Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 6/2019

25.09.2019

Closure of Internal Porosity in Continuous Casting Bloom During Heavy Reduction Process

verfasst von: Chenhui Wu, Cheng Ji, Miaoyong Zhu

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To investigate the closure behavior of internal porosity (also referred to as internal void) in continuous casting bloom during heavy reduction (HR) and thus provide theoretical guidance for minimizing this kind of internal defect more effectively with HR, a three-dimensional (3D) mechanical model was developed based on the predicted temperature field by a 2D heat transfer model. With this 3D mechanical model, closure behaviors of internal porosity in continuous casting bloom during HR at and after the strand solidification end under different process conditions were numerically studied. It was found that the void axis length decreased significantly along the bloom thickness direction and increased slightly along the casting and bloom width directions after HR, and the influence of the initial void size on the void closure was not obvious. With a decrease of temperature difference between the bloom surface and center, HR efficiency for minimizing internal void decreased, while the required reduction force significantly increased. Compared with blooms with a uniform temperature distribution of 1100 °C, the void closure index after HR implemented at the strand solidification end was increased by ~ 25 pct. Compared with a conventional flat roll, the application of a convex roll during HR could contribute to minimizing the internal porosity more effectively and significantly enhance the reduction capacity of the withdrawal and straightening units. The void closure index of ηs and ηv (where ηs and ηv were defined based on the variation of the void aspect ratio and the void volume, respectively) was closely related to the equivalent strain (εeq) and the hydrostatic integration parameter (Q), respectively, and two mathematical equations were derived to quantitatively describe the relationship of ηs − εeq and ηv − Q.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Kakimoto, T. Arikawa, Y. Takahashi, T. Tanaka and Y. Imaida: J. Mater. Process. Technol., 2010, vol. 210, pp. 415–22.CrossRef H. Kakimoto, T. Arikawa, Y. Takahashi, T. Tanaka and Y. Imaida: J. Mater. Process. Technol., 2010, vol. 210, pp. 415–22.CrossRef
2.
Zurück zum Zitat Y.S. Lee, S.U. Lee, C.J. Van Tyne and B.D. Joo: J. Mater. Process. Technol., 2011, vol. 211, pp. 1136-45.CrossRef Y.S. Lee, S.U. Lee, C.J. Van Tyne and B.D. Joo: J. Mater. Process. Technol., 2011, vol. 211, pp. 1136-45.CrossRef
4.
5.
6.
Zurück zum Zitat M. Nakasaki, I. Takasu and H. Utsunomiya: J. Mater. Process. Technol., 2006, vol. 177, pp. 521-4.CrossRef M. Nakasaki, I. Takasu and H. Utsunomiya: J. Mater. Process. Technol., 2006, vol. 177, pp. 521-4.CrossRef
7.
Zurück zum Zitat J. Chen, K. Chandrashekhara, C. Mahimkar, S.N. Lekakh and V.L. Richards: J. Mater. Process. Technol., 2011, vol. 211, pp. 245-55.CrossRef J. Chen, K. Chandrashekhara, C. Mahimkar, S.N. Lekakh and V.L. Richards: J. Mater. Process. Technol., 2011, vol. 211, pp. 245-55.CrossRef
8.
Zurück zum Zitat G.S. Li, W. Yu and Q.W. Cai: Metall. Mater. Trans. B, 2015, vol. 46, pp. 831-40. G.S. Li, W. Yu and Q.W. Cai: Metall. Mater. Trans. B, 2015, vol. 46, pp. 831-40.
9.
Zurück zum Zitat G.S. Li, W. Yu and Q. Cai: J. Mater. Process. Technol., 2016, vol. 227, pp. 41-8.CrossRef G.S. Li, W. Yu and Q. Cai: J. Mater. Process. Technol., 2016, vol. 227, pp. 41-8.CrossRef
10.
11.
Zurück zum Zitat X.K. Zhao, J.M. Zhang, S.W. Lei and Y.N. Wang: Steel Res. Int., 2014, vol. 85, pp. 1533-43.CrossRef X.K. Zhao, J.M. Zhang, S.W. Lei and Y.N. Wang: Steel Res. Int., 2014, vol. 85, pp. 1533-43.CrossRef
12.
Zurück zum Zitat Z.G. Xu, X.H. Wang and M. Jiang: Steel Res. Int., 2017, vol. 88, pp. 231-42. Z.G. Xu, X.H. Wang and M. Jiang: Steel Res. Int., 2017, vol. 88, pp. 231-42.
13.
Zurück zum Zitat Q.P. Dong, J.M. Zhang, B. Wang and X.K. Zhao: J. Mater. Process. Technol., 2016, vol. 238, pp. 81-8.CrossRef Q.P. Dong, J.M. Zhang, B. Wang and X.K. Zhao: J. Mater. Process. Technol., 2016, vol. 238, pp. 81-8.CrossRef
14.
Zurück zum Zitat J.P. Zhao, L. Liu, W.W. Wang and H. Lu: Ironmaking Steelmaking, 2017, https://doi.org/10.1080/03019233.2017.1366090.CrossRef J.P. Zhao, L. Liu, W.W. Wang and H. Lu: Ironmaking Steelmaking, 2017, https://​doi.​org/​10.​1080/​03019233.​2017.​1366090.​CrossRef
15.
16.
Zurück zum Zitat C. Ji, G.L. Li, C.H. Wu and M.Y. Zhu: Metall. Mater. Trans. B, 2019, vol. 50, pp. 110-22.CrossRef C. Ji, G.L. Li, C.H. Wu and M.Y. Zhu: Metall. Mater. Trans. B, 2019, vol. 50, pp. 110-22.CrossRef
17.
Zurück zum Zitat C.H. Wu, C. Ji and M.Y. Zhu: J. Mater. Process. Technol., 2019, vol. 271, pp. 651-9.CrossRef C.H. Wu, C. Ji and M.Y. Zhu: J. Mater. Process. Technol., 2019, vol. 271, pp. 651-9.CrossRef
18.
Zurück zum Zitat K. Miyazawa and K. Schwerdtfeger: rch. Eisenhuettenwes., 1981, vol. 52, pp. 415–22. K. Miyazawa and K. Schwerdtfeger: rch. Eisenhuettenwes., 1981, vol. 52, pp. 415–22.
19.
Zurück zum Zitat T. Kajitani, J.-M. Drezet, and M. Rappaz: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1479-91.CrossRef T. Kajitani, J.-M. Drezet, and M. Rappaz: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1479-91.CrossRef
20.
Zurück zum Zitat M. Wu, J. Domitner, and A. Ludwig: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 945-64.CrossRef M. Wu, J. Domitner, and A. Ludwig: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 945-64.CrossRef
21.
Zurück zum Zitat J. Domitner, M. Wu, A. Kharicha, A. Ludwig, B. Kaufmann, J. Reiter, and T. Schaden: Metall. Mater. Trans. A, 2013, vol. 45, pp. 1415-34. J. Domitner, M. Wu, A. Kharicha, A. Ludwig, B. Kaufmann, J. Reiter, and T. Schaden: Metall. Mater. Trans. A, 2013, vol. 45, pp. 1415-34.
22.
Zurück zum Zitat M. Wu, and A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1613–31.CrossRef M. Wu, and A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1613–31.CrossRef
23.
Zurück zum Zitat R. Guan, C. Ji, M.Y. Zhu, and S.M. Deng, Metall. Mater. Trans. B, 2018, vol. 49, pp. 2571–83.CrossRef R. Guan, C. Ji, M.Y. Zhu, and S.M. Deng, Metall. Mater. Trans. B, 2018, vol. 49, pp. 2571–83.CrossRef
24.
Zurück zum Zitat R. Guan, C. Ji, C. H. Wu, and M. Y. Zhu, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 503-16.CrossRef R. Guan, C. Ji, C. H. Wu, and M. Y. Zhu, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 503-16.CrossRef
25.
Zurück zum Zitat H.M. Wang, G.R. Li, Y.C. Lei, Y.T. Zhao, Q.X. Dai and J.J. Wang: ISIJ Int., 2005, vol. 45, pp. 1291-6.CrossRef H.M. Wang, G.R. Li, Y.C. Lei, Y.T. Zhao, Q.X. Dai and J.J. Wang: ISIJ Int., 2005, vol. 45, pp. 1291-6.CrossRef
26.
27.
Zurück zum Zitat C. Ji, Z.L. Wang, C.H. Wu and M.Y. Zhu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 767-82.CrossRef C. Ji, Z.L. Wang, C.H. Wu and M.Y. Zhu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 767-82.CrossRef
28.
Zurück zum Zitat C.H. Moon, K.S. Oh, J.D. Lee, S.J. Lee and Y. Lee: ISIJ Int., 2012, vol. 52, pp. 1266-72.CrossRef C.H. Moon, K.S. Oh, J.D. Lee, S.J. Lee and Y. Lee: ISIJ Int., 2012, vol. 52, pp. 1266-72.CrossRef
29.
Zurück zum Zitat M. Tanaka, S. Ono and M. Tsuneno: J. Jpn. Soc. Technol. Plast., 1987, vol. 28, pp. 238–44. M. Tanaka, S. Ono and M. Tsuneno: J. Jpn. Soc. Technol. Plast., 1987, vol. 28, pp. 238–44.
30.
Zurück zum Zitat J.L. Rodgers and W.A. Nicewander: Am. Stat., 1988, vol. 42, pp. 59-66.CrossRef J.L. Rodgers and W.A. Nicewander: Am. Stat., 1988, vol. 42, pp. 59-66.CrossRef
Metadaten
Titel
Closure of Internal Porosity in Continuous Casting Bloom During Heavy Reduction Process
verfasst von
Chenhui Wu
Cheng Ji
Miaoyong Zhu
Publikationsdatum
25.09.2019
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 6/2019
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-019-01692-z

Weitere Artikel der Ausgabe 6/2019

Metallurgical and Materials Transactions B 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.