Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 4/2022

02.06.2022 | Original Research Article

Numerical Investigation of Shaft Gas Injection Operation in Oxygen-Enriched Ironmaking Blast Furnace

verfasst von: Haiqi Nie, Aibing Yu, Lulu Jiao, Xiaoming Mao, Haifa Xu, Shibo Kuang

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shaft gas injection is considered helpful for realizing an oxygen blast furnace (OBF) to mitigate CO2 emissions substantially. This paper presents a systematic study of the shaft injection for a 430-m3 industrial OBF using a process model. The OBF is operated at 35, 50, or 100 pct oxygen enrichment. It is combined with the reducing gas injection through blast tuyeres to achieve a reasonable flame temperature. The effects of shaft gas injection rate, shaft gas injection position, and shaft gas injection temperature are studied with fixed hot metal temperature, bosh gas volume, and flame temperature. The results show that the fuel rate decreases as the oxygen enrichment increases. It also decreases with increasing shaft gas injection rate/temperature but increases at a higher injection position. All these changes slow down when the values of the three variables are relatively large. At a higher oxygen enrichment or lower shaft gas injection position/rate, the replacement ratio of coke by the shaft injected gas increases, indicating better utilization of shaft gas energy. However, the replacement ratio increases first to a maximum and then gradually decreases with increasing shaft gas injection temperature, identifying an optimum injection temperature. The inner flow and thermochemical behaviors of OBF are analyzed in detail. It shows that the fuel reduction by shaft injection is a collected effect of decreased carbon consumption by raceway combustion and direct reduction. The former contributor plays a dominating role, benefiting from the pre-heating effect. The latter contributor results from the indirect reduction enhancement because of the intensified reducing atmosphere and increased temperature. These pre-heating and pre-reduction roles are quantified to elucidate the impacts of the flow rate, position, and temperature of shaft injection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Zhang, J. Dai, C.Z. Li, X.B. Yu, Z.L. Xue, and H. Saxén: Steel Res. Int., 2020, vol. 92, p. 2000326.CrossRef W. Zhang, J. Dai, C.Z. Li, X.B. Yu, Z.L. Xue, and H. Saxén: Steel Res. Int., 2020, vol. 92, p. 2000326.CrossRef
2.
3.
Zurück zum Zitat J. Stel, G. Louwerse, D. Sert, A. Hirsch, and N. Eklund: Steel Times International, 2013, vol. 37, pp. 26–29. J. Stel, G. Louwerse, D. Sert, A. Hirsch, and N. Eklund: Steel Times International, 2013, vol. 37, pp. 26–29.
4.
Zurück zum Zitat E. Karakaya, C. Nuur, and L. Assbring: J. Clean Prod., 2018, vol. 195, pp. 651–63.CrossRef E. Karakaya, C. Nuur, and L. Assbring: J. Clean Prod., 2018, vol. 195, pp. 651–63.CrossRef
5.
Zurück zum Zitat S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, M. Osame, P. Sikström, L.S. Ökvist, and J. Wikstrom: ISIJ Int., 2013, vol. 53, pp. 2065–71.CrossRef S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, M. Osame, P. Sikström, L.S. Ökvist, and J. Wikstrom: ISIJ Int., 2013, vol. 53, pp. 2065–71.CrossRef
6.
Zurück zum Zitat M.A. Quader, S. Ahmed, R.A.R. Ghazilla, S. Ahmed, and M. Dahari: Renew Sust. Energy Rev., 2015, vol. 50, pp. 594–614.CrossRef M.A. Quader, S. Ahmed, R.A.R. Ghazilla, S. Ahmed, and M. Dahari: Renew Sust. Energy Rev., 2015, vol. 50, pp. 594–614.CrossRef
7.
Zurück zum Zitat L. Ren, S. Zhou, T.D. Peng, and X.M. Ou: Renew. Sust. Energy Rev., 2021, vol. 143, p. 110846.CrossRef L. Ren, S. Zhou, T.D. Peng, and X.M. Ou: Renew. Sust. Energy Rev., 2021, vol. 143, p. 110846.CrossRef
8.
Zurück zum Zitat H.Q. Nie, Z.Y. Li, S.B. Kuang, L.G. Yan, W.Q. Zhong, A.B. Yu, X.M. Mao, and H.F. Xu: Fuel, 2021, vol. 296, p. 120662.CrossRef H.Q. Nie, Z.Y. Li, S.B. Kuang, L.G. Yan, W.Q. Zhong, A.B. Yu, X.M. Mao, and H.F. Xu: Fuel, 2021, vol. 296, p. 120662.CrossRef
9.
Zurück zum Zitat A.K. Biswas: Principles of Blast Furnace Ironmaking: Theory and Practice, Cootha Publishing House, Australia, 1981, p. 302. A.K. Biswas: Principles of Blast Furnace Ironmaking: Theory and Practice, Cootha Publishing House, Australia, 1981, p. 302.
10.
Zurück zum Zitat F. Fink: Steel Times, 1996, vol. 36, pp. 398–99. F. Fink: Steel Times, 1996, vol. 36, pp. 398–99.
11.
Zurück zum Zitat M.S. Qin, Z.K. Gao, G.L. Wang, and Y.T. Zhang: Ironmak. Steelmak., 1988, vol. 15, pp. 287–92. M.S. Qin, Z.K. Gao, G.L. Wang, and Y.T. Zhang: Ironmak. Steelmak., 1988, vol. 15, pp. 287–92.
12.
Zurück zum Zitat O. Yotaro, H. Hirohisa, M. Masahiro, M. Hiroyuki, and S. Hiroshi: Tetsu-to-Hagane, 1989, vol. 75, pp. 1278–85.CrossRef O. Yotaro, H. Hirohisa, M. Masahiro, M. Hiroyuki, and S. Hiroshi: Tetsu-to-Hagane, 1989, vol. 75, pp. 1278–85.CrossRef
13.
14.
Zurück zum Zitat Y.H. Qi, D.L. Yan, J.J. Gao, J.C. Zhang, and M.K. Li: Iron Steel, 2011, vol. 46, pp. 6–8. Y.H. Qi, D.L. Yan, J.J. Gao, J.C. Zhang, and M.K. Li: Iron Steel, 2011, vol. 46, pp. 6–8.
15.
16.
Zurück zum Zitat J.L. Zhang, G.W. Wang, J.G. Shao, and H.B. Zuo: J. Iron Steel Res. Int., 2014, vol. 21, pp. 151–58.CrossRef J.L. Zhang, G.W. Wang, J.G. Shao, and H.B. Zuo: J. Iron Steel Res. Int., 2014, vol. 21, pp. 151–58.CrossRef
17.
Zurück zum Zitat P. Jin, Z.Y. Jiang, C. Bao, Y.X. Lu, J.L. Zhang, and X.X. Zhang: Steel Res. Int., 2016, vol. 87, pp. 320–29.CrossRef P. Jin, Z.Y. Jiang, C. Bao, Y.X. Lu, J.L. Zhang, and X.X. Zhang: Steel Res. Int., 2016, vol. 87, pp. 320–29.CrossRef
18.
Zurück zum Zitat P. Jin, Z.Y. Jiang, C. Bao, S.Y. Hao, and X.X. Zhang: Resour. Conserv. Recy., 2017, vol. 117, pp. 58–65.CrossRef P. Jin, Z.Y. Jiang, C. Bao, S.Y. Hao, and X.X. Zhang: Resour. Conserv. Recy., 2017, vol. 117, pp. 58–65.CrossRef
19.
Zurück zum Zitat W. Zhang, J.H. Zhang, and Z.L. Xue: Energy, 2017, vol. 121, pp. 135–46.CrossRef W. Zhang, J.H. Zhang, and Z.L. Xue: Energy, 2017, vol. 121, pp. 135–46.CrossRef
20.
Zurück zum Zitat C.L. Li, Q.G. Xue, Y.L. Liu, Z.S. Dong, G. Wang, and J.S. Wang: Ironmak. Steelmak., 2017, vol. 46, pp. 761–70.CrossRef C.L. Li, Q.G. Xue, Y.L. Liu, Z.S. Dong, G. Wang, and J.S. Wang: Ironmak. Steelmak., 2017, vol. 46, pp. 761–70.CrossRef
21.
22.
Zurück zum Zitat X.F. She, X.W. An, J.S. Wang, Q.G. Xue, and L.T. Kong: J. Iron Steel Res. Int., 2017, vol. 24, pp. 608–16.CrossRef X.F. She, X.W. An, J.S. Wang, Q.G. Xue, and L.T. Kong: J. Iron Steel Res. Int., 2017, vol. 24, pp. 608–16.CrossRef
23.
Zurück zum Zitat W. Zhang, J.H. Zhang, Z.L. Xue, Z.S. Zou, and Y.H. Qi: ISIJ Int., 2016, vol. 56, pp. 1358–67.CrossRef W. Zhang, J.H. Zhang, Z.L. Xue, Z.S. Zou, and Y.H. Qi: ISIJ Int., 2016, vol. 56, pp. 1358–67.CrossRef
24.
Zurück zum Zitat T. Miyashit, H. Nishio, T. Shimotsu, T. Yamada, and M. Ohtsuki: Trans. Iron Steel Inst. Jpn., 1973, vol. 13, pp. 1–10.CrossRef T. Miyashit, H. Nishio, T. Shimotsu, T. Yamada, and M. Ohtsuki: Trans. Iron Steel Inst. Jpn., 1973, vol. 13, pp. 1–10.CrossRef
25.
26.
Zurück zum Zitat M.A. Tseitlin, S.E. Lazutkin, and G.M. Styopin: ISIJ Int., 1994, vol. 34, pp. 570–73.CrossRef M.A. Tseitlin, S.E. Lazutkin, and G.M. Styopin: ISIJ Int., 1994, vol. 34, pp. 570–73.CrossRef
27.
Zurück zum Zitat S.B. Kuang, Z.Y. Li, and A.B. Yu: Steel Res Int, 2018, vol. 89, p. 1700071.CrossRef S.B. Kuang, Z.Y. Li, and A.B. Yu: Steel Res Int, 2018, vol. 89, p. 1700071.CrossRef
28.
Zurück zum Zitat S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 51–58.CrossRef S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 51–58.CrossRef
29.
Zurück zum Zitat S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 1410–17.CrossRef S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 1410–17.CrossRef
30.
Zurück zum Zitat Z.S. Dong, Q.G. Xue, H.B. Zu, X.F. She, J. Li, and J.S. Wang: ISIJ Int., 2016, vol. 56, pp. 1588–97.CrossRef Z.S. Dong, Q.G. Xue, H.B. Zu, X.F. She, J. Li, and J.S. Wang: ISIJ Int., 2016, vol. 56, pp. 1588–97.CrossRef
31.
Zurück zum Zitat Z.S. Dong, J.S. Wang, H.B. Zuo, X.F. She, and Q.G. Xue: Particuology, 2017, vol. 32, pp. 63–72.CrossRef Z.S. Dong, J.S. Wang, H.B. Zuo, X.F. She, and Q.G. Xue: Particuology, 2017, vol. 32, pp. 63–72.CrossRef
32.
Zurück zum Zitat Q.F. Hou, E. Dianyu, S.B. Kuang, Z.Y. Li, and A.B. Yu: Powder Technol., 2017, vol. 314, pp. 557–66.CrossRef Q.F. Hou, E. Dianyu, S.B. Kuang, Z.Y. Li, and A.B. Yu: Powder Technol., 2017, vol. 314, pp. 557–66.CrossRef
33.
Zurück zum Zitat Q.F. Hou, E. Dianyu, S.B. Kuang, Z.Y. Li, and A.B. Yu: Fuel Process. Technol., 2020, vol. 202, p. 106369. Q.F. Hou, E. Dianyu, S.B. Kuang, Z.Y. Li, and A.B. Yu: Fuel Process. Technol., 2020, vol. 202, p. 106369.
34.
Zurück zum Zitat Q.F. Hou, E. Dianyu, S.B. Kuang, Z.Y. Li, and A.B. Yu: Steel Res Int, 2020, vol. 91, p. 2000071. Q.F. Hou, E. Dianyu, S.B. Kuang, Z.Y. Li, and A.B. Yu: Steel Res Int, 2020, vol. 91, p. 2000071.
35.
Zurück zum Zitat X.F. Dong, A.B. Yu, J. Yagi, and P. Zulli: ISIJ Int., 2007, vol. 47, pp. 1553–70.CrossRef X.F. Dong, A.B. Yu, J. Yagi, and P. Zulli: ISIJ Int., 2007, vol. 47, pp. 1553–70.CrossRef
36.
Zurück zum Zitat M.S. Chu, H. Nogami, and J. Yagi: ISIJ Int., 2004, vol. 44, pp. 2159–67.CrossRef M.S. Chu, H. Nogami, and J. Yagi: ISIJ Int., 2004, vol. 44, pp. 2159–67.CrossRef
37.
38.
Zurück zum Zitat H.T. Wang, M.S. Chu, T.L. Guo, W. Zhao, C. Feng, Z.G. Liu, and J. Tang: Steel Res. Int., 2016, vol. 87, pp. 539–49.CrossRef H.T. Wang, M.S. Chu, T.L. Guo, W. Zhao, C. Feng, Z.G. Liu, and J. Tang: Steel Res. Int., 2016, vol. 87, pp. 539–49.CrossRef
39.
Zurück zum Zitat Z.Y. Li, S.B. Kuang, A.B. Yu, J.J. Gao, Y.H. Qi, D.L. Yan, Y.T. Li, and X.M. Mao: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1995–2010.CrossRef Z.Y. Li, S.B. Kuang, A.B. Yu, J.J. Gao, Y.H. Qi, D.L. Yan, Y.T. Li, and X.M. Mao: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1995–2010.CrossRef
40.
Zurück zum Zitat L.Z. Liu, Z.Y. Jiang, X.R. Zhang, Y.X. Lu, J.K. He, J.S. Wang, and X.X. Zhang: Energy, 2018, vol. 163, pp. 144–50.CrossRef L.Z. Liu, Z.Y. Jiang, X.R. Zhang, Y.X. Lu, J.K. He, J.S. Wang, and X.X. Zhang: Energy, 2018, vol. 163, pp. 144–50.CrossRef
41.
Zurück zum Zitat Z.G. Zhao, X.B. Yu, Y.S. Shen, Y.T. Li, H. Xu, and Z.J. Hu: Energy Fuel, 2020, vol. 34, pp. 15048–15060.CrossRef Z.G. Zhao, X.B. Yu, Y.S. Shen, Y.T. Li, H. Xu, and Z.J. Hu: Energy Fuel, 2020, vol. 34, pp. 15048–15060.CrossRef
42.
Zurück zum Zitat Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: JOM, 2015, vol. 67, pp. 1936–44.CrossRef Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: JOM, 2015, vol. 67, pp. 1936–44.CrossRef
43.
Zurück zum Zitat Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: JOM, 2015, vol. 67, pp. 1945–55.CrossRef Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: JOM, 2015, vol. 67, pp. 1945–55.CrossRef
44.
Zurück zum Zitat Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: Metall. Mater. Trans. B, 2016, vol. 47, pp. 467–84.CrossRef Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: Metall. Mater. Trans. B, 2016, vol. 47, pp. 467–84.CrossRef
45.
Zurück zum Zitat Y. Ohno, M. Matsuura, H. Mitsufuji, and T. Furukawa: ISIJ Int., 1992, vol. 32, pp. 838–47.CrossRef Y. Ohno, M. Matsuura, H. Mitsufuji, and T. Furukawa: ISIJ Int., 1992, vol. 32, pp. 838–47.CrossRef
46.
Zurück zum Zitat T. Inada, K. Takatani, K. Takata, and T. Yamamoto: ISIJ Int., 2003, vol. 43, pp. 1143–50.CrossRef T. Inada, K. Takatani, K. Takata, and T. Yamamoto: ISIJ Int., 2003, vol. 43, pp. 1143–50.CrossRef
47.
Zurück zum Zitat P.R. Austin, H. Nogami, and J. Yagi: ISIJ Int., 1997, vol. 37, pp. 748–55.CrossRef P.R. Austin, H. Nogami, and J. Yagi: ISIJ Int., 1997, vol. 37, pp. 748–55.CrossRef
48.
Zurück zum Zitat J.A. de Castro, A.J. da Silva, Y. Sasaki, and J. Yagi: ISIJ Int., 2011, vol. 51, pp. 748–58.CrossRef J.A. de Castro, A.J. da Silva, Y. Sasaki, and J. Yagi: ISIJ Int., 2011, vol. 51, pp. 748–58.CrossRef
49.
Zurück zum Zitat K. Yang, S. Choi, J. Chung, and J. Yagi: ISIJ Int., 2010, vol. 50, pp. 972–80.CrossRef K. Yang, S. Choi, J. Chung, and J. Yagi: ISIJ Int., 2010, vol. 50, pp. 972–80.CrossRef
50.
Zurück zum Zitat X.F. Dong, A.B. Yu, S.J. Chew, and P. Zulli: Metall. Mater. Trans. B, 2010, vol. 41, pp. 330–49.CrossRef X.F. Dong, A.B. Yu, S.J. Chew, and P. Zulli: Metall. Mater. Trans. B, 2010, vol. 41, pp. 330–49.CrossRef
51.
Zurück zum Zitat S.B. Kuang, Z.Y. Li, D.L. Yan, Y.H. Qi, and A.B. Yu: Miner. Eng., 2014, vol. 63, pp. 45–56.CrossRef S.B. Kuang, Z.Y. Li, D.L. Yan, Y.H. Qi, and A.B. Yu: Miner. Eng., 2014, vol. 63, pp. 45–56.CrossRef
52.
Zurück zum Zitat S.J. Zhang, A.B. Yu, P. Zulli, B. Wright, and U. Tüzün: ISIJ Int., 1998, vol. 38, pp. 1311–19.CrossRef S.J. Zhang, A.B. Yu, P. Zulli, B. Wright, and U. Tüzün: ISIJ Int., 1998, vol. 38, pp. 1311–19.CrossRef
53.
Zurück zum Zitat Z.Y. Li, S.B. Kuang, S.D. Liu, J.Q. Gan, A.B. Yu, Y.T. Li, and X.M. Mao: Powder Technol., 2019, vol. 353, pp. 385–97.CrossRef Z.Y. Li, S.B. Kuang, S.D. Liu, J.Q. Gan, A.B. Yu, Y.T. Li, and X.M. Mao: Powder Technol., 2019, vol. 353, pp. 385–97.CrossRef
54.
Zurück zum Zitat Z.Y. Zhou, A.B. Yu, and P. Zulli: Prog. Comput. Fluid Dyn., 2004, vol. 4, pp. 39–45.CrossRef Z.Y. Zhou, A.B. Yu, and P. Zulli: Prog. Comput. Fluid Dyn., 2004, vol. 4, pp. 39–45.CrossRef
55.
Zurück zum Zitat Z.Y. Li, S.B. Kuang, D.L. Yan, Y.H. Qi, and A.B. Yu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 602–18.CrossRef Z.Y. Li, S.B. Kuang, D.L. Yan, Y.H. Qi, and A.B. Yu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 602–18.CrossRef
56.
57.
Zurück zum Zitat L.L. Jiao, S.B. Kuang, L.L. Liu, A.B. Yu, Y.T. Li, X.M. Mao, and H. Xu: Metall. Mater. Trans. B, 2020, vol. 52, pp. 138–55.CrossRef L.L. Jiao, S.B. Kuang, L.L. Liu, A.B. Yu, Y.T. Li, X.M. Mao, and H. Xu: Metall. Mater. Trans. B, 2020, vol. 52, pp. 138–55.CrossRef
58.
Zurück zum Zitat L.L. Jiao, S.B. Kuang, A.B. Yu, Y.T. Li, X.M. Mao, and H. Xu: Metall. Mater. Trans. B, 2020, vol. 51, pp. 258–75.CrossRef L.L. Jiao, S.B. Kuang, A.B. Yu, Y.T. Li, X.M. Mao, and H. Xu: Metall. Mater. Trans. B, 2020, vol. 51, pp. 258–75.CrossRef
59.
Zurück zum Zitat L.L. Liu, B.Y. Guo, S.B. Kuang, and A.B. Yu: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2211–29.CrossRef L.L. Liu, B.Y. Guo, S.B. Kuang, and A.B. Yu: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2211–29.CrossRef
60.
Zurück zum Zitat P.R. Austin, H. Nogami, and J. Yagi: ISIJ Int., 1998, vol. 38, pp. 239–45.CrossRef P.R. Austin, H. Nogami, and J. Yagi: ISIJ Int., 1998, vol. 38, pp. 239–45.CrossRef
61.
Zurück zum Zitat J.Z. Chen, T. Akiyama, H. Nogami, J. Yagi, and H. Takahashi: ISIJ Int., 1993, vol. 33, pp. 664–71.CrossRef J.Z. Chen, T. Akiyama, H. Nogami, J. Yagi, and H. Takahashi: ISIJ Int., 1993, vol. 33, pp. 664–71.CrossRef
62.
Zurück zum Zitat L. L. Liu, S. B. Kuang, L. L. Jiao, B. Y. Guo and A. B. Yu: Fuel, 2021, p. 122832. L. L. Liu, S. B. Kuang, L. L. Jiao, B. Y. Guo and A. B. Yu: Fuel, 2021, p. 122832.
63.
Zurück zum Zitat Y. Omori: Blast Furnace Phenomena and Modelling, Elsevier Applied Science, London, 1987. Y. Omori: Blast Furnace Phenomena and Modelling, Elsevier Applied Science, London, 1987.
64.
Zurück zum Zitat M. Hatano and K. Kurita: Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 448–56.CrossRef M. Hatano and K. Kurita: Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 448–56.CrossRef
65.
Zurück zum Zitat T. Akiyama, R. Takahashi, and J. Yagi: ISIJ Int., 1993, vol. 33, pp. 703–10.CrossRef T. Akiyama, R. Takahashi, and J. Yagi: ISIJ Int., 1993, vol. 33, pp. 703–10.CrossRef
66.
Zurück zum Zitat S. Ergun: Chem. Eng. Prog., 1952, vol. 48, pp. 89–94. S. Ergun: Chem. Eng. Prog., 1952, vol. 48, pp. 89–94.
Metadaten
Titel
Numerical Investigation of Shaft Gas Injection Operation in Oxygen-Enriched Ironmaking Blast Furnace
verfasst von
Haiqi Nie
Aibing Yu
Lulu Jiao
Xiaoming Mao
Haifa Xu
Shibo Kuang
Publikationsdatum
02.06.2022
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 4/2022
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-022-02562-x

Weitere Artikel der Ausgabe 4/2022

Metallurgical and Materials Transactions B 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.