Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2018

07.05.2018

Thermophysical Properties of High-Frequency Induction Heat Sintered Graphene Nanoplatelets/Alumina Ceramic Functional Nanocomposites

verfasst von: Iftikhar Ahmad, Tayyab Subhani, Nannan Wang, Yanqiu Zhu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper concerns the thermophysical properties of high-frequency induction heat (HFIH) sintered alumina ceramic nanocomposites containing various graphene nanoplatelets (GNP) concentrations. The GNP/alumina nanocomposites demonstrated high densities, fine-grained microstructures, highest fracture toughness and hardness values of 5.7 MPa m1/2 and 18.4 GPa, which found 72 and 8%, superior to the benchmarked monolithic alumina, respectively. We determine the role of GNP in tuning the microstructure and inducing toughening mechanisms in the nanocomposites. The sintered monolithic alumina exhibited thermal conductivity value of 24.8 W/mK; however, steady drops of 2, 15 and 19% were recorded after adding respective GNP contents of 0.25, 0.5 and 1.0 wt.% in the nanocomposites. In addition, a dwindling trend in thermal conductions with increasing temperatures was recorded for all sintered samples. Simulation of experimental results with proven theoretical thermal models showed the dominant role of GNP dispersions, microstructural porosity, elastic modulus and grain size in controlling the thermal transport properties of the GNP/alumina nanocomposites. Thermogravimetric analysis showed that the nanocomposite with up to 0.5 mass% of GNP is thermally stable at the temperatures greater than 875 °C. The GNP/alumina nanocomposites owning a distinctive combination of mechanical and thermal properties are promising contenders for the specific components of the aerospace engine and electronic devices having contact with elevated temperatures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Faoite, D. Browne, R. Franklin, and T. Kenneth Stanton, A Review of the Processing, Composition, and Temperature-Dependent Mechanical and Thermal Properties of Dielectric Technical Ceramics, J. Mater. Sci., 2012, 47, p 4211–4235CrossRef D. Faoite, D. Browne, R. Franklin, and T. Kenneth Stanton, A Review of the Processing, Composition, and Temperature-Dependent Mechanical and Thermal Properties of Dielectric Technical Ceramics, J. Mater. Sci., 2012, 47, p 4211–4235CrossRef
2.
Zurück zum Zitat K. Ahmad, P. Wei, and C. Wan, Thermal Conductivities of Alumina-Based Multiwall Carbon Nanotube Ceramic Composites, J. Mater. Sci., 2014, 49, p 6048–6055CrossRef K. Ahmad, P. Wei, and C. Wan, Thermal Conductivities of Alumina-Based Multiwall Carbon Nanotube Ceramic Composites, J. Mater. Sci., 2014, 49, p 6048–6055CrossRef
3.
Zurück zum Zitat S.R. Bakshi, K. Balani, and A. Agarwal, Thermal Conductivity of Plasma-Sprayed Aluminum Oxide—Multiwalled Carbon Nanotubes Composites, J. Am. Ceram. Soc., 2008, 91, p 942–947CrossRef S.R. Bakshi, K. Balani, and A. Agarwal, Thermal Conductivity of Plasma-Sprayed Aluminum Oxide—Multiwalled Carbon Nanotubes Composites, J. Am. Ceram. Soc., 2008, 91, p 942–947CrossRef
4.
Zurück zum Zitat L. Kumari and T. Zhang, Thermal Properties of CNT Alumina Nanocomposites, Compos. Sci. Technol., 2008, 68, p 2178–2183CrossRef L. Kumari and T. Zhang, Thermal Properties of CNT Alumina Nanocomposites, Compos. Sci. Technol., 2008, 68, p 2178–2183CrossRef
5.
Zurück zum Zitat H. Porwal, S. Grasso, and M. Reece, Review of Graphene–Ceramic Matrix Composites, Adv. Appl. Ceram., 2013, 112, p 443–454CrossRef H. Porwal, S. Grasso, and M. Reece, Review of Graphene–Ceramic Matrix Composites, Adv. Appl. Ceram., 2013, 112, p 443–454CrossRef
6.
Zurück zum Zitat Y. Fan, The Effect of Homogeneously Dispersed Few-Layer Graphene on Microstructure and Mechanical Properties of Al2O3 Nanocomposites, J. Eur. Ceram. Soc., 2014, 34, p 443–451CrossRef Y. Fan, The Effect of Homogeneously Dispersed Few-Layer Graphene on Microstructure and Mechanical Properties of Al2O3 Nanocomposites, J. Eur. Ceram. Soc., 2014, 34, p 443–451CrossRef
7.
Zurück zum Zitat I. Ahmad and Y.Q. Zhu, Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites, Nanomaterials, 2015, 5, p 90–114CrossRef I. Ahmad and Y.Q. Zhu, Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites, Nanomaterials, 2015, 5, p 90–114CrossRef
8.
Zurück zum Zitat K. Wang, Preparation of Graphene Nanosheets/Alumina Composites by Spark Plasma Sintering, Mater. Res. Bull., 2011, 46, p 315–318CrossRef K. Wang, Preparation of Graphene Nanosheets/Alumina Composites by Spark Plasma Sintering, Mater. Res. Bull., 2011, 46, p 315–318CrossRef
9.
Zurück zum Zitat L. Jain, Mechanical Properties of Graphene Platelets-Reinforced Alumina Ceramics Composites, Ceram. Int., 2013, 39, p 6215–6221CrossRef L. Jain, Mechanical Properties of Graphene Platelets-Reinforced Alumina Ceramics Composites, Ceram. Int., 2013, 39, p 6215–6221CrossRef
10.
Zurück zum Zitat H. Porwal, Graphene Reinforced Alumina Nano-composites, Carbon, 2013, 64, p 359–369CrossRef H. Porwal, Graphene Reinforced Alumina Nano-composites, Carbon, 2013, 64, p 359–369CrossRef
11.
Zurück zum Zitat C. Balázsi, Structural Characterization of Si3N4-Carbon Nanotube Interfaces by Transmission Electron Microscopy, Compos. Sci. Technol., 2008, 68, p 1596–1599CrossRef C. Balázsi, Structural Characterization of Si3N4-Carbon Nanotube Interfaces by Transmission Electron Microscopy, Compos. Sci. Technol., 2008, 68, p 1596–1599CrossRef
12.
Zurück zum Zitat I. Ahmad, M. Islam, T. Subhani, and Y.Q. Zhu, Toughening Mechanisms and Mechanical Properties of Graphene Nanosheet-Reinforced Alumina, Mater. Des., 2015, 88, p 1234–1243CrossRef I. Ahmad, M. Islam, T. Subhani, and Y.Q. Zhu, Toughening Mechanisms and Mechanical Properties of Graphene Nanosheet-Reinforced Alumina, Mater. Des., 2015, 88, p 1234–1243CrossRef
13.
Zurück zum Zitat A.A. Balandin, Thermal Properties of Graphene and Nanostructured Carbon Materials, Nat. Mater., 2011, 10, p 569–581CrossRef A.A. Balandin, Thermal Properties of Graphene and Nanostructured Carbon Materials, Nat. Mater., 2011, 10, p 569–581CrossRef
14.
Zurück zum Zitat A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, 97, p 187401CrossRef A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, 97, p 187401CrossRef
15.
Zurück zum Zitat I. Calizo, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau, Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers, Nano Lett., 2007, 7, p 2645CrossRef I. Calizo, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau, Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers, Nano Lett., 2007, 7, p 2645CrossRef
16.
Zurück zum Zitat M.F. Khan and A.A. Balandin, Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials, Solid State Commun., 2012, 152, p 1331–1340CrossRef M.F. Khan and A.A. Balandin, Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials, Solid State Commun., 2012, 152, p 1331–1340CrossRef
17.
Zurück zum Zitat I. Ahmad, M. Islam, T. Subhani, and Y.Q. Zhu, Characterization of GNP-Containing Al2O3 Nanocomposites Fabricated via High Frequency-Induction Heat Sintering Route, J. Mater. Eng. Perform., 2015, 24, p 4236–4243CrossRef I. Ahmad, M. Islam, T. Subhani, and Y.Q. Zhu, Characterization of GNP-Containing Al2O3 Nanocomposites Fabricated via High Frequency-Induction Heat Sintering Route, J. Mater. Eng. Perform., 2015, 24, p 4236–4243CrossRef
18.
Zurück zum Zitat X. Liu, Y. Fan, J. Li, L. Wang, and W. Jiang, Preparation and Mechanical Properties of Graphene Nanosheet Reinforced Alumina Composites, Adv. Eng. Mater., 2015, 17, p 28–35CrossRef X. Liu, Y. Fan, J. Li, L. Wang, and W. Jiang, Preparation and Mechanical Properties of Graphene Nanosheet Reinforced Alumina Composites, Adv. Eng. Mater., 2015, 17, p 28–35CrossRef
19.
Zurück zum Zitat K. Tonello, E. Padovano, C. Badini, S. Biamino, M. Pavese, and P. Fino, Fabrication and Characterization of Laminated SiC Composites Reinforced with Graphene Nanoplatelets, Mater. Sci. Eng., 2016, 659, p 158–164CrossRef K. Tonello, E. Padovano, C. Badini, S. Biamino, M. Pavese, and P. Fino, Fabrication and Characterization of Laminated SiC Composites Reinforced with Graphene Nanoplatelets, Mater. Sci. Eng., 2016, 659, p 158–164CrossRef
20.
Zurück zum Zitat M. Belmonte, A. Nistal, P. Boutbien, B. Román-Manso, M.I. Osendi, and P. Miranzo, Toughened and Strengthened Silicon Carbide Ceramics by Adding Graphene-Based Fillers, Scr. Mater., 2016, 113, p 127–130CrossRef M. Belmonte, A. Nistal, P. Boutbien, B. Román-Manso, M.I. Osendi, and P. Miranzo, Toughened and Strengthened Silicon Carbide Ceramics by Adding Graphene-Based Fillers, Scr. Mater., 2016, 113, p 127–130CrossRef
21.
Zurück zum Zitat B. Román-Manso, E. Domingues, F.M. Figueiredo, M. Belmonte, and P. Miranzo, Enhanced Electrical Conductivity of Silicon Carbide Ceramics by Addition of Graphene Nanoplatelets, J. Eur. Ceram. Soc., 2015, 35, p 2723–2731CrossRef B. Román-Manso, E. Domingues, F.M. Figueiredo, M. Belmonte, and P. Miranzo, Enhanced Electrical Conductivity of Silicon Carbide Ceramics by Addition of Graphene Nanoplatelets, J. Eur. Ceram. Soc., 2015, 35, p 2723–2731CrossRef
22.
Zurück zum Zitat Q. Li, Y. Zhang, H. Gong, H. Sun, T. Li, X. Guo, and S. Ai, Effects of Graphene on the Thermal Conductivity of Pressureless-Sintered SiC Ceramics, Ceram. Int., 2015, 41, p p13547–p13552CrossRef Q. Li, Y. Zhang, H. Gong, H. Sun, T. Li, X. Guo, and S. Ai, Effects of Graphene on the Thermal Conductivity of Pressureless-Sintered SiC Ceramics, Ceram. Int., 2015, 41, p p13547–p13552CrossRef
23.
Zurück zum Zitat L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, and E.L. Corral, Toughening in Graphene Ceramic Composites, ACS Nano, 2011, 5, p 3182–3190CrossRef L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, and E.L. Corral, Toughening in Graphene Ceramic Composites, ACS Nano, 2011, 5, p 3182–3190CrossRef
24.
Zurück zum Zitat P. Kun, O. Tapasztó, F. Wéber, and C. Balázsi, Determination of Structural and Mechanical Properties of Multilayer Graphene Added Silicon Nitride-Based Composites, Ceram. Int., 2012, 38, p 211–216CrossRef P. Kun, O. Tapasztó, F. Wéber, and C. Balázsi, Determination of Structural and Mechanical Properties of Multilayer Graphene Added Silicon Nitride-Based Composites, Ceram. Int., 2012, 38, p 211–216CrossRef
25.
Zurück zum Zitat Y. Çelik, A. Çelik, E. Flahaut, and E. Suvaci, Anisotropic Mechanical and Functional Properties of Graphene-Based Alumina Matrix Nanocomposites, J. Eur. Ceram. Soc., 2016, 36, p 2075–2086CrossRef Y. Çelik, A. Çelik, E. Flahaut, and E. Suvaci, Anisotropic Mechanical and Functional Properties of Graphene-Based Alumina Matrix Nanocomposites, J. Eur. Ceram. Soc., 2016, 36, p 2075–2086CrossRef
26.
Zurück zum Zitat P. Rutkowski, W. Piekarczyk, L. Stobierski, and G. Górny, Anisotropy of Elastic Properties and Thermal Conductivity of Al2O3/h-BN Composites, J. Therm. Anal. Calorim., 2013, 115, p 461–466CrossRef P. Rutkowski, W. Piekarczyk, L. Stobierski, and G. Górny, Anisotropy of Elastic Properties and Thermal Conductivity of Al2O3/h-BN Composites, J. Therm. Anal. Calorim., 2013, 115, p 461–466CrossRef
27.
Zurück zum Zitat P. Rutkowski, L. Stobierski, and G. Górny, Thermal Stability and Conductivity of Hot-Pressed Si3N4–Graphene Composites, J. Therm. Anal. Calorim., 2014, 116, p 321–328CrossRef P. Rutkowski, L. Stobierski, and G. Górny, Thermal Stability and Conductivity of Hot-Pressed Si3N4–Graphene Composites, J. Therm. Anal. Calorim., 2014, 116, p 321–328CrossRef
28.
Zurück zum Zitat I. Ahmad, M. Islam, T. Subhani, and Y.Q. Zhu, Toughness Enhancement in Graphene Nanoplatelet/SiC Reinforced Al2O3 Ceramic Hybrid Nanocomposites, Nanotechnology, 2016, 27, p 42 I. Ahmad, M. Islam, T. Subhani, and Y.Q. Zhu, Toughness Enhancement in Graphene Nanoplatelet/SiC Reinforced Al2O3 Ceramic Hybrid Nanocomposites, Nanotechnology, 2016, 27, p 42
29.
Zurück zum Zitat S.W. Kim and A.R. Khalil, High-Frequency Induction Heat Sintering of Mechanically Alloyed Alumina–Yttria-Stabilized Zirconia Nano-bioceramics, J. Am. Ceram. Soc., 2006, 89, p 1280–1285CrossRef S.W. Kim and A.R. Khalil, High-Frequency Induction Heat Sintering of Mechanically Alloyed Alumina–Yttria-Stabilized Zirconia Nano-bioceramics, J. Am. Ceram. Soc., 2006, 89, p 1280–1285CrossRef
30.
Zurück zum Zitat W.S. Hummers and R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. , 1958, 80, p 1339–1340CrossRef W.S. Hummers and R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. , 1958, 80, p 1339–1340CrossRef
31.
Zurück zum Zitat I. Barin, Thermochemical Data of Pure Substances, VCH, Weinheim, 1993 I. Barin, Thermochemical Data of Pure Substances, VCH, Weinheim, 1993
32.
Zurück zum Zitat N. Takeshi and I. Tadao, Temperature Dependence of Lattice Vibrations and Analysis of the Specific Heat of Graphite, Phys. Rev., 2003, 68, p 399–404 N. Takeshi and I. Tadao, Temperature Dependence of Lattice Vibrations and Analysis of the Specific Heat of Graphite, Phys. Rev., 2003, 68, p 399–404
33.
Zurück zum Zitat A. Lerf, H. He, M. Forster, and J. Klinowski, Structure of Graphite Oxide Revisited, J. Phys. Chem., 1998, 102, p 4477–4482CrossRef A. Lerf, H. He, M. Forster, and J. Klinowski, Structure of Graphite Oxide Revisited, J. Phys. Chem., 1998, 102, p 4477–4482CrossRef
34.
Zurück zum Zitat H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, and I.A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, J. Phys. Chem., 2006, 110, p 8535–8539CrossRef H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, and I.A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, J. Phys. Chem., 2006, 110, p 8535–8539CrossRef
35.
Zurück zum Zitat H.C. Hsu and W.H. Tuan, Thermal Characteristics of a Two-Phase Composite, Adv. Powder Technol., 2016, 27, p 929–934CrossRef H.C. Hsu and W.H. Tuan, Thermal Characteristics of a Two-Phase Composite, Adv. Powder Technol., 2016, 27, p 929–934CrossRef
36.
Zurück zum Zitat M.F. Ashby, Criteria for Selecting the Components of Composites, Acta Metall. Mater., 1993, 41, p 1313–1335CrossRef M.F. Ashby, Criteria for Selecting the Components of Composites, Acta Metall. Mater., 1993, 41, p 1313–1335CrossRef
37.
Zurück zum Zitat J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, and A. Zurutuza, Anisotropy of Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature, Adv. Funct. Mater., 2015, 25, p 4664–4672CrossRef J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, and A. Zurutuza, Anisotropy of Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature, Adv. Funct. Mater., 2015, 25, p 4664–4672CrossRef
38.
Zurück zum Zitat H. Ondrej, S. Jaroslav, H. Eva, and S. Pavol, Thermal Properties of Alumina–MWCNTs Composites, J. Am. Eur. Ceram. Soc., 2015, 35, p 1559–1567CrossRef H. Ondrej, S. Jaroslav, H. Eva, and S. Pavol, Thermal Properties of Alumina–MWCNTs Composites, J. Am. Eur. Ceram. Soc., 2015, 35, p 1559–1567CrossRef
39.
Zurück zum Zitat E. Çelik and A.K. Roy, Thermal Properties of Graphene: Fundamentals and Applications, MRS Bull., 2012, 37, p 1273–1281CrossRef E. Çelik and A.K. Roy, Thermal Properties of Graphene: Fundamentals and Applications, MRS Bull., 2012, 37, p 1273–1281CrossRef
40.
Zurück zum Zitat S.R. Wang, M. Tambraparni, J.J. Qiu, J. Tipton, and D. Dean, Thermal Expansion of Graphene Composites, Macromolecules, 2009, 42, p 5251–5255CrossRef S.R. Wang, M. Tambraparni, J.J. Qiu, J. Tipton, and D. Dean, Thermal Expansion of Graphene Composites, Macromolecules, 2009, 42, p 5251–5255CrossRef
41.
Zurück zum Zitat N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 173, p 25–28 N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 173, p 25–28
42.
Zurück zum Zitat C.J. Lin, I.C. Lin, and W.H. Tuan, Effect of Graphene Concentration on Thermal Properties of Alumina–Graphene Composites Formed Using Spark Plasma Sintering, J. Mater. Sci., 2017, 52, p 1759–1766CrossRef C.J. Lin, I.C. Lin, and W.H. Tuan, Effect of Graphene Concentration on Thermal Properties of Alumina–Graphene Composites Formed Using Spark Plasma Sintering, J. Mater. Sci., 2017, 52, p 1759–1766CrossRef
43.
Zurück zum Zitat K.W. Schlichting, N.P. Padture, and P.G. Klemens, Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia, J. Mater. Sci., 2001, 36, p 3003–3010CrossRef K.W. Schlichting, N.P. Padture, and P.G. Klemens, Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia, J. Mater. Sci., 2001, 36, p 3003–3010CrossRef
44.
Zurück zum Zitat B.K. Jang and Y. Sakka, Influence of Microstructure on the Thermophysical Properties of Sintered SiC Ceramics, J. Alloys. Compd., 2008, 463, p 493–497CrossRef B.K. Jang and Y. Sakka, Influence of Microstructure on the Thermophysical Properties of Sintered SiC Ceramics, J. Alloys. Compd., 2008, 463, p 493–497CrossRef
45.
Zurück zum Zitat D.R. Clarke, Materials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings, Surf. Coat. Technol., 2003, 163, p 67–74CrossRef D.R. Clarke, Materials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings, Surf. Coat. Technol., 2003, 163, p 67–74CrossRef
46.
Zurück zum Zitat S.C. Zhang, W.G. Fahrenholtz, G.E. Hilmas, and E.J. Yadlowsky, Pressureless Sintering of Carbon Nanotube-Al2O3 Composites, J. Eur. Ceram. Soc., 2010, 30, p 33–35 S.C. Zhang, W.G. Fahrenholtz, G.E. Hilmas, and E.J. Yadlowsky, Pressureless Sintering of Carbon Nanotube-Al2O3 Composites, J. Eur. Ceram. Soc., 2010, 30, p 33–35
Metadaten
Titel
Thermophysical Properties of High-Frequency Induction Heat Sintered Graphene Nanoplatelets/Alumina Ceramic Functional Nanocomposites
verfasst von
Iftikhar Ahmad
Tayyab Subhani
Nannan Wang
Yanqiu Zhu
Publikationsdatum
07.05.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3395-6

Weitere Artikel der Ausgabe 6/2018

Journal of Materials Engineering and Performance 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.