Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2015

01.06.2015

Evaluating the Hot Deformation Behavior of a Super-Austenitic Steel Through Microstructural and Neural Network Analysis

verfasst von: A. Mirzaei, A. Zarei-Hanzaki, M. H. Pishbin, A. Imandoust, Sh. Khoddam

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A series of hot compression tests were conducted in the temperature range of 800-1100 °C under the strain rates of 0.001, 0.01, and 0.1 s−1 to assess the flow behavior and microstructure evolution of a super-austenitic stainless steel. The occurrence of dynamic recrystallization has been characterized as the dominant restoration mechanism operating in the investigated range of temperature. This is considered as the main factor affecting the related flow characteristics of the material. To better analyzing the obtained results, an artificial neural network (ANN) model with single hidden layer composed of 20 neurons has been established to simulate the flow behavior of the material. To train the model, a feed-forward back propagation algorithm has been employed. The reliability of the proposed model has been evaluated using standard statistical indices. In addition, the capability of the model has been assessed under the conditions at which the related data were not incorporated in the model. It was found that the developed ANN model employing this algorithm could efficiently track the work hardening and dynamic softening regions of the deforming material.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Jones and V. Randle, Sensitisation Behaviour of Grain Boundary Engineered Austenitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527, p 4275–4280CrossRef R. Jones and V. Randle, Sensitisation Behaviour of Grain Boundary Engineered Austenitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527, p 4275–4280CrossRef
2.
Zurück zum Zitat A. Imandoust, A. Zarei-Hanzaki, and H.R. Abedi, Low-Temperature Strain-Induced Ferrite Transformation in Twinning-Induced Plasticity Steel, Scr. Mater., 2012, 67, p 995–998CrossRef A. Imandoust, A. Zarei-Hanzaki, and H.R. Abedi, Low-Temperature Strain-Induced Ferrite Transformation in Twinning-Induced Plasticity Steel, Scr. Mater., 2012, 67, p 995–998CrossRef
3.
Zurück zum Zitat D. Özyürek, An Effect of Weld Current and Weld Atmosphere on the Resistance Spot Weldability of 304L Austenitic Stainless Steel, Mater. Des., 2008, 29, p 597–603CrossRef D. Özyürek, An Effect of Weld Current and Weld Atmosphere on the Resistance Spot Weldability of 304L Austenitic Stainless Steel, Mater. Des., 2008, 29, p 597–603CrossRef
4.
Zurück zum Zitat B. Guo, H. Ji, X. Liu, L. Gao, R. Dong, M. Jin, and Q. Zhang, Research on Flow Stress During Hot Deformation Process and Processing Map for 316LN Austenitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 1455–1461CrossRef B. Guo, H. Ji, X. Liu, L. Gao, R. Dong, M. Jin, and Q. Zhang, Research on Flow Stress During Hot Deformation Process and Processing Map for 316LN Austenitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 1455–1461CrossRef
5.
Zurück zum Zitat A. Imandoust, A. Zarei-Hanzaki, S. Heshmati-Manesh, S. Moemeni, and P. Changizian, Effects of Ferrite Volume Fraction on the Tensile Deformation Characteristics of Dual Phase Twinning Induced Plasticity Steel, Mater. Des., 2014, 53, p 99–105CrossRef A. Imandoust, A. Zarei-Hanzaki, S. Heshmati-Manesh, S. Moemeni, and P. Changizian, Effects of Ferrite Volume Fraction on the Tensile Deformation Characteristics of Dual Phase Twinning Induced Plasticity Steel, Mater. Des., 2014, 53, p 99–105CrossRef
6.
Zurück zum Zitat A. Zambon, P. Ferro, and F. Bonollo, Compositional and Residual Stress Evaluation of CO2 Laser Welded Superaustenitic AISI, 904L Stainless Steel, Mater. Sci. Eng. A, 2006, 424, p 117–127CrossRef A. Zambon, P. Ferro, and F. Bonollo, Compositional and Residual Stress Evaluation of CO2 Laser Welded Superaustenitic AISI, 904L Stainless Steel, Mater. Sci. Eng. A, 2006, 424, p 117–127CrossRef
7.
Zurück zum Zitat A. Imandoust, A. Zarei-Hanzaki, M. Sabet, and H.R. Abedi, An Analysis of the Deformation Characteristics of a Dual Phase Twinning-Induced Plasticity Steel in Warm Working Temperature Regime, Mater. Des., 2012, 40, p 556–561CrossRef A. Imandoust, A. Zarei-Hanzaki, M. Sabet, and H.R. Abedi, An Analysis of the Deformation Characteristics of a Dual Phase Twinning-Induced Plasticity Steel in Warm Working Temperature Regime, Mater. Des., 2012, 40, p 556–561CrossRef
8.
Zurück zum Zitat O. Sabokpa, A. Zarei-Hanzaki, H.R. Abedi, and N. Haghdadi, Artificial Neural Network Modeling to Predict the High Temperature Flow Behavior of an AZ81 Magnesium Alloy, Mater. Des., 2012, 39, p 390–396CrossRef O. Sabokpa, A. Zarei-Hanzaki, H.R. Abedi, and N. Haghdadi, Artificial Neural Network Modeling to Predict the High Temperature Flow Behavior of an AZ81 Magnesium Alloy, Mater. Des., 2012, 39, p 390–396CrossRef
9.
Zurück zum Zitat S. Mandal, P.V. Sivaprasad, S. Venugopal, K.P.N. Murthy, and B. Raj, Artificial neural Network Modeling of Composition-Process-Property Correlations in Austenitic Stainless Steels, Mater. Sci. Eng. A, 2008, 485, p 571–580CrossRef S. Mandal, P.V. Sivaprasad, S. Venugopal, K.P.N. Murthy, and B. Raj, Artificial neural Network Modeling of Composition-Process-Property Correlations in Austenitic Stainless Steels, Mater. Sci. Eng. A, 2008, 485, p 571–580CrossRef
10.
Zurück zum Zitat A. Mirzaei, A. Zarei-Hanzaki, N. Haghdadi, and A. Marandi, Constitutive Description of hIGh Temperature Flow Behavior of Sanicro-28 Super-Austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 589, p 76–82CrossRef A. Mirzaei, A. Zarei-Hanzaki, N. Haghdadi, and A. Marandi, Constitutive Description of hIGh Temperature Flow Behavior of Sanicro-28 Super-Austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 589, p 76–82CrossRef
11.
Zurück zum Zitat G. Jia, F. Li, Q. Li, H. Li, and Z. Li, A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, Mater. Sci. Eng. A, 2011, 528, p 4774–4782CrossRef G. Jia, F. Li, Q. Li, H. Li, and Z. Li, A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, Mater. Sci. Eng. A, 2011, 528, p 4774–4782CrossRef
12.
Zurück zum Zitat R. Liang and A.S. Khan, A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals over a Wide Range of Strain Rates and Temperatures, Int. J. Plast, 1999, 15, p 963–980CrossRef R. Liang and A.S. Khan, A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals over a Wide Range of Strain Rates and Temperatures, Int. J. Plast, 1999, 15, p 963–980CrossRef
13.
Zurück zum Zitat S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L (N), Metall. Mater. Trans. A, 2014, 45, p 5645–5656CrossRef S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L (N), Metall. Mater. Trans. A, 2014, 45, p 5645–5656CrossRef
14.
Zurück zum Zitat S. Mandal, A.K. Bhaduri, and V.S. Sarma, Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2012, 43, p 2056–2068CrossRef S. Mandal, A.K. Bhaduri, and V.S. Sarma, Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2012, 43, p 2056–2068CrossRef
15.
Zurück zum Zitat P. Poelt, C. Sommitsch, S. Mitsche, and M. Walter, Dynamic Recrystallization of Ni-Base Alloys—Experimental Results and Comparisons with Simulations, Mater. Sci. Eng. A, 2006, 420, p 306–314CrossRef P. Poelt, C. Sommitsch, S. Mitsche, and M. Walter, Dynamic Recrystallization of Ni-Base Alloys—Experimental Results and Comparisons with Simulations, Mater. Sci. Eng. A, 2006, 420, p 306–314CrossRef
16.
Zurück zum Zitat Y.C. Lin, J. Zhang, and J. Zhong, Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel, Comput. Mater. Sci., 2008, 43, p 752–758CrossRef Y.C. Lin, J. Zhang, and J. Zhong, Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel, Comput. Mater. Sci., 2008, 43, p 752–758CrossRef
17.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef
18.
Zurück zum Zitat W.D. Sun, Y.Q. Zeng, Y.L. Zhao, X. Qi, and Y.F. Ma, Han, Development of Constitutive Relationship Model of Ti600 Alloy Using Artificial Neural Network, Comput. Mater. Sci., 2010, 48, p 686–691CrossRef W.D. Sun, Y.Q. Zeng, Y.L. Zhao, X. Qi, and Y.F. Ma, Han, Development of Constitutive Relationship Model of Ti600 Alloy Using Artificial Neural Network, Comput. Mater. Sci., 2010, 48, p 686–691CrossRef
19.
Zurück zum Zitat A. Sarkar and J.K. Chakravartty, Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach, J. Mater. Eng. Perform., 2013, 22, p 2982–2989CrossRef A. Sarkar and J.K. Chakravartty, Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach, J. Mater. Eng. Perform., 2013, 22, p 2982–2989CrossRef
20.
Zurück zum Zitat Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Shu, and Y.G. Zhou, Modeling Constitutive Relationship of Ti40 Alloy Using Artificial Neural Network, Mater. Des., 2011, 32, p 1537–1541CrossRef Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Shu, and Y.G. Zhou, Modeling Constitutive Relationship of Ti40 Alloy Using Artificial Neural Network, Mater. Des., 2011, 32, p 1537–1541CrossRef
21.
Zurück zum Zitat N.S. Reddy, Y.H. Lee, C.H. Park, and C.S. Lee, Prediction of Flow Stress in Ti-6Al-4 V Alloy with an Equiaxed α+β Microstructure by Artificial Neural Networks, Mater. Sci. Eng. A, 2008, 492, p 276–282CrossRef N.S. Reddy, Y.H. Lee, C.H. Park, and C.S. Lee, Prediction of Flow Stress in Ti-6Al-4 V Alloy with an Equiaxed α+β Microstructure by Artificial Neural Networks, Mater. Sci. Eng. A, 2008, 492, p 276–282CrossRef
22.
Zurück zum Zitat H.Y. Li, D.D. Wei, Y.H. Li, and X.F. Wang, Application of Artificial Neural Network and Constitutive Equations to Describe the Hot Compressive Behavior of 28CrMnMoV Steel, Mater. Des., 2012, 35, p 557–562CrossRef H.Y. Li, D.D. Wei, Y.H. Li, and X.F. Wang, Application of Artificial Neural Network and Constitutive Equations to Describe the Hot Compressive Behavior of 28CrMnMoV Steel, Mater. Des., 2012, 35, p 557–562CrossRef
23.
Zurück zum Zitat S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Constitutive Flow Behaviour of Austenitic Stainless Steels Under Hot Deformation: Artificial Neural Network Modelling to Understand, Evaluate and Predict, Model. Simul. Mater. Sci., 2006, 14, p 1053–1070CrossRef S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Constitutive Flow Behaviour of Austenitic Stainless Steels Under Hot Deformation: Artificial Neural Network Modelling to Understand, Evaluate and Predict, Model. Simul. Mater. Sci., 2006, 14, p 1053–1070CrossRef
24.
Zurück zum Zitat S. Mandal, P.V. Sivaprasad, and S. Venugopal, Capability of a Feed-Forward Artificial Neural Network to Predict the Constitutive Flow Behavior of As Cast 304 Stainless Steel Under Hot Deformation, J. Eng. Mater. Technol., 2006, 129, p 242–247CrossRef S. Mandal, P.V. Sivaprasad, and S. Venugopal, Capability of a Feed-Forward Artificial Neural Network to Predict the Constitutive Flow Behavior of As Cast 304 Stainless Steel Under Hot Deformation, J. Eng. Mater. Technol., 2006, 129, p 242–247CrossRef
25.
Zurück zum Zitat I.S. Jalham, Modeling Capability of the Artificial Neural Network (ANN) to Predict the Effect of the Hot Deformation Parameters on the Strength of Al-Base Metal Matrix Composites, Compos. Sci. Technol., 2003, 63, p 63–67CrossRef I.S. Jalham, Modeling Capability of the Artificial Neural Network (ANN) to Predict the Effect of the Hot Deformation Parameters on the Strength of Al-Base Metal Matrix Composites, Compos. Sci. Technol., 2003, 63, p 63–67CrossRef
26.
Zurück zum Zitat ASTM E209, Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures With Conventional or Rapid Heating Rates and Strain Rates, Annual Book of ASTM Standards, ASTM International, PA, 2010. ASTM E209, Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures With Conventional or Rapid Heating Rates and Strain Rates, Annual Book of ASTM Standards, ASTM International, PA, 2010.
27.
Zurück zum Zitat M.E. Wahabia, L. Gavard, J.M. Cabrera, J.M. Prado, and F. Montheillet, EBSD Study of Purity Effects During Hot Working in Austenitic Stainless Steels, Mater. Sci. Eng. A, 2005, 393, p 83–90CrossRef M.E. Wahabia, L. Gavard, J.M. Cabrera, J.M. Prado, and F. Montheillet, EBSD Study of Purity Effects During Hot Working in Austenitic Stainless Steels, Mater. Sci. Eng. A, 2005, 393, p 83–90CrossRef
28.
Zurück zum Zitat F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, 2004 F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, 2004
29.
Zurück zum Zitat S. Mandal, S.K. Mishra, A. Kumar, I. Samajdar, P.V. Sivaprasad, T. Jayakumar, and B. Raj, Evolution and Characterization of Dynamically Recrystallized Microstructure in a Titanium-Modified Austenitic Stainless Steel Using Ultrasonic and EBSD Techniques, Philos. Mag., 2008, 88, p 883–897CrossRef S. Mandal, S.K. Mishra, A. Kumar, I. Samajdar, P.V. Sivaprasad, T. Jayakumar, and B. Raj, Evolution and Characterization of Dynamically Recrystallized Microstructure in a Titanium-Modified Austenitic Stainless Steel Using Ultrasonic and EBSD Techniques, Philos. Mag., 2008, 88, p 883–897CrossRef
30.
Zurück zum Zitat A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Recrystallization in AISI, 304 Austenitic Stainless Steel During and After Hot Deformation, Mater. Sci. Eng. A, 2008, 485, p 664–672CrossRef A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Recrystallization in AISI, 304 Austenitic Stainless Steel During and After Hot Deformation, Mater. Sci. Eng. A, 2008, 485, p 664–672CrossRef
31.
Zurück zum Zitat C. Zener and H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32CrossRef C. Zener and H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32CrossRef
32.
Zurück zum Zitat P. Changizian, A. Zarei-Hanzaki, and H.R. Abedi, On the Recrystallization Behavior of Homogenized AZ81 Magnesium Alloy: The Effect of Mechanical Twins and γ Precipitates, Mater. Sci. Eng. A, 2012, 558, p 44–51CrossRef P. Changizian, A. Zarei-Hanzaki, and H.R. Abedi, On the Recrystallization Behavior of Homogenized AZ81 Magnesium Alloy: The Effect of Mechanical Twins and γ Precipitates, Mater. Sci. Eng. A, 2012, 558, p 44–51CrossRef
33.
Zurück zum Zitat G.Z. Quan, W.Q. Lv, Y.P. Mao, Y.W. Zhang, and J. Zhou, Prediction of Flow Stress in a Wide Temperature Range Involving Phase Transformation for As-Cast Ti-6Al-2Zr-1Mo-1 V Alloy by Artificial Neural Network, Mater. Des., 2013, 50, p 51–61CrossRef G.Z. Quan, W.Q. Lv, Y.P. Mao, Y.W. Zhang, and J. Zhou, Prediction of Flow Stress in a Wide Temperature Range Involving Phase Transformation for As-Cast Ti-6Al-2Zr-1Mo-1 V Alloy by Artificial Neural Network, Mater. Des., 2013, 50, p 51–61CrossRef
34.
Zurück zum Zitat N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian, and H.R. Abedi, Artificial Neural Network Modeling to Predict the Hot Deformation Behavior of an A356 Aluminum Alloy, Mater. Des., 2013, 49, p 386–391CrossRef N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian, and H.R. Abedi, Artificial Neural Network Modeling to Predict the Hot Deformation Behavior of an A356 Aluminum Alloy, Mater. Des., 2013, 49, p 386–391CrossRef
35.
Zurück zum Zitat A. Jenab, A.K. Taheri, and K. Jenab, The Use of ANN to Predict the Hot Deformation Behavior of AA7075 at Low Strain Rates, J. Mater. Eng. Perform., 2013, 22, p 903–910CrossRef A. Jenab, A.K. Taheri, and K. Jenab, The Use of ANN to Predict the Hot Deformation Behavior of AA7075 at Low Strain Rates, J. Mater. Eng. Perform., 2013, 22, p 903–910CrossRef
36.
Zurück zum Zitat S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of Stainless Steel Type AISI, 304L During Hot Torsion, Appl. Soft Comput., 2009, 9, p 237–244CrossRef S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of Stainless Steel Type AISI, 304L During Hot Torsion, Appl. Soft Comput., 2009, 9, p 237–244CrossRef
37.
Zurück zum Zitat J. Liu, H. Chang, T.Y. Hsu, and X. Ruan, Prediction of the Flow Stress of High-Speed Steel During Hot Deformation Using a BP Artificial Neural Network, J. Mater. Process. Technol., 2000, 103, p 200–205CrossRef J. Liu, H. Chang, T.Y. Hsu, and X. Ruan, Prediction of the Flow Stress of High-Speed Steel During Hot Deformation Using a BP Artificial Neural Network, J. Mater. Process. Technol., 2000, 103, p 200–205CrossRef
38.
Zurück zum Zitat X. Ma, W. Zeng, F. Tian, Y. Sun, and Y. Zhou, Modeling Constitutive Relationship of BT25 Titanium Alloy During Hot Deformation by Artificial Neural Network, J. Mater. Eng. Perform., 2012, 21, p 1591–1597CrossRef X. Ma, W. Zeng, F. Tian, Y. Sun, and Y. Zhou, Modeling Constitutive Relationship of BT25 Titanium Alloy During Hot Deformation by Artificial Neural Network, J. Mater. Eng. Perform., 2012, 21, p 1591–1597CrossRef
39.
Zurück zum Zitat M.P. Phaniraj and A.K. Lahiri, The Applicability of Neural Network Model to Predict Flow Stress for Carbon Steel, J. Mater. Process. Technol., 2003, 141, p 219–227CrossRef M.P. Phaniraj and A.K. Lahiri, The Applicability of Neural Network Model to Predict Flow Stress for Carbon Steel, J. Mater. Process. Technol., 2003, 141, p 219–227CrossRef
40.
Zurück zum Zitat S. Srinivasulu and A. Jain, A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall-Runoff Models, Appl. Soft Comput., 2006, 6, p 295–306CrossRef S. Srinivasulu and A. Jain, A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall-Runoff Models, Appl. Soft Comput., 2006, 6, p 295–306CrossRef
Metadaten
Titel
Evaluating the Hot Deformation Behavior of a Super-Austenitic Steel Through Microstructural and Neural Network Analysis
verfasst von
A. Mirzaei
A. Zarei-Hanzaki
M. H. Pishbin
A. Imandoust
Sh. Khoddam
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1518-x

Weitere Artikel der Ausgabe 6/2015

Journal of Materials Engineering and Performance 6/2015 Zur Ausgabe

EditorialNotes

Editorial

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.