for underwater sensor networks. IEEE Transactions on Vehicular Technology, 65(1), 333–347.CrossRef Noh, Y., Lee, U., Lee, S., Wang, P., Vieira, L. F. M., Cui, J., Gerla, M., & Kim, K. (2016). Hydrocast: Pressure routing for underwater sensor networks. IEEE Transactions on Vehicular Technology, 65(1), 333–347.CrossRef
21.
Zurück zum Zitat Alasarpanahi, H., Ayatollahitafti, V., & Gandomi, A. (2020). Energy-efficient void avoidance geographic routing protocol for underwater sensor networks. International Journal of Communication Systems, 33(6), e4218.CrossRef Alasarpanahi, H., Ayatollahitafti, V., & Gandomi, A. (2020). Energy-efficient void avoidance geographic routing protocol for underwater sensor networks. International Journal of Communication Systems, 33(6), e4218.CrossRef
22.
Zurück zum Zitat Gola, K. K., & Gupta, B. (2021). Underwater acoustic sensor networks: An energy efficient and void avoidance routing based on grey wolf optimization algorithm. Arabian Journal for Science and Engineering, 46(4), 3939–3954.CrossRef Gola, K. K., & Gupta, B. (2021). Underwater acoustic sensor networks: An energy efficient and void avoidance routing based on grey wolf optimization algorithm. Arabian Journal for Science and Engineering, 46(4), 3939–3954.CrossRef
23.
Zurück zum Zitat Rahman, Z., Hashim, F., Rasid, M. F. A., Othman, M., & Alezabi, K. A. (2020). Normalized advancement based totally opportunistic routing algorithm with void detection and avoiding mechanism for underwater wireless sensor network. IEEE Access, 8, 67484–67500.CrossRef Rahman, Z., Hashim, F., Rasid, M. F. A., Othman, M., & Alezabi, K. A. (2020). Normalized advancement based totally opportunistic routing algorithm with void detection and avoiding mechanism for underwater wireless sensor network. IEEE Access, 8, 67484–67500.CrossRef
24.
Zurück zum Zitat Mhemed, R., Comeau, F., Phillips, W., & Aslam, N. (2012). Void avoidance opportunistic routing protocol for underwater wireless sensor networks. Sensors, 21(6), 1942.CrossRef Mhemed, R., Comeau, F., Phillips, W., & Aslam, N. (2012). Void avoidance opportunistic routing protocol for underwater wireless sensor networks. Sensors, 21(6), 1942.CrossRef
25.
Zurück zum Zitat Liu, J., Yu, M., Wang, X., Liu, Y., Wei, X., & Cui, J. (2018). RECRP: An underwater reliable energy-efficient cross-layer routing protocol. Sensors, 18(12), 4148.CrossRef Liu, J., Yu, M., Wang, X., Liu, Y., Wei, X., & Cui, J. (2018). RECRP: An underwater reliable energy-efficient cross-layer routing protocol. Sensors, 18(12), 4148.CrossRef
26.
Zurück zum Zitat Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.CrossRef Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.CrossRef
27.
Zurück zum Zitat Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2015). A novel void node recovery paradigm for long-term underwater sensor networks. Ad Hoc Networks, 34, 144–156.CrossRef Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2015). A novel void node recovery paradigm for long-term underwater sensor networks. Ad Hoc Networks, 34, 144–156.CrossRef
28.
Zurück zum Zitat Melodia T., Pompili D., Akyildiz I. F. (2004) Optimal local topology knowledge for energy efficient geographical routing in sensor networks. In IEEE INFOCOM 2004 (vol. 3, pp. 1705–1716) IEEE. Melodia T., Pompili D., Akyildiz I. F. (2004) Optimal local topology knowledge for energy efficient geographical routing in sensor networks. In IEEE INFOCOM 2004 (vol. 3, pp. 1705–1716) IEEE.
31.
Zurück zum Zitat Luo, H., Wu, K., Ruby, R., Hong, F., Guo, Z., & Ni, L. M. (2017). Simulation and experimentation platforms for underwater acoustic sensor networks: Advancements and challenges. ACM Computing Surveys (CSUR), 50(2), 28. Luo, H., Wu, K., Ruby, R., Hong, F., Guo, Z., & Ni, L. M. (2017). Simulation and experimentation platforms for underwater acoustic sensor networks: Advancements and challenges. ACM Computing Surveys (CSUR), 50(2), 28.
32.
Zurück zum Zitat Chitre, M., Bhatnagar, R., & Soh, W.-S. (2014a). Unetstack: An agent-based software stack and simulator for underwater networks. In2014 Oceans-St (pp. 1–10). IEEE: John’s. Chitre, M., Bhatnagar, R., & Soh, W.-S. (2014a). Unetstack: An agent-based software stack and simulator for underwater networks. In2014 Oceans-St (pp. 1–10). IEEE: John’s.
33.
Zurück zum Zitat Chitre, M., Bhatnagar, R., Ignatius, M., & Suman, S. (2014b). Baseband signal processing with unetstack. In 2014 Underwater Communications and Networking (UComms), (pp. 1–4) Chitre, M., Bhatnagar, R., Ignatius, M., & Suman, S. (2014b). Baseband signal processing with unetstack. In 2014 Underwater Communications and Networking (UComms), (pp. 1–4)
Metadaten
Titel
Location-Free Void Avoidance Routing Protocol for Underwater Acoustic Sensor Networks
verfasst von
Pradeep Nazareth
B. R. Chandavarkar
Publikationsdatum
30.09.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09147-y

Weitere Artikel der Ausgabe 1/2022

Wireless Personal Communications 1/2022 Zur Ausgabe