Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 3/2016

04.01.2016

Numerical Simulation of Three-Dimensional Dendritic Growth of Alloy: Part I—Model Development and Test

verfasst von: Weiling Wang, Sen Luo, Miaoyong Zhu

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To improve the computational efficiency of the three-dimensional (3D) cellular-automaton–finite-volume-method (CA-FVM) model for describing the dendritic growth of alloy, the block-correction technique (BCT) and the parallel computation approach are introduced. Accordingly, a serial of investigations on the efficiency of the optimized codes in dealing with the designed cases for the melt flow and the heat transfer problems is carried out. Moreover, the accuracy of the present codes is evaluated by the comparisons between the solution to the melt flow and the heat transfer problems and the results from analytical equations and the commercial software. Additionally, the capability of the present CA model is evaluated by comparing the steady growth parameters of the equiaxed dendritic tip and the morphology and the secondary dendrite arm spacing (SDAS) of columnar dendrites with the LGK analytical model and the experimental results of the unidirectional solidification of high-carbon steels. The results show that with the introduction of the 3D BCT, the iteration process of the serial tri-diagonal matrix algorithm (TDMA) code changes from the fluctuation type to the smooth one, and thus, the computational cost is reduced significantly. Moreover, the parallel Jacobi code with one two-dimensional (2D) iteration in 3D BCT is proved to be the most efficient one among the codes compiled in the present work, and therefore, accordingly it is employed to simulate the 3D dendritic growth of alloys. The calculated velocity distribution and temperature variation agree well with the results from the analytical equations and the commercial software. The predicted steady tip velocities agree with the LGK analytical model as the undercooling is 6 K to 7 K. Moreover, the predicted columnar dendritic morphology and SDAS of high-carbon Fe-C alloys during the unidirectional solidification agree with the experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Presoly, R. Pierer, and C. Bernhard: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5377-88.CrossRef P. Presoly, R. Pierer, and C. Bernhard: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5377-88.CrossRef
2.
Zurück zum Zitat P.D. Lee, R.C. Atwood, R.J. Dashwood, and H. Nagaumi: Mater. Sci. Eng. A, 2002, vol. 328, pp. 213-22.CrossRef P.D. Lee, R.C. Atwood, R.J. Dashwood, and H. Nagaumi: Mater. Sci. Eng. A, 2002, vol. 328, pp. 213-22.CrossRef
4.
Zurück zum Zitat A. Bogno, H. Nguyen-Thi, G. Reinhart, B. Billia, and J. Baruchel: Acta Mater., 2013, vol. 61, pp. 1303-15.CrossRef A. Bogno, H. Nguyen-Thi, G. Reinhart, B. Billia, and J. Baruchel: Acta Mater., 2013, vol. 61, pp. 1303-15.CrossRef
5.
Zurück zum Zitat H. Yasuda, Y. Yamamoto, N. Nakatsuka, M. Yoshiya, T. Nagira, A. Sugiyama, I. Ohnaka, K. Uesugi, and K. Umetani: Int. J. Cast Met. Res., 2009, vol. 22, pp. 15-21.CrossRef H. Yasuda, Y. Yamamoto, N. Nakatsuka, M. Yoshiya, T. Nagira, A. Sugiyama, I. Ohnaka, K. Uesugi, and K. Umetani: Int. J. Cast Met. Res., 2009, vol. 22, pp. 15-21.CrossRef
6.
Zurück zum Zitat H. Yasuda, T. Nagira, M. Yoshiya, N. Nakatsuka, A. Sugiyama, K. Uesugi, and K. Umetani: ISIJ Int., 2011, vol. 51, pp. 402-8.CrossRef H. Yasuda, T. Nagira, M. Yoshiya, N. Nakatsuka, A. Sugiyama, K. Uesugi, and K. Umetani: ISIJ Int., 2011, vol. 51, pp. 402-8.CrossRef
7.
Zurück zum Zitat M.F. Zhu, S.Y. Pan, D.K. Sun, and H.L. Zhao: ISIJ Int., 2010, vol. 50, pp. 1851-8.CrossRef M.F. Zhu, S.Y. Pan, D.K. Sun, and H.L. Zhao: ISIJ Int., 2010, vol. 50, pp. 1851-8.CrossRef
8.
Zurück zum Zitat J.H. Zhao, L. Li, and X.F. Zhang: Acta. Metall. Sin., 2014, vol. 50, pp. 641-51. J.H. Zhao, L. Li, and X.F. Zhang: Acta. Metall. Sin., 2014, vol. 50, pp. 641-51.
9.
Zurück zum Zitat K. Reuther and M. Rettenmayr: Comput. Mater. Sci., 2014, vol. 95, pp. 213-20.CrossRef K. Reuther and M. Rettenmayr: Comput. Mater. Sci., 2014, vol. 95, pp. 213-20.CrossRef
11.
Zurück zum Zitat N. Al-Rawahi and G. Tryggvason: J. Comput. Phys., 2004, vol. 194, pp. 677-96.CrossRef N. Al-Rawahi and G. Tryggvason: J. Comput. Phys., 2004, vol. 194, pp. 677-96.CrossRef
12.
13.
Zurück zum Zitat W.L. George and J.A. Warren: J. Comput. Phys., 2002, vol. 177, pp. 264-83.CrossRef W.L. George and J.A. Warren: J. Comput. Phys., 2002, vol. 177, pp. 264-83.CrossRef
14.
Zurück zum Zitat J.H. Jeong, N. Goldenfeld, and J.A. Dantzig: Phys. Rev. E, 2001, vol. 64, p. 041602.CrossRef J.H. Jeong, N. Goldenfeld, and J.A. Dantzig: Phys. Rev. E, 2001, vol. 64, p. 041602.CrossRef
15.
Zurück zum Zitat Y. Lu, C. Beckermann, and J.C. Ramirez: J. Cryst. Growth, 2005, vol. 280, pp. 320-34.CrossRef Y. Lu, C. Beckermann, and J.C. Ramirez: J. Cryst. Growth, 2005, vol. 280, pp. 320-34.CrossRef
16.
17.
Zurück zum Zitat C.C. Chen and C.W. Lan: J. Cryst. Growth, 2010, vol. 312, pp. 1437-42.CrossRef C.C. Chen and C.W. Lan: J. Cryst. Growth, 2010, vol. 312, pp. 1437-42.CrossRef
18.
Zurück zum Zitat C.C. Chen, Y.L. Tsai, and C.W. Lan: Int. J. Heat Mass Transf., 2009, vol. 52, pp. 1158-66.CrossRef C.C. Chen, Y.L. Tsai, and C.W. Lan: Int. J. Heat Mass Transf., 2009, vol. 52, pp. 1158-66.CrossRef
19.
Zurück zum Zitat H.K. Lin, C.C. Chen, and C.W. Lan: J. Cryst. Growth, 2011, vol. 318, pp. 51-4.CrossRef H.K. Lin, C.C. Chen, and C.W. Lan: J. Cryst. Growth, 2011, vol. 318, pp. 51-4.CrossRef
20.
Zurück zum Zitat D.P. Zhao, T. Jing, and B.C. Liu: Acta Phys. Sin., 2003, vol. 52, pp. 1737-42. D.P. Zhao, T. Jing, and B.C. Liu: Acta Phys. Sin., 2003, vol. 52, pp. 1737-42.
21.
Zurück zum Zitat H.Z. Zhao, T. Jing, and B.C. Liu: Acta. Metall. Sin., 2005, vol. 41, pp. 491-5. H.Z. Zhao, T. Jing, and B.C. Liu: Acta. Metall. Sin., 2005, vol. 41, pp. 491-5.
22.
Zurück zum Zitat Y. Shibuta, M. Ohno, and T. Takaki: JOM, 2015, vol. 67, pp. 1793-804.CrossRef Y. Shibuta, M. Ohno, and T. Takaki: JOM, 2015, vol. 67, pp. 1793-804.CrossRef
23.
Zurück zum Zitat C.S. Zhu, J.F. Jia, L. Feng, R.Z. Xiao, and R.H. Dong: Comput. Mater. Sci., 2014, vol. 91, pp. 146-52.CrossRef C.S. Zhu, J.F. Jia, L. Feng, R.Z. Xiao, and R.H. Dong: Comput. Mater. Sci., 2014, vol. 91, pp. 146-52.CrossRef
24.
Zurück zum Zitat Y. Zhao, R.S. Qin, and D.F. Chen: J. Cryst. Growth, 2013, vol. 377, pp. 72-7.CrossRef Y. Zhao, R.S. Qin, and D.F. Chen: J. Cryst. Growth, 2013, vol. 377, pp. 72-7.CrossRef
25.
Zurück zum Zitat Y. Zhao, D.F. Chen, M.J. Long, T.T. Arif, and R.S. Qin: Metall. Mater. Trans. B, 2014, vol. 45, pp. 719-25.CrossRef Y. Zhao, D.F. Chen, M.J. Long, T.T. Arif, and R.S. Qin: Metall. Mater. Trans. B, 2014, vol. 45, pp. 719-25.CrossRef
26.
Zurück zum Zitat M.W. Wu and S.M. Xiong: Acta Metall. Sin. (Engl. Lett.), 2012, vol. 25, pp. 169-78. M.W. Wu and S.M. Xiong: Acta Metall. Sin. (Engl. Lett.), 2012, vol. 25, pp. 169-78.
27.
Zurück zum Zitat Y.F. Shi, Q.Y. Xu, and B.C. Liu: Rare Met. Mater. Eng., 2013, vol. 42, pp. 700-5. Y.F. Shi, Q.Y. Xu, and B.C. Liu: Rare Met. Mater. Eng., 2013, vol. 42, pp. 700-5.
28.
Zurück zum Zitat W. Wang, P.D. Lee, and M. Mclean: Acta Mater., 2003, vol. 51, pp. 2971-87.CrossRef W. Wang, P.D. Lee, and M. Mclean: Acta Mater., 2003, vol. 51, pp. 2971-87.CrossRef
29.
Zurück zum Zitat L. Yuan, P.D. Lee, G. Djambazov, and K. Pericleous: Int. J. Cast Met. Res., 2009, vol. 22, pp. 204-7.CrossRef L. Yuan, P.D. Lee, G. Djambazov, and K. Pericleous: Int. J. Cast Met. Res., 2009, vol. 22, pp. 204-7.CrossRef
30.
Zurück zum Zitat L. Yuan and P.D. Lee: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18, p. 055008.CrossRef L. Yuan and P.D. Lee: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18, p. 055008.CrossRef
31.
32.
Zurück zum Zitat H.X. Jiang and J.Z. Zhao: Acta. Metall. Sin., 2011, vol. 47, pp. 1099-104. H.X. Jiang and J.Z. Zhao: Acta. Metall. Sin., 2011, vol. 47, pp. 1099-104.
33.
Zurück zum Zitat X.F. Zhang and J.Z. Zhao: Acta. Metall. Sin., 2012, vol. 48, pp. 615-20.CrossRef X.F. Zhang and J.Z. Zhao: Acta. Metall. Sin., 2012, vol. 48, pp. 615-20.CrossRef
34.
Zurück zum Zitat X.F. Zhang, J.Z. Zhao, H.X. Jiang, and M.F. Zhu: Acta Mater., 2012, vol. 60, pp. 2249-57.CrossRef X.F. Zhang, J.Z. Zhao, H.X. Jiang, and M.F. Zhu: Acta Mater., 2012, vol. 60, pp. 2249-57.CrossRef
35.
Zurück zum Zitat X.F. Zhang and J.Z. Zhao: J. Cryst. Growth, 2014, vol. 391, pp. 52-8.CrossRef X.F. Zhang and J.Z. Zhao: J. Cryst. Growth, 2014, vol. 391, pp. 52-8.CrossRef
36.
37.
Zurück zum Zitat M. Eshraghi, S.D. Felicelli, and B. Jelinek: J. Cryst. Growth, 2012, vol. 354, pp. 129-34.CrossRef M. Eshraghi, S.D. Felicelli, and B. Jelinek: J. Cryst. Growth, 2012, vol. 354, pp. 129-34.CrossRef
38.
Zurück zum Zitat M. Eshraghi, B. Jelinek, and S.D. Felicelli: JOM, 2015, vol. 67, pp. 1786-92.CrossRef M. Eshraghi, B. Jelinek, and S.D. Felicelli: JOM, 2015, vol. 67, pp. 1786-92.CrossRef
39.
Zurück zum Zitat K. Choudhury, E. Reuther, A. Wesner, B. Nestler, and M. Rettenmayr: Comput. Mater. Sci., 2012, vol. 55, pp. 263-8.CrossRef K. Choudhury, E. Reuther, A. Wesner, B. Nestler, and M. Rettenmayr: Comput. Mater. Sci., 2012, vol. 55, pp. 263-8.CrossRef
40.
41.
Zurück zum Zitat M. Rappaz and C.A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345-60.CrossRef M. Rappaz and C.A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345-60.CrossRef
43.
Zurück zum Zitat R. Chen, Q.Y. Xu, and B.C. Liu: Acta Phys. Sin., 2014, vol. 63, p. 188102. R. Chen, Q.Y. Xu, and B.C. Liu: Acta Phys. Sin., 2014, vol. 63, p. 188102.
44.
Zurück zum Zitat R. Chen, Q.Y. Xu, Q.F. Wu, H.T. Guo, and B.C. Liu: Acta. Metall. Sin., 2015, vol. 51, pp. 733-44. R. Chen, Q.Y. Xu, Q.F. Wu, H.T. Guo, and B.C. Liu: Acta. Metall. Sin., 2015, vol. 51, pp. 733-44.
45.
Zurück zum Zitat R. Chen, Q.Y. Xu, and B.C. Liu: Comput. Mater. Sci., 2015, vol. 105, pp. 90-100.CrossRef R. Chen, Q.Y. Xu, and B.C. Liu: Comput. Mater. Sci., 2015, vol. 105, pp. 90-100.CrossRef
46.
Zurück zum Zitat H. Yin, S.D. Felicelli, and L. Wang: Acta Mater., 2011, vol. 59, pp. 3124-36.CrossRef H. Yin, S.D. Felicelli, and L. Wang: Acta Mater., 2011, vol. 59, pp. 3124-36.CrossRef
47.
Zurück zum Zitat W.Q. Tao: Numerical Heat Transfer, 2nd ed., Xi’an Jiao Tong University Press, Xi’an, 2001. W.Q. Tao: Numerical Heat Transfer, 2nd ed., Xi’an Jiao Tong University Press, Xi’an, 2001.
48.
Zurück zum Zitat W.L. Wang, S. Luo, and M.Y. Zhu: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 396-406.CrossRef W.L. Wang, S. Luo, and M.Y. Zhu: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 396-406.CrossRef
49.
Zurück zum Zitat W.L. Wang, S. Luo, and M.Y. Zhu: Comput. Mater. Sci., 2014, vol. 95, pp. 136-48.CrossRef W.L. Wang, S. Luo, and M.Y. Zhu: Comput. Mater. Sci., 2014, vol. 95, pp. 136-48.CrossRef
50.
Zurück zum Zitat J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57-63.CrossRef J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57-63.CrossRef
51.
Zurück zum Zitat H. Jacobi and K. Schwerdtfeger: Metall. Trans. A, 1976, vol. 7, pp. 811-20.CrossRef H. Jacobi and K. Schwerdtfeger: Metall. Trans. A, 1976, vol. 7, pp. 811-20.CrossRef
52.
Zurück zum Zitat A.S. Sangani and A. Acrivos: Int. J. Multiphase Flow, 1982, vol. 8, pp. 343-60.CrossRef A.S. Sangani and A. Acrivos: Int. J. Multiphase Flow, 1982, vol. 8, pp. 343-60.CrossRef
53.
Zurück zum Zitat R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, 2nd ed., Wiley, New York, 2002. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, 2nd ed., Wiley, New York, 2002.
55.
Zurück zum Zitat A. Barbieri and J.S. Langer: Phys. Rev. A, 1989, vol. 39, pp. 5314-25.CrossRef A. Barbieri and J.S. Langer: Phys. Rev. A, 1989, vol. 39, pp. 5314-25.CrossRef
Metadaten
Titel
Numerical Simulation of Three-Dimensional Dendritic Growth of Alloy: Part I—Model Development and Test
verfasst von
Weiling Wang
Sen Luo
Miaoyong Zhu
Publikationsdatum
04.01.2016
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 3/2016
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-015-3304-7

Weitere Artikel der Ausgabe 3/2016

Metallurgical and Materials Transactions A 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.