Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 13/2013

01.12.2013

Numerical Simulation of Pressure Infiltration Process for Making Metal Matrix Composites Using Dual-Scale Fabrics

verfasst von: Bo Wang, Krishna M. Pillai

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 13/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Correct modeling of flow and solidification of metal melt in the pressure infiltration process (PIP) is important for accurate simulation and process optimization of the mold-filling process during the making of metal matrix composites. The fiber reinforcements used in this process often consist of fiber tows or bundles that are woven, stitched, or braided to create a dual-scale preform. The physics of melt flow in the dual-scale preform is very different from that in a single-scale preform created from a random distribution of fibers. As a result, the previous PIP simulations, which treat the preform as being single scale, are inaccurate. A pseudo dual-scale approach is presented where the melt flow through such dual-scale porous media is modeled using the conventional single-scale approach using two distinctly different permeabilities in tows and gaps. A three-dimensional finite difference model is developed to model the flow of molten metal in the dual- and single-scale preforms. To track the fluid front during the mold filling and infiltration, the volume of fluid method is used. A source-based method is used to deal with transient heat transfer and phase changes. The computational code is validated against an analytical solution and a published result. Subsequent study reveals that infiltration of an idealized dual-scale preform is marked by irregular flow fronts and an unsaturated region behind the front due to the formation of gas pockets inside fiber tows. Unlike the single-scale preform characterized by sharp temperature gradients near mold walls, the dual-scale preforms are marked by surging of high-temperature melts between tows and by the presence of sharp gradients on the gap-tow interfaces. The parameters such as the (gap-tow) permeability ratio, the (gap-tow) pore volume ratio, and the inlet pressure have a strong influence on the formation of the saturated region in the dual-scale preform.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Preform is another name for the near-net-shape reinforcement “package” inserted in a PIP mold.
 
2
A true dual-scale approach will involve formulating a set of macroscopic governing equations for the inter-tow (gap) flows and coupling them with the intra-tow flows using the volume-averaging method, as was done in References 9 and 10.
 
3
A contact angle greater than 90 deg for (liquid metal + fiber) system is responsible for the non-wetting nature of the liquid metal and is responsible for significant porosity in MMCs produced using PIP.
 
4
In the tow region packed with aligned fibers, the permeability tensor will be transversely isotropic, i.e., its value along the fiber will be different from its value in the plane perpendicular to the fiber axis.
 
5
In the isotropic gap region, K x  = K y  = K z .
 
6
A phase average is the volumetric integral of a flow quantity within an averaging volume divided by the total averaging volume. An intrinsic phase average, on the other hand, is the volumetric integral of a flow quantity within an averaging volume divided by the pore volume within the averaging volume. See[49] for a description of the phase-average and intrinsic phase-average quantities in porous media.
 
7
Henceforth, the term pressure will mean the pore-averaged pressure, while the term velocity will stand for the Darcy or phase-averaged velocity.
 
8
The behavior of air pockets formed in dual-scale porous media will perhaps be more complicated than what is presumed here. During infiltration, the trapped gas pockets have a tendency to wriggle out of tows, move very quickly through the gaps, and while moving have a tendency to spilt or merge with other air pockets.[10] However, if the travel of the open flow front through the mold is not significant, then such a behavior may not be seen and the gas pockets inside tows model will perhaps be adequate.
 
9
A slight difference between the analytical and numerical solutions may be attributed to the fudging of flow fronts as predicted by the VOF method.
 
10
The dissolution of the gases is possible when the gas pressure rises beyond the saturated vapor pressures of its various components. Flushing down of gas pockets is also possible if the gas pressure rises beyond a critical pressure that facilitates the movement of the pocket after sufficient shrinkage. Both these phenomena have not been incorporated in our present numerical simulation.
 
11
The existence of such sharp temperature gradient may result in the formation of columnar coarse grains, while the rest of the solidification region may be characterized by the equiaxed fine grains.
 
12
Note that the global tow saturation seems to converge to about 0.7 when the permeability ratio is going to infinity (Figure 17); rather one would expect it to converge to zero, if the tows are perfectly impermeable. We did quite a few simulations with varying grid densities to resolve this issue, but were unsuccessful. It seems that this problem of liquid going inside the tows even when the permeability of tows is much smaller than that of gaps is related to the fudging or diffusing of flow fronts by the use of the VOF method. This is perhaps the reason why the tows cannot be perfectly dry when the permeability ratio is going to infinity. Hence, this effect is essentially a weakness of the numerical scheme chosen to model tow impregnation by the liquid metal.
 
Literatur
1.
Zurück zum Zitat Chawla N, Chawla KK. Metal Matrix Composites. Springer-Verlag, New York, NY, 2005: 351-401. Chawla N, Chawla KK. Metal Matrix Composites. Springer-Verlag, New York, NY, 2005: 351-401.
2.
Zurück zum Zitat Suresh S, Mortensen A, Needleman A. Fundamentals of Metal-Matrix Composites. Butterworth-Heinemann, Stoneham, MA, 1993: 3-41. Suresh S, Mortensen A, Needleman A. Fundamentals of Metal-Matrix Composites. Butterworth-Heinemann, Stoneham, MA, 1993: 3-41.
3.
Zurück zum Zitat Mortensen A, Michaud VJ, Flemings MC. Pressure-Infiltration Processing of Reinforced Aluminum. JOM, 1993, (1): 36-43. Mortensen A, Michaud VJ, Flemings MC. Pressure-Infiltration Processing of Reinforced Aluminum. JOM, 1993, (1): 36-43.
4.
Zurück zum Zitat Cook AJ, Werner PS, Pressure infiltration casting of metal matrix composites, Materials science and engineering, A144(1991) 189-206. Cook AJ, Werner PS, Pressure infiltration casting of metal matrix composites, Materials science and engineering, A144(1991) 189-206.
5.
Zurück zum Zitat Parnas RS: Liquid Composite Molding, Hanser Publications, Cincinnati, 2000. Parnas RS: Liquid Composite Molding, Hanser Publications, Cincinnati, 2000.
6.
Zurück zum Zitat Zhou F, Alms J, Advani S. A closed form solution for flow in dual scale fibrous porous media under constant injection pressure conditions. Compos Sci Technol. 2008; 68(3-4): 699-708.CrossRef Zhou F, Alms J, Advani S. A closed form solution for flow in dual scale fibrous porous media under constant injection pressure conditions. Compos Sci Technol. 2008; 68(3-4): 699-708.CrossRef
7.
Zurück zum Zitat Pillai KM. Modeling the unsaturated flow in liquid composite molding processes a review and some thoughts. J Compos Mater. 2004; 38(23): 2097-2118.CrossRef Pillai KM. Modeling the unsaturated flow in liquid composite molding processes a review and some thoughts. J Compos Mater. 2004; 38(23): 2097-2118.CrossRef
8.
Zurück zum Zitat H. Tan and K.M. Pillai. Fast liquid composite molding simulation of unsaturated flow in dual-scale fiber mats using the imbibition characteristics of a fabric-based unit cell. Polymer Composites. 2010; 31(10): 1790-1807.CrossRef H. Tan and K.M. Pillai. Fast liquid composite molding simulation of unsaturated flow in dual-scale fiber mats using the imbibition characteristics of a fabric-based unit cell. Polymer Composites. 2010; 31(10): 1790-1807.CrossRef
12.
Zurück zum Zitat Binetruy C, Hilaire B, Pabiot J. Interactions between flows occurring inside and outside fabric tows during RTM. Compos Sci Technol. 1997; 57(5): 587-96.CrossRef Binetruy C, Hilaire B, Pabiot J. Interactions between flows occurring inside and outside fabric tows during RTM. Compos Sci Technol. 1997; 57(5): 587-96.CrossRef
13.
Zurück zum Zitat Kuentzer N, Simacek P, Advani S G, Walsh S. Permeability characterization of dual scale fibrous porous media. Composites Part A. 2006; 37(11): 2057-68.CrossRef Kuentzer N, Simacek P, Advani S G, Walsh S. Permeability characterization of dual scale fibrous porous media. Composites Part A. 2006; 37(11): 2057-68.CrossRef
14.
Zurück zum Zitat Tan H, Roy T, Pillai KM. Variations in unsaturated flow with flow direction in resin transfer molding: an experimental investigation. Composites Part A. 2007; 38(8): 1872-92.CrossRef Tan H, Roy T, Pillai KM. Variations in unsaturated flow with flow direction in resin transfer molding: an experimental investigation. Composites Part A. 2007; 38(8): 1872-92.CrossRef
15.
Zurück zum Zitat Parnas RS, Phelan Jr FR. Effect of heterogeneous porous media on mold filling in resin transfer molding. SAMPE Quart. 1991; 22(2): 53-60. Parnas RS, Phelan Jr FR. Effect of heterogeneous porous media on mold filling in resin transfer molding. SAMPE Quart. 1991; 22(2): 53-60.
16.
Zurück zum Zitat Pillai KM, Advani SG. A model for unsaturated flow in woven fiber preforms during mold filling in resin transfer molding. J Compos Mater. 1998; 32(19): 1753-83.CrossRef Pillai KM, Advani SG. A model for unsaturated flow in woven fiber preforms during mold filling in resin transfer molding. J Compos Mater. 1998; 32(19): 1753-83.CrossRef
17.
Zurück zum Zitat K.M. Pillai: Compos. A Appl. Sci. Manuf., 2002, vol. 33(7), pp. 1007-19.CrossRef K.M. Pillai: Compos. A Appl. Sci. Manuf., 2002, vol. 33(7), pp. 1007-19.CrossRef
18.
Zurück zum Zitat K.M. Pillai and M.S. Munagavalasa: Compos. A Appl. Sci. Manuf., 2004, vol. 35(4), pp. 403-15.CrossRef K.M. Pillai and M.S. Munagavalasa: Compos. A Appl. Sci. Manuf., 2004, vol. 35(4), pp. 403-15.CrossRef
19.
Zurück zum Zitat Wang Y, Grove SM. Modelling microscopic flow in woven fabric reinforcements and its application in dual-scale resin infusion modeling. Composites Part A. 2008; 39(5): 843-55.CrossRef Wang Y, Grove SM. Modelling microscopic flow in woven fabric reinforcements and its application in dual-scale resin infusion modeling. Composites Part A. 2008; 39(5): 843-55.CrossRef
20.
Zurück zum Zitat Mortrensen A, Masur LJ, Cornie JA, Flemings MC. Infiltration of fibrous preforms by a pure metal Part 1 theory. Metallurgical Transactions A. 1989; 20A: 2535-47. Mortrensen A, Masur LJ, Cornie JA, Flemings MC. Infiltration of fibrous preforms by a pure metal Part 1 theory. Metallurgical Transactions A. 1989; 20A: 2535-47.
21.
Zurück zum Zitat Young WB. 3-dimensional nonisothermal mold filling simulations in resin transfer molding. Polym Compos. 1994; 15(2): 118-27.CrossRef Young WB. 3-dimensional nonisothermal mold filling simulations in resin transfer molding. Polym Compos. 1994; 15(2): 118-27.CrossRef
22.
Zurück zum Zitat Kang MK, Lee WI. A flow-front refinement technique for the numerical simulation of the resin-transfer molding process. Compos Sci Technol. 1999; 59(11): 1663-74.CrossRef Kang MK, Lee WI. A flow-front refinement technique for the numerical simulation of the resin-transfer molding process. Compos Sci Technol. 1999; 59(11): 1663-74.CrossRef
23.
Zurück zum Zitat Bruschke MV, Advani SG. A numerical approach to model nonisothermal viscous-flow through fibrous media with free surfaces. Int. J. Numer. Methods Fluids. 1994; 19(7): 575-603.CrossRef Bruschke MV, Advani SG. A numerical approach to model nonisothermal viscous-flow through fibrous media with free surfaces. Int. J. Numer. Methods Fluids. 1994; 19(7): 575-603.CrossRef
24.
Zurück zum Zitat Liu XL. Isothermal flow simulation of liquid composite molding. Composites Part A. 2000; 31(12): 1295-302.CrossRef Liu XL. Isothermal flow simulation of liquid composite molding. Composites Part A. 2000; 31(12): 1295-302.CrossRef
25.
Zurück zum Zitat Lam YC, Joshi SC, Liu XL. Numerical simulation of the mould-filling process in resin-transfer moulding. Compos Sci Technol. 2000; 60(6): 845-55.CrossRef Lam YC, Joshi SC, Liu XL. Numerical simulation of the mould-filling process in resin-transfer moulding. Compos Sci Technol. 2000; 60(6): 845-55.CrossRef
26.
Zurück zum Zitat Joshi SC, Lam YC, Liu XL. Mass conservation in numerical simulation of resin flow. Compos Part A. 2000; 31(10): 1061-8.CrossRef Joshi SC, Lam YC, Liu XL. Mass conservation in numerical simulation of resin flow. Compos Part A. 2000; 31(10): 1061-8.CrossRef
27.
Zurück zum Zitat Shojaei A, Ghaffarian SR, Karimian SMH. Numerical simulation of three-dimensional mold filling process in resin transfer molding using quasi-steady state and partial saturation formulations. Compos Sci Technol. 2002; 62(6): 861-79.CrossRef Shojaei A, Ghaffarian SR, Karimian SMH. Numerical simulation of three-dimensional mold filling process in resin transfer molding using quasi-steady state and partial saturation formulations. Compos Sci Technol. 2002; 62(6): 861-79.CrossRef
28.
Zurück zum Zitat Kuan YD, El-Gizawy AS. Numerical characterization of mold injection in resin transfer molding process. Adv Polym Technol. 2000; 19(3): 173-9.CrossRef Kuan YD, El-Gizawy AS. Numerical characterization of mold injection in resin transfer molding process. Adv Polym Technol. 2000; 19(3): 173-9.CrossRef
29.
Zurück zum Zitat Voller VR, Peng S. An algorithm for analysis of polymer filling of molds. Polym Eng Sci. 1995; 35(22): 1758-65.CrossRef Voller VR, Peng S. An algorithm for analysis of polymer filling of molds. Polym Eng Sci. 1995; 35(22): 1758-65.CrossRef
30.
Zurück zum Zitat Lin M, Hahn HT, Huh H. A finite element simulation of resin transfer molding based on partial nodal saturation and implicit time integration. Compos Pt A-Appl Sci Manuf. 1998; 29(5-6): 541-50.CrossRef Lin M, Hahn HT, Huh H. A finite element simulation of resin transfer molding based on partial nodal saturation and implicit time integration. Compos Pt A-Appl Sci Manuf. 1998; 29(5-6): 541-50.CrossRef
31.
Zurück zum Zitat J. Xie, R.S. Amano, P.M.M. Das, and P.K. Rohatgi: 2005 ASME Summer Heat Transf. Conf., 2005, pp. 213–20. J. Xie, R.S. Amano, P.M.M. Das, and P.K. Rohatgi: 2005 ASME Summer Heat Transf. Conf., 2005, pp. 213–20.
32.
Zurück zum Zitat Mortensen A, Michaud V. Infiltration of fiebr preforms by a binary alloy: Part I. Theory. Metallurgical Transactions A. 1990; 21A: 2059-72. Mortensen A, Michaud V. Infiltration of fiebr preforms by a binary alloy: Part I. Theory. Metallurgical Transactions A. 1990; 21A: 2059-72.
33.
Zurück zum Zitat Jarry P, Michaud VJ, Mortensen A, Dubus A, Tirardcollet R. Infiltration of fiebr preforms by an alloy: Part 3. Die-casting experiments. Metallurgical Transactions A. 1992; 23A: 2281-9. Jarry P, Michaud VJ, Mortensen A, Dubus A, Tirardcollet R. Infiltration of fiebr preforms by an alloy: Part 3. Die-casting experiments. Metallurgical Transactions A. 1992; 23A: 2281-9.
34.
Zurück zum Zitat Michaud VJ, Mortensen A. Infiltration of fiebr preforms by a binary alloy: Part 2. Further Theory and experiments. Metallurgical Transactions A. 1992, vol. 23A, pp. 2263-80. Michaud VJ, Mortensen A. Infiltration of fiebr preforms by a binary alloy: Part 2. Further Theory and experiments. Metallurgical Transactions A. 1992, vol. 23A, pp. 2263-80.
35.
Zurück zum Zitat Sommer JL, Mortensen A. Forced unidirectional infiltration of deformable porous media. J Fluid Mech. 1996; 311: 193-217.CrossRef Sommer JL, Mortensen A. Forced unidirectional infiltration of deformable porous media. J Fluid Mech. 1996; 311: 193-217.CrossRef
36.
Zurück zum Zitat V.J. Michaud, J.L. Sommer, A. Mortensen: Metall. Mater. Trans. A. 1999, vol. 30, pp. 471-82.CrossRef V.J. Michaud, J.L. Sommer, A. Mortensen: Metall. Mater. Trans. A. 1999, vol. 30, pp. 471-82.CrossRef
37.
Zurück zum Zitat Michaud V, Mortensen A. Infiltration processing of fibre reinforced composites governing phenomena. Compos Pt A-Appl Sci Manuf. 2001;32:981-96.CrossRef Michaud V, Mortensen A. Infiltration processing of fibre reinforced composites governing phenomena. Compos Pt A-Appl Sci Manuf. 2001;32:981-96.CrossRef
38.
Zurück zum Zitat Andrews RM, Mortensen A. Lorentz force infiltration of fibrous preforms. Metallurgical Transactions A. 1991; 22A: 2903-15. Andrews RM, Mortensen A. Lorentz force infiltration of fibrous preforms. Metallurgical Transactions A. 1991; 22A: 2903-15.
39.
Zurück zum Zitat Lacoste E, Danis M, Girot F, Quenisset JM. Numerical-simulation of the injection-molding of thin parts by liquid-metal infiltration of fibrous preforms. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 1991; 135: 45-9.CrossRef Lacoste E, Danis M, Girot F, Quenisset JM. Numerical-simulation of the injection-molding of thin parts by liquid-metal infiltration of fibrous preforms. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 1991; 135: 45-9.CrossRef
40.
Zurück zum Zitat Lacoste E, Aboulfatah M, Danis M, Girot F. Numerical-simulation of the infiltration of fibrous preforms by a pure metal. Metallurgical Transactions A. 1993; 24A: 2667-78. Lacoste E, Aboulfatah M, Danis M, Girot F. Numerical-simulation of the infiltration of fibrous preforms by a pure metal. Metallurgical Transactions A. 1993; 24A: 2667-78.
41.
Zurück zum Zitat Mantaux O, Lacoste E, Danis M. Heat-conduction with phase-change in a pure substance - resolution formulated with temperature terms. Rev Gen Therm. 1995; 34(402): 339-47. Mantaux O, Lacoste E, Danis M. Heat-conduction with phase-change in a pure substance - resolution formulated with temperature terms. Rev Gen Therm. 1995; 34(402): 339-47.
42.
Zurück zum Zitat Lacoste E, Mantaux O, Danis M. Numerical simulation of metal matrix composites and polymer matrix composites processing by infiltration: a review. Compos Pt A-Appl Sci Manuf. 2002; 33(12): 1605-14.CrossRef Lacoste E, Mantaux O, Danis M. Numerical simulation of metal matrix composites and polymer matrix composites processing by infiltration: a review. Compos Pt A-Appl Sci Manuf. 2002; 33(12): 1605-14.CrossRef
43.
Zurück zum Zitat Lacoste E, Arvieu C, Afzali MS, Quenisset JM. Heat and mass transfer modeling and simulation during liquid route processing of SiC/Ti filamentary composites. Numerical Heat Transfer Part A. 2009; 56: 709-26.CrossRef Lacoste E, Arvieu C, Afzali MS, Quenisset JM. Heat and mass transfer modeling and simulation during liquid route processing of SiC/Ti filamentary composites. Numerical Heat Transfer Part A. 2009; 56: 709-26.CrossRef
44.
Zurück zum Zitat Tong X, Khan JA. Infiltration and solidification remelting of a pure metal in a two-dimensional porous preform. J Heat Transf-Trans ASME. 1996; 118(1): 173-80.CrossRef Tong X, Khan JA. Infiltration and solidification remelting of a pure metal in a two-dimensional porous preform. J Heat Transf-Trans ASME. 1996; 118(1): 173-80.CrossRef
45.
Zurück zum Zitat Khan JA, Tong XL. Unidirectional infiltration and solidification/remelting of Al-Cu alloy. J Thermophys Heat Transf. 1998; 12(1): 100-6.CrossRef Khan JA, Tong XL. Unidirectional infiltration and solidification/remelting of Al-Cu alloy. J Thermophys Heat Transf. 1998; 12(1): 100-6.CrossRef
46.
Zurück zum Zitat Lee E-K, Amano RS, Rohatgi PK. Metal matrix composite solidification in the presence of cooled fibers: numerical simulation and experimental observation. Heat and Mass Transfer. 2006; 43(8): 741-8.CrossRef Lee E-K, Amano RS, Rohatgi PK. Metal matrix composite solidification in the presence of cooled fibers: numerical simulation and experimental observation. Heat and Mass Transfer. 2006; 43(8): 741-8.CrossRef
47.
Zurück zum Zitat Jung CK, Jang JH, Han KS. Numerical simulation of infiltration and solidification processes for squeeze cast al composites with parametric study. Metall Mater Trans A-Phys Metall Mater Sci. 2008; 39A: 2736-48.CrossRef Jung CK, Jang JH, Han KS. Numerical simulation of infiltration and solidification processes for squeeze cast al composites with parametric study. Metall Mater Trans A-Phys Metall Mater Sci. 2008; 39A: 2736-48.CrossRef
48.
Zurück zum Zitat C.S. Marchi, M. Kouzeli, A. Miserez, B. Moser, A. Rossoll, L. Weber, and A. Mortensen: Gas-pressure metal infiltration. Invited talk: ICETS-2000 ISAM, Beijing, China, 2000, pp. 1–9. C.S. Marchi, M. Kouzeli, A. Miserez, B. Moser, A. Rossoll, L. Weber, and A. Mortensen: Gas-pressure metal infiltration. Invited talk: ICETS-2000 ISAM, Beijing, China, 2000, pp. 1–9.
49.
Zurück zum Zitat Stephen W. The method of volume averaging. New York: Kluwer Academic Publishers; 1999. Stephen W. The method of volume averaging. New York: Kluwer Academic Publishers; 1999.
50.
Zurück zum Zitat K.M. Pillai and S.G. Advani: J. Colloid Interface Sci., 1996, vol. 183(1), pp. 100-110.CrossRef K.M. Pillai and S.G. Advani: J. Colloid Interface Sci., 1996, vol. 183(1), pp. 100-110.CrossRef
51.
Zurück zum Zitat Reza M, Pillai KM, Varanasi PP. Darcy’s law-based models for liquid absorption in polymer wicks. AIChE Journal. 2007; 53(11): 2769-82.CrossRef Reza M, Pillai KM, Varanasi PP. Darcy’s law-based models for liquid absorption in polymer wicks. AIChE Journal. 2007; 53(11): 2769-82.CrossRef
52.
Zurück zum Zitat M. Reza and K.M. Pillai: J. Porous Media, 2012, vol. 15(8), pp. 775–83.CrossRef M. Reza and K.M. Pillai: J. Porous Media, 2012, vol. 15(8), pp. 775–83.CrossRef
53.
Zurück zum Zitat A. Mortensen: Solidification of Metal Matrix Composites, P. Rohatgi, ed., TMS, Warrendale, PA, 1989, pp. 1–19. A. Mortensen: Solidification of Metal Matrix Composites, P. Rohatgi, ed., TMS, Warrendale, PA, 1989, pp. 1–19.
54.
Zurück zum Zitat Grbart BR. Permeability of unidirectional reinforcements for RTM. J Compos Mater. 1992; 26: 1100-1133.CrossRef Grbart BR. Permeability of unidirectional reinforcements for RTM. J Compos Mater. 1992; 26: 1100-1133.CrossRef
55.
Zurück zum Zitat Kaviany M. Principles of heat transfer in porous media, Springer, New York, 1995.CrossRef Kaviany M. Principles of heat transfer in porous media, Springer, New York, 1995.CrossRef
56.
Zurück zum Zitat Patankar SV. Numerical heat transfer and fluid flow, Hemisphere, Washington, DC., 1980. Patankar SV. Numerical heat transfer and fluid flow, Hemisphere, Washington, DC., 1980.
Metadaten
Titel
Numerical Simulation of Pressure Infiltration Process for Making Metal Matrix Composites Using Dual-Scale Fabrics
verfasst von
Bo Wang
Krishna M. Pillai
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 13/2013
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-013-1955-9

Weitere Artikel der Ausgabe 13/2013

Metallurgical and Materials Transactions A 13/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.