Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 10/2017

28.02.2017 | Original Article

Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships

verfasst von: Nuh Hatipoglu, Gokhan Bilgin

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In many computerized methods for cell detection, segmentation, and classification in digital histopathology that have recently emerged, the task of cell segmentation remains a chief problem for image processing in designing computer-aided diagnosis (CAD) systems. In research and diagnostic studies on cancer, pathologists can use CAD systems as second readers to analyze high-resolution histopathological images. Since cell detection and segmentation are critical for cancer grade assessments, cellular and extracellular structures should primarily be extracted from histopathological images. In response, we sought to identify a useful cell segmentation approach with histopathological images that uses not only prominent deep learning algorithms (i.e., convolutional neural networks, stacked autoencoders, and deep belief networks), but also spatial relationships, information of which is critical for achieving better cell segmentation results. To that end, we collected cellular and extracellular samples from histopathological images by windowing in small patches with various sizes. In experiments, the segmentation accuracies of the methods used improved as the window sizes increased due to the addition of local spatial and contextual information. Once we compared the effects of training sample size and influence of window size, results revealed that the deep learning algorithms, especially convolutional neural networks and partly stacked autoencoders, performed better than conventional methods in cell segmentation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bengio Y (2009) Learning deep architectures for AI. Found Trend Mach Learn 2(1):1–127CrossRef Bengio Y (2009) Learning deep architectures for AI. Found Trend Mach Learn 2(1):1–127CrossRef
2.
Zurück zum Zitat Bilgin G (2013) Evaluation of spatial relations in the segmentation of histopathological images. In: IEEE 21st signal processing and communications applications conference, pp 1–4 Bilgin G (2013) Evaluation of spatial relations in the segmentation of histopathological images. In: IEEE 21st signal processing and communications applications conference, pp 1–4
3.
Zurück zum Zitat Bunyak F, Hafiane A, Palaniappan K (2011) Histopathology tissue segmentation by combining fuzzy clustering with multiphase vector level sets. In: Arabnia HR, Tran Q-N (eds) Software tools and algorithms for biological systems. Springer, Berlin, pp 413–424 Bunyak F, Hafiane A, Palaniappan K (2011) Histopathology tissue segmentation by combining fuzzy clustering with multiphase vector level sets. In: Arabnia HR, Tran Q-N (eds) Software tools and algorithms for biological systems. Springer, Berlin, pp 413–424
4.
Zurück zum Zitat Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27CrossRef Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27CrossRef
5.
Zurück zum Zitat Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Sel Top Appl 7(6):2094–2107 Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Sel Top Appl 7(6):2094–2107
6.
Zurück zum Zitat Cheng L, Ye N, Yu W, Cheah A (2012) A bag-of-words model for cellular image segmentation. In: Loménie N, Racoceanu D, Gouaillard A (eds) Advances in bio-imaging: from physics to signal understanding issues. Springer, Berlin, pp 209–222 Cheng L, Ye N, Yu W, Cheah A (2012) A bag-of-words model for cellular image segmentation. In: Loménie N, Racoceanu D, Gouaillard A (eds) Advances in bio-imaging: from physics to signal understanding issues. Springer, Berlin, pp 209–222
8.
Zurück zum Zitat Ciresan DC, Meier U, Gambardella LM, Schmidhuber J (2011) Convolutional neural network committees for handwritten character classification. In: IEEE international conference on document analysis and recognition, ICDAR’11, pp 1135–1139 Ciresan DC, Meier U, Gambardella LM, Schmidhuber J (2011) Convolutional neural network committees for handwritten character classification. In: IEEE international conference on document analysis and recognition, ICDAR’11, pp 1135–1139
9.
Zurück zum Zitat Ciresan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology images with deep neural networks. In: 16th International conference of medical image computing and computer-assisted intervention (MICCAI’13). Springer, Berlin, pp 411–418 Ciresan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology images with deep neural networks. In: 16th International conference of medical image computing and computer-assisted intervention (MICCAI’13). Springer, Berlin, pp 411–418
10.
Zurück zum Zitat Cruz-Roa A, Caicedo JC, Gonzalez FA (2011) Visual pattern mining in histology image collections using bag of features. Artif Intell Med 52(2):91–106CrossRefPubMed Cruz-Roa A, Caicedo JC, Gonzalez FA (2011) Visual pattern mining in histology image collections using bag of features. Artif Intell Med 52(2):91–106CrossRefPubMed
11.
Zurück zum Zitat Cruz-Roa A, Xu J, Madabhushi A (2015) A note on the stability and discriminability of graph-based features for classification problems in digital pathology. In: Proceedings of the SPIE, vol 9287, pp 928703–928710 Cruz-Roa A, Xu J, Madabhushi A (2015) A note on the stability and discriminability of graph-based features for classification problems in digital pathology. In: Proceedings of the SPIE, vol 9287, pp 928703–928710
12.
Zurück zum Zitat Cun L, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In: Touretzky DS (ed) Advances in neural information processing systems. Morgan Kaufmann, Los Altos, pp 396–404 Cun L, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In: Touretzky DS (ed) Advances in neural information processing systems. Morgan Kaufmann, Los Altos, pp 396–404
13.
Zurück zum Zitat Demir C, Yener B (2005) Automated cancer diagnosis based on histopathological images: a systematic survey. Rensselaer Polytechnic Institute, Technical Report Demir C, Yener B (2005) Automated cancer diagnosis based on histopathological images: a systematic survey. Rensselaer Polytechnic Institute, Technical Report
14.
Zurück zum Zitat Deng L, Yu D (2014) Deep learning: methods and applications. Found Trend Signal Process 7(3–4):197–387CrossRef Deng L, Yu D (2014) Deep learning: methods and applications. Found Trend Signal Process 7(3–4):197–387CrossRef
15.
Zurück zum Zitat Dundar MM, Badve S, Bilgin G, Raykar V, Jain R, Sertel O, Gurcan MN (2011) Computerized classification of intraductal breast lesions using histopathological images. IEEE Trans Biomed Eng 58(7):1977–1984CrossRefPubMedPubMedCentral Dundar MM, Badve S, Bilgin G, Raykar V, Jain R, Sertel O, Gurcan MN (2011) Computerized classification of intraductal breast lesions using histopathological images. IEEE Trans Biomed Eng 58(7):1977–1984CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202CrossRefPubMed Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202CrossRefPubMed
17.
Zurück zum Zitat Gelasca ED, Obara B, Fedorov D, Kvilekval K, Manjunath B (2009) A biosegmentation benchmark for evaluation of bioimage analysis methods. BMC Bioinform 10(1):1CrossRef Gelasca ED, Obara B, Fedorov D, Kvilekval K, Manjunath B (2009) A biosegmentation benchmark for evaluation of bioimage analysis methods. BMC Bioinform 10(1):1CrossRef
18.
Zurück zum Zitat Gençtav A, Aksoy S, Önder S (2012) Unsupervised segmentation and classification of cervical cell images. Pattern Recognit 45(12):4151–4168CrossRef Gençtav A, Aksoy S, Önder S (2012) Unsupervised segmentation and classification of cervical cell images. Pattern Recognit 45(12):4151–4168CrossRef
19.
Zurück zum Zitat Goodfellow I, Lee H, Le QV, Saxe A, Ng AY (2009) Measuring invariances in deep networks. In: Advances in neural information processing systems, NIPS’09, pp 646–654 Goodfellow I, Lee H, Le QV, Saxe A, Ng AY (2009) Measuring invariances in deep networks. In: Advances in neural information processing systems, NIPS’09, pp 646–654
21.
Zurück zum Zitat Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B (2009) Histopathological image analysis: a review. IEEE Rev Biomed Eng 2:147–171CrossRefPubMedPubMedCentral Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B (2009) Histopathological image analysis: a review. IEEE Rev Biomed Eng 2:147–171CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Hatipoglu N, Bilgin G (2014) Classification of histopathological images using convolutional neural network. In: IEEE 4th international conference on image processing theory, tools and applications, IPTA’14, pp 1–6 Hatipoglu N, Bilgin G (2014) Classification of histopathological images using convolutional neural network. In: IEEE 4th international conference on image processing theory, tools and applications, IPTA’14, pp 1–6
23.
Zurück zum Zitat Hatipoglu N, Bilgin G (2015) Segmentation of histopathological images with convolutional neural networks using fourier features. In: IEEE 23th signal processing and communications applications conference, SIU’2015, pp 455–458 Hatipoglu N, Bilgin G (2015) Segmentation of histopathological images with convolutional neural networks using fourier features. In: IEEE 23th signal processing and communications applications conference, SIU’2015, pp 455–458
24.
Zurück zum Zitat He L, Long LR, Antani S, Thoma GR (2012) Histology image analysis for carcinoma detection and grading. Comput Meth Prog Biol 107(3):538–556CrossRef He L, Long LR, Antani S, Thoma GR (2012) Histology image analysis for carcinoma detection and grading. Comput Meth Prog Biol 107(3):538–556CrossRef
25.
Zurück zum Zitat Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507CrossRefPubMed Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507CrossRefPubMed
26.
Zurück zum Zitat Irshad H, Montaser-Kouhsari L, Waltz G, Bucur O, Nowak J, Dong F, Knoblauch NW, Beck AH (2014) Crowdsourcing image annotation for nucleus detection and segmentation in computational pathology: evaluating experts, automated methods, and the crowd. In: Pacific symposium on biocomputing, PSB’15. NIH Public Access, pp 294–305 Irshad H, Montaser-Kouhsari L, Waltz G, Bucur O, Nowak J, Dong F, Knoblauch NW, Beck AH (2014) Crowdsourcing image annotation for nucleus detection and segmentation in computational pathology: evaluating experts, automated methods, and the crowd. In: Pacific symposium on biocomputing, PSB’15. NIH Public Access, pp 294–305
27.
Zurück zum Zitat Irshad H, Veillard A, Roux L, Racoceanu D (2014) Methods for nuclei detection, segmentation, and classification in digital histopathology: A review—current status and future potential. IEEE Rev Biomed Eng 7:97–114CrossRefPubMed Irshad H, Veillard A, Roux L, Racoceanu D (2014) Methods for nuclei detection, segmentation, and classification in digital histopathology: A review—current status and future potential. IEEE Rev Biomed Eng 7:97–114CrossRefPubMed
30.
Zurück zum Zitat Karakis R, Tez M, Guler I (2011) Classification the axillary lymph node status of breast cancer patients with the analysis of pattern recognition. In: IEEE 19th conference on signal processing and communications applications, SIU’2011, pp 988–991 Karakis R, Tez M, Guler I (2011) Classification the axillary lymph node status of breast cancer patients with the analysis of pattern recognition. In: IEEE 19th conference on signal processing and communications applications, SIU’2011, pp 988–991
31.
Zurück zum Zitat Ko B, Seo M, Nam JY (2009) Microscopic cell nuclei segmentation based on adaptive attention window. J Digit Imaging 22(3):259–274CrossRefPubMed Ko B, Seo M, Nam JY (2009) Microscopic cell nuclei segmentation based on adaptive attention window. J Digit Imaging 22(3):259–274CrossRefPubMed
32.
Zurück zum Zitat Korkmaz SA, Korkmaz MF, Poyraz M (2016) Diagnosis of breast cancer in light microscopic and mammographic images textures using relative entropy via kernel estimation. Med Biol Eng Comput 54(4):561–573CrossRefPubMed Korkmaz SA, Korkmaz MF, Poyraz M (2016) Diagnosis of breast cancer in light microscopic and mammographic images textures using relative entropy via kernel estimation. Med Biol Eng Comput 54(4):561–573CrossRefPubMed
33.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, NIPS’12, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, NIPS’12, pp 1097–1105
34.
Zurück zum Zitat Law YN, Lee HK, Ng MK, Yip AM (2012) A semisupervised segmentation model for collections of images. IEEE Trans Image Process 21(6):2955–2968CrossRefPubMed Law YN, Lee HK, Ng MK, Yip AM (2012) A semisupervised segmentation model for collections of images. IEEE Trans Image Process 21(6):2955–2968CrossRefPubMed
35.
Zurück zum Zitat LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
36.
Zurück zum Zitat LeCun Y, Kavukcuoglu K, Farabet C, et al (2010) Convolutional networks and applications in vision. In: IEEE international symposium on circuits and systems, ISCAS’10, pp 253–256 LeCun Y, Kavukcuoglu K, Farabet C, et al (2010) Convolutional networks and applications in vision. In: IEEE international symposium on circuits and systems, ISCAS’10, pp 253–256
38.
Zurück zum Zitat Lehmann TM, Gonner C, Spitzer K (1999) Survey: interpolation methods in medical image processing. IEEE Trans Med Imaging 18(11):1049–1075CrossRefPubMed Lehmann TM, Gonner C, Spitzer K (1999) Survey: interpolation methods in medical image processing. IEEE Trans Med Imaging 18(11):1049–1075CrossRefPubMed
39.
Zurück zum Zitat Li G, Liu T, Nie J, Guo L, Chen J, Zhu J, Xia W, Mara A, Holley S, Wong S (2008) Segmentation of touching cell nuclei using gradient flow tracking. J Microsc 231(1):47–58CrossRefPubMed Li G, Liu T, Nie J, Guo L, Chen J, Zhu J, Xia W, Mara A, Holley S, Wong S (2008) Segmentation of touching cell nuclei using gradient flow tracking. J Microsc 231(1):47–58CrossRefPubMed
40.
Zurück zum Zitat Li X, Plataniotis KN (2015) Color model comparative analysis for breast cancer diagnosis using H&E stained images. In: SPIE medical imaging, international society for optics and photonics, p 94200L Li X, Plataniotis KN (2015) Color model comparative analysis for breast cancer diagnosis using H&E stained images. In: SPIE medical imaging, international society for optics and photonics, p 94200L
41.
Zurück zum Zitat Naik S, Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J (2008) Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In: IEEE 5th international symposium on biomedical imaging: from nano to macro, ISBI’2008, pp 284–287 Naik S, Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J (2008) Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In: IEEE 5th international symposium on biomedical imaging: from nano to macro, ISBI’2008, pp 284–287
42.
Zurück zum Zitat Ng A, Ngiam J, Foo CY, Mai Y, Suen C (2012) Unsupervised feature learning and deep learning tutorial (online). Accessed 2016-01-07 Ng A, Ngiam J, Foo CY, Mai Y, Suen C (2012) Unsupervised feature learning and deep learning tutorial (online). Accessed 2016-01-07
43.
Zurück zum Zitat Ojansivu V, Linder N, Rahtu E, Pietikäinen M, Lundin M, Joensuu H, Lundin J (2013) Automated classification of breast cancer morphology in histopathological images. Diagn Pathol 8(1):1–4 Ojansivu V, Linder N, Rahtu E, Pietikäinen M, Lundin M, Joensuu H, Lundin J (2013) Automated classification of breast cancer morphology in histopathological images. Diagn Pathol 8(1):1–4
44.
Zurück zum Zitat Onder D, Sarioglu S, Karacali B (2013) Automated labelling of cancer textures in colorectal histopathology slides using quasi-supervised learning. Micron 47:33–42CrossRefPubMed Onder D, Sarioglu S, Karacali B (2013) Automated labelling of cancer textures in colorectal histopathology slides using quasi-supervised learning. Micron 47:33–42CrossRefPubMed
45.
Zurück zum Zitat Oquab M, Bottou L, Laptev I, Sivic J (2015) Is object localization for free?-weakly-supervised learning with convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, CVPR’15, pp 685–694 Oquab M, Bottou L, Laptev I, Sivic J (2015) Is object localization for free?-weakly-supervised learning with convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, CVPR’15, pp 685–694
46.
Zurück zum Zitat Palm RB (2012) Prediction as a candidate for learning deep hierarchical models of data. Master’s thesis, Technical University of Denmark, Palm Palm RB (2012) Prediction as a candidate for learning deep hierarchical models of data. Master’s thesis, Technical University of Denmark, Palm
48.
Zurück zum Zitat Petersen K, Nielsen M, Diao P, Karssemeijer N, Lillholm M (2014) Breast tissue segmentation and mammographic risk scoring using deep learning. In: Breast imaging: proceedings of 12th international workshop on digital mammography, IWDM’14. Springer, Berlin, pp 88–94 Petersen K, Nielsen M, Diao P, Karssemeijer N, Lillholm M (2014) Breast tissue segmentation and mammographic risk scoring using deep learning. In: Breast imaging: proceedings of 12th international workshop on digital mammography, IWDM’14. Springer, Berlin, pp 88–94
49.
Zurück zum Zitat Phung SL, Bouzerdoum A (2009) Matlab library for convolutional neural networks. Tech. rep., ICT Research Institute, Visual and Audio Signal Processing Laboratory, University of Wollongong Phung SL, Bouzerdoum A (2009) Matlab library for convolutional neural networks. Tech. rep., ICT Research Institute, Visual and Audio Signal Processing Laboratory, University of Wollongong
50.
Zurück zum Zitat Poultney C, Chopra S, Cun YL, et al (2006) Efficient learning of sparse representations with an energy-based model. In: Advances in neural information processing systems, NIPS’06, pp 1137–1144 Poultney C, Chopra S, Cun YL, et al (2006) Efficient learning of sparse representations with an energy-based model. In: Advances in neural information processing systems, NIPS’06, pp 1137–1144
51.
Zurück zum Zitat Ross NE, Pritchard CJ, Rubin DM, Dusé AG (2006) Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Med Biol Eng Comput 44(5):427–436CrossRefPubMed Ross NE, Pritchard CJ, Rubin DM, Dusé AG (2006) Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Med Biol Eng Comput 44(5):427–436CrossRefPubMed
52.
Zurück zum Zitat Saraswat M, Arya KV (2014) Feature selection and classification of leukocytes using random forest. Med Biol Eng Comput 52(12):1041–1052CrossRefPubMed Saraswat M, Arya KV (2014) Feature selection and classification of leukocytes using random forest. Med Biol Eng Comput 52(12):1041–1052CrossRefPubMed
53.
Zurück zum Zitat Veta M, van Diest PJ, Kornegoor R, Huisman A, Viergever MA, Pluim JP (2013) Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PloS ONE 8(7):e70,221CrossRef Veta M, van Diest PJ, Kornegoor R, Huisman A, Viergever MA, Pluim JP (2013) Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PloS ONE 8(7):e70,221CrossRef
54.
Zurück zum Zitat Veta M, Pluim JP, van Diest PJ, Viergever MA (2014) Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng 61(5):1400–1411CrossRefPubMed Veta M, Pluim JP, van Diest PJ, Viergever MA (2014) Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng 61(5):1400–1411CrossRefPubMed
55.
Zurück zum Zitat Wienert S, Heim D, Saeger K, Stenzinger A, Beil M, Hufnagl P, Dietel M, Denkert C, Klauschen F (2012) Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach. Sci Rep 2:503CrossRefPubMedPubMedCentral Wienert S, Heim D, Saeger K, Stenzinger A, Beil M, Hufnagl P, Dietel M, Denkert C, Klauschen F (2012) Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach. Sci Rep 2:503CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Wittenberg T, Grobe M, Munzenmayer C, Kuziela H, Spinnler K (2004) A semantic approach to segmentation of overlapping objects. Method Inform Med 43(4):343–353 Wittenberg T, Grobe M, Munzenmayer C, Kuziela H, Spinnler K (2004) A semantic approach to segmentation of overlapping objects. Method Inform Med 43(4):343–353
57.
Zurück zum Zitat Xu J, Luo X, Wang G, Gilmore H, Madabhushi A (2016) A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191:214–223CrossRefPubMedPubMedCentral Xu J, Luo X, Wang G, Gilmore H, Madabhushi A (2016) A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191:214–223CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Xu Y, Zhu JY, Eric I, Chang C, Lai M, Tu Z (2014) Weakly supervised histopathology cancer image segmentation and classification. Med Image Anal 18(3):591–604CrossRefPubMed Xu Y, Zhu JY, Eric I, Chang C, Lai M, Tu Z (2014) Weakly supervised histopathology cancer image segmentation and classification. Med Image Anal 18(3):591–604CrossRefPubMed
Metadaten
Titel
Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships
verfasst von
Nuh Hatipoglu
Gokhan Bilgin
Publikationsdatum
28.02.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 10/2017
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-017-1630-1

Weitere Artikel der Ausgabe 10/2017

Medical & Biological Engineering & Computing 10/2017 Zur Ausgabe

Premium Partner