Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2020

21.04.2020

Effects of Cyclic Heat Treatment on Microstructure and Mechanical Properties of 13%Cr-4%Ni Martensitic Stainless Steel

verfasst von: Jai Singh, S. K. Nath

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work investigates the effects of thermal cycling heat treatment (TCHT) on microstructure and mechanical properties of 13%Cr-4%Ni martensitic stainless steel (13-4MSS). As-received 13-4 MSS was subjected to three different thermal cycling schedules by using a thermo-mechanical simulator (Gleeble 3800). The evolved microstructures were studied at three cycles for each thermal cycling schedule with the help of optical, scanning electron microscopy, x-ray analysis, and transmission electron microscopy. Hardness and notched tensile tests were conducted to further characterize the as-received and processed specimens. This cyclic treatment raised the hardness to 413 HV (for TCHT at 950 °C) from 274 HV (for as-received). A 42% (for TCHT at 950 °C) and 39% (for TCHT at 1050 °C) hike in ultimate tensile strength (UTS) with a slight decline in ductility was observed as compared to the UTS and ductility of as-received steel. The evolved microstructure, dislocation density, and the refinement of martensitic blocks attributed to the enhanced hardness and UTS. The coarsening of laths (observed at 1050 °C) and bimodal lath structure (observed at 950 °C) were also found to control the mechanical properties of the present steel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Prakash and S.K. Nath, Studies on Enhancement of Silt Erosion Resistance of 13/4 Martensitic Stainless Steel by Low-Temperature Salt Bath Nitriding, J. Mater. Eng. Perform., 2018, 27(7), p 3206–3216 G. Prakash and S.K. Nath, Studies on Enhancement of Silt Erosion Resistance of 13/4 Martensitic Stainless Steel by Low-Temperature Salt Bath Nitriding, J. Mater. Eng. Perform., 2018, 27(7), p 3206–3216
2.
Zurück zum Zitat K. Nakazawa, Y. Kawabe, and S. Muneki, Grain Refinement of High-Strength Maraging Steels Through Cyclic Heat Treatment, Mater. Sci. Eng., 1978, 33(1), p 49–56 K. Nakazawa, Y. Kawabe, and S. Muneki, Grain Refinement of High-Strength Maraging Steels Through Cyclic Heat Treatment, Mater. Sci. Eng., 1978, 33(1), p 49–56
3.
Zurück zum Zitat B.R. Kumar, S. Sharma, B.P. Kashyap, and N. Prabhu, Ultrafine Grained Microstructure Tailoring in Austenitic Stainless Steel for Enhanced Plasticity, Mater. Des., 2015, 68, p 63–71 B.R. Kumar, S. Sharma, B.P. Kashyap, and N. Prabhu, Ultrafine Grained Microstructure Tailoring in Austenitic Stainless Steel for Enhanced Plasticity, Mater. Des., 2015, 68, p 63–71
4.
Zurück zum Zitat J.N. Wang, J. Yang, Q. Xia, and Y. Wang, On the Grain Size Refinement of TiAl Alloys by Cyclic Heat Treatment, Mater. Sci. Eng., A, 2002, 329–331, p 118–123 J.N. Wang, J. Yang, Q. Xia, and Y. Wang, On the Grain Size Refinement of TiAl Alloys by Cyclic Heat Treatment, Mater. Sci. Eng., A, 2002, 329–331, p 118–123
5.
Zurück zum Zitat P. Payson, W.L. Hodapp, and J. Leeder, The Spheroidizing of Steel by Isothermal Transformation, Trans. Am. Soc. Met., 1940, 28, p 306 P. Payson, W.L. Hodapp, and J. Leeder, The Spheroidizing of Steel by Isothermal Transformation, Trans. Am. Soc. Met., 1940, 28, p 306
6.
Zurück zum Zitat A. Mishra, C. Mondal, and J. Maity, Microstructural Modifications in AISI, 1080 Eutectoid Steel Under Combined Cyclic Heat Treatment, Steel Res. Int., 2016, 87(4), p 424–435 A. Mishra, C. Mondal, and J. Maity, Microstructural Modifications in AISI, 1080 Eutectoid Steel Under Combined Cyclic Heat Treatment, Steel Res. Int., 2016, 87(4), p 424–435
7.
Zurück zum Zitat A. Mishra and J. Maity, Structure-Property Correlation of AISI, 1080 Steel Subjected to Cyclic Quenching Treatment, Mater. Sci. Eng., A, 2015, 646, p 169–181 A. Mishra and J. Maity, Structure-Property Correlation of AISI, 1080 Steel Subjected to Cyclic Quenching Treatment, Mater. Sci. Eng., A, 2015, 646, p 169–181
8.
Zurück zum Zitat S. Mishra, A. Mishra, B.K. Show, and J. Maity, Simultaneous Enhancement of Ductility and Strength in AISI, 1080 Steel Through a Typical Cyclic Heat Treatment, Mater. Sci. Eng., A, 2017, 688, p 262–271 S. Mishra, A. Mishra, B.K. Show, and J. Maity, Simultaneous Enhancement of Ductility and Strength in AISI, 1080 Steel Through a Typical Cyclic Heat Treatment, Mater. Sci. Eng., A, 2017, 688, p 262–271
9.
Zurück zum Zitat S. Maji, A.R. Subhani, B.K. Show, and J. Maity, Effect of Cooling Rate on Microstructure and Mechanical Properties of Eutectoid Steel Under Cyclic Heat Treatment, J. Mater. Eng. Perform., 2017, 26, p 3058–3070 S. Maji, A.R. Subhani, B.K. Show, and J. Maity, Effect of Cooling Rate on Microstructure and Mechanical Properties of Eutectoid Steel Under Cyclic Heat Treatment, J. Mater. Eng. Perform., 2017, 26, p 3058–3070
10.
Zurück zum Zitat Z.Q. Lv, B. Wang, Z.H. Wang, S.H. Sun, and W.T. Fu, Effect of Cyclic Heat Treatments on Spheroidizing Behavior of Cementite in High Carbon Steel, Mater. Sci. Eng., A, 2013, 574, p 143–148 Z.Q. Lv, B. Wang, Z.H. Wang, S.H. Sun, and W.T. Fu, Effect of Cyclic Heat Treatments on Spheroidizing Behavior of Cementite in High Carbon Steel, Mater. Sci. Eng., A, 2013, 574, p 143–148
11.
Zurück zum Zitat A. Mishra, A. Saha, and J. Maity, Development of High Strength Ductile Eutectoid Steel Through Cyclic Heat Treatment Involving Incomplete Austenitization Followed by Forced Air Cooling, Mater. Charact., 2016, 114, p 277–288 A. Mishra, A. Saha, and J. Maity, Development of High Strength Ductile Eutectoid Steel Through Cyclic Heat Treatment Involving Incomplete Austenitization Followed by Forced Air Cooling, Mater. Charact., 2016, 114, p 277–288
12.
Zurück zum Zitat A. Mishra, C. Mondal, and J. Maity, Effect of Combined Cyclic Heat Treatment on AISI, 1080 Steel: Part II-Mechanical Property Evaluation, Steel Res. Int., 2017, 88, p 1–10 A. Mishra, C. Mondal, and J. Maity, Effect of Combined Cyclic Heat Treatment on AISI, 1080 Steel: Part II-Mechanical Property Evaluation, Steel Res. Int., 2017, 88, p 1–10
13.
Zurück zum Zitat Z.-Q. Lü, H.-F. Zhang, Q. Meng, Z.-H. Wang, and W.-T. Fu, Effect of Cyclic Annealing on Microstructure and Mechanical Properties of Medium Carbon Steel, J. Iron. Steel Res. Int., 2016, 23(2), p 145–150 Z.-Q. Lü, H.-F. Zhang, Q. Meng, Z.-H. Wang, and W.-T. Fu, Effect of Cyclic Annealing on Microstructure and Mechanical Properties of Medium Carbon Steel, J. Iron. Steel Res. Int., 2016, 23(2), p 145–150
14.
Zurück zum Zitat A. Saha, D.K. Mondal, K. Biswas, and J. Maity, Microstructural Modifications and Changes in Mechanical Properties During Cyclic Heat Treatment of 0.16% Carbon Steel, Mater. Sci. Eng., A, 2012, 534, p 465–475 A. Saha, D.K. Mondal, K. Biswas, and J. Maity, Microstructural Modifications and Changes in Mechanical Properties During Cyclic Heat Treatment of 0.16% Carbon Steel, Mater. Sci. Eng., A, 2012, 534, p 465–475
15.
Zurück zum Zitat A. Saha, D.K. Mondal, K. Biswas, and J. Maity, Development of High Strength Ductile Hypereutectoid Steel by Cyclic Heat Treatment Process, Mater. Sci. Eng., A, 2012, 541, p 204–215 A. Saha, D.K. Mondal, K. Biswas, and J. Maity, Development of High Strength Ductile Hypereutectoid Steel by Cyclic Heat Treatment Process, Mater. Sci. Eng., A, 2012, 541, p 204–215
16.
Zurück zum Zitat A. Saha, D.K. Mondal, and J. Maity, Effect of Cyclic Heat Treatment on Microstructure and Mechanical Properties of 0.6 wt% Carbon Steel, Mater. Sci. Eng., A, 2010, 527(16–17), p 4001–4007 A. Saha, D.K. Mondal, and J. Maity, Effect of Cyclic Heat Treatment on Microstructure and Mechanical Properties of 0.6 wt% Carbon Steel, Mater. Sci. Eng., A, 2010, 527(16–17), p 4001–4007
17.
Zurück zum Zitat B. Smoljan, An Analysis of Combined Cyclic Heat Treatment Performance, J. Mater. Process. Technol., 2004, 155–156(1–3), p 1704–1707 B. Smoljan, An Analysis of Combined Cyclic Heat Treatment Performance, J. Mater. Process. Technol., 2004, 155–156(1–3), p 1704–1707
18.
Zurück zum Zitat J.Y. Koo and G. Thomas, Thermal Cycling Treatments and Microstructures for Improved Properties of Fe-0.12% C-0.5% Mn Steels, Mater. Sci. Eng., 1976, 24(2), p 187–198 J.Y. Koo and G. Thomas, Thermal Cycling Treatments and Microstructures for Improved Properties of Fe-0.12% C-0.5% Mn Steels, Mater. Sci. Eng., 1976, 24(2), p 187–198
19.
Zurück zum Zitat H.-Y. Li, M.-S. Han, D.-W. Li, J. Li, and D.-C. Xu, Effect of Cyclic Heat Treatment on Microstructure and Mechanical Properties of 50CrV4 Steel, J. Cent. South Univ., 2015, 22(2), p 409–415 H.-Y. Li, M.-S. Han, D.-W. Li, J. Li, and D.-C. Xu, Effect of Cyclic Heat Treatment on Microstructure and Mechanical Properties of 50CrV4 Steel, J. Cent. South Univ., 2015, 22(2), p 409–415
20.
Zurück zum Zitat Z. Lv, X.-P. Ren, Z.-H. Li, Z.-M. Lu, and M.-M. Gao, Effects of Two Different Cyclic Heat Treatments on Microstructure and Mechanical Properties of Ti-V Microalloyed Steel, Mater. Res., 2015, 18(2), p 304–312 Z. Lv, X.-P. Ren, Z.-H. Li, Z.-M. Lu, and M.-M. Gao, Effects of Two Different Cyclic Heat Treatments on Microstructure and Mechanical Properties of Ti-V Microalloyed Steel, Mater. Res., 2015, 18(2), p 304–312
21.
Zurück zum Zitat B.R. Kumar, B. Mahato, S. Sharma, and J.K. Sahu, Effect of Cyclic Thermal Process on Ultrafine Grain Formation in AISI, 304L Austenitic Stainless Steel, Metall. Mater. Trans. A, 2009, 40A, p 3226–3234 B.R. Kumar, B. Mahato, S. Sharma, and J.K. Sahu, Effect of Cyclic Thermal Process on Ultrafine Grain Formation in AISI, 304L Austenitic Stainless Steel, Metall. Mater. Trans. A, 2009, 40A, p 3226–3234
22.
Zurück zum Zitat B.R. Kumar and D. Raabe, Tensile Deformation Characteristics of Bulk Ultrafine-Grained Austenitic Stainless Steel Produced by Thermal Cycling, Scr. Mater., 2012, 66(9), p 634–637 B.R. Kumar and D. Raabe, Tensile Deformation Characteristics of Bulk Ultrafine-Grained Austenitic Stainless Steel Produced by Thermal Cycling, Scr. Mater., 2012, 66(9), p 634–637
23.
Zurück zum Zitat S. Tu, X. Ren, B. Nyhus, O.M. Akselsen, J. He, and Z. Zhang, A Special Notched Tensile Specimen to Determine the Flow Stress-Strain Curve of Hardening Materials Without Applying the Bridgman Correction, Eng. Fract. Mech., 2018, 179, p 225–239 S. Tu, X. Ren, B. Nyhus, O.M. Akselsen, J. He, and Z. Zhang, A Special Notched Tensile Specimen to Determine the Flow Stress-Strain Curve of Hardening Materials Without Applying the Bridgman Correction, Eng. Fract. Mech., 2018, 179, p 225–239
24.
Zurück zum Zitat S. Kumar, G.P. Chaudhari, S.K. Nath, and B. Basu, Effect of Preheat Temperature on Weldability of Martensitic Stainless Steel, Mater. Manuf. Process., 2012, 27(12), p 1382–1386 S. Kumar, G.P. Chaudhari, S.K. Nath, and B. Basu, Effect of Preheat Temperature on Weldability of Martensitic Stainless Steel, Mater. Manuf. Process., 2012, 27(12), p 1382–1386
25.
Zurück zum Zitat Z.L. Zhang, M. Hauge, C. Thaulow, and J. Ødegård, A Notched Cross Weld Tensile Testing Method for Determining True Stress-Strain Curves for Weldments, Eng. Fract. Mech., 2002, 69(3), p 353–366 Z.L. Zhang, M. Hauge, C. Thaulow, and J. Ødegård, A Notched Cross Weld Tensile Testing Method for Determining True Stress-Strain Curves for Weldments, Eng. Fract. Mech., 2002, 69(3), p 353–366
27.
Zurück zum Zitat B. Kishor, G.P. Chaudhari, and S.K. Nath, Slurry Erosion of Thermo-Mechanically Processed 13Cr4Ni Stainless Steel, Tribol. Int., 2016, 93, p 50–57 B. Kishor, G.P. Chaudhari, and S.K. Nath, Slurry Erosion of Thermo-Mechanically Processed 13Cr4Ni Stainless Steel, Tribol. Int., 2016, 93, p 50–57
28.
Zurück zum Zitat Y. Wang, M. Chen, F. Zhou, and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419, p 912–915 Y. Wang, M. Chen, F. Zhou, and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419, p 912–915
29.
Zurück zum Zitat F. Ren, F. Chen, and J. Chen, Investigation on Dynamic Recrystallization Behavior of Martensitic Stainless Steel, Adv. Mater. Sci. Eng., 2014, 2014, p 1–16 F. Ren, F. Chen, and J. Chen, Investigation on Dynamic Recrystallization Behavior of Martensitic Stainless Steel, Adv. Mater. Sci. Eng., 2014, 2014, p 1–16
30.
Zurück zum Zitat L.F. Alvarez, C. Garcia, and V. Lopez, Continuous Cooling Transformations in Martensitic Stainless Steels, ISIJ Int., 1994, 34(6), p 516–521 L.F. Alvarez, C. Garcia, and V. Lopez, Continuous Cooling Transformations in Martensitic Stainless Steels, ISIJ Int., 1994, 34(6), p 516–521
31.
Zurück zum Zitat E.I. Galindo-Nava and P.E.J. Rivera-Díaz-Del-Castillo, Understanding the Factors Controlling the Hardness in Martensitic Steels, Scr. Mater., 2016, 110, p 96–100 E.I. Galindo-Nava and P.E.J. Rivera-Díaz-Del-Castillo, Understanding the Factors Controlling the Hardness in Martensitic Steels, Scr. Mater., 2016, 110, p 96–100
32.
Zurück zum Zitat T. Ohmura, T. Hara, and K. Tsuzaki, Relationship Between Nanohardness and Microstructures in High-Purity Fe-C As-Quenched and Quench-Tempered Martensite, J. Mater. Res., 2003, 18(6), p 1465–1470 T. Ohmura, T. Hara, and K. Tsuzaki, Relationship Between Nanohardness and Microstructures in High-Purity Fe-C As-Quenched and Quench-Tempered Martensite, J. Mater. Res., 2003, 18(6), p 1465–1470
33.
Zurück zum Zitat A. Akhiate, E. Braud, D. Thibault, and M. Brochu, Carbon Content and Heat Treatment Effects on Microstructures and Mechanical Properties of 13% Cr–4% Ni Martensitic Stainless Steel, Metall. Mater. Trans. B, 2014, p 5000–3000. A. Akhiate, E. Braud, D. Thibault, and M. Brochu, Carbon Content and Heat Treatment Effects on Microstructures and Mechanical Properties of 13% Cr–4% Ni Martensitic Stainless Steel, Metall. Mater. Trans. B, 2014, p 5000–3000.
34.
Zurück zum Zitat H.J. Amarendra, P. Kalhan, G.P. Chaudhari, S.K. Nath, and S. Kumar, Slurry Erosion Response of Heat Treated 13Cr-4Ni Martensitic Stainless Steel, Mater. Sci. Forum, 2012, 710, p 500–505 H.J. Amarendra, P. Kalhan, G.P. Chaudhari, S.K. Nath, and S. Kumar, Slurry Erosion Response of Heat Treated 13Cr-4Ni Martensitic Stainless Steel, Mater. Sci. Forum, 2012, 710, p 500–505
35.
Zurück zum Zitat V. Olden, Z.L. Zhang, E. Østby, B. Nyhus, and C. Thaulow, Notch tensile testing of high strength steel weldments, in 2nd International Symposium on High Strength Steel (Verdal, Norway, 2002), p. 1–8. V. Olden, Z.L. Zhang, E. Østby, B. Nyhus, and C. Thaulow, Notch tensile testing of high strength steel weldments, in 2nd International Symposium on High Strength Steel (Verdal, Norway, 2002), p. 1–8.
36.
Zurück zum Zitat M.A. Maleque, Y.M. Poon, and H.H. Masjuki, The Effect of Intercritical Heat Treatment on the Mechanical Properties of AISI, 3115 Steel, J. Mater. Process. Technol., 2004, 154, p 482–487 M.A. Maleque, Y.M. Poon, and H.H. Masjuki, The Effect of Intercritical Heat Treatment on the Mechanical Properties of AISI, 3115 Steel, J. Mater. Process. Technol., 2004, 154, p 482–487
37.
Zurück zum Zitat L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe, and C.C. Tasan, Multiple Mechanisms of Lath Martensite Plasticity, Acta Mater., 2016, 121, p 202–214 L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe, and C.C. Tasan, Multiple Mechanisms of Lath Martensite Plasticity, Acta Mater., 2016, 121, p 202–214
38.
Zurück zum Zitat S. Zhang, P. Wang, D. Li, and Y. Li, Investigation of the Evolution of Retained Austenite in Fe-13%Cr-4%Ni Martensitic Stainless Steel during Intercritical Tempering, Mater. Des., 2015, 84, p 385–394 S. Zhang, P. Wang, D. Li, and Y. Li, Investigation of the Evolution of Retained Austenite in Fe-13%Cr-4%Ni Martensitic Stainless Steel during Intercritical Tempering, Mater. Des., 2015, 84, p 385–394
39.
40.
Zurück zum Zitat H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., 2006, 54, p 1279–1288 H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., 2006, 54, p 1279–1288
41.
Zurück zum Zitat S. Morito, H. Yoshida, T. Maki, and X. Huang, Effect of Block Size on the Strength of Lath Martensite in Low Carbon Steels, Mater. Sci. Eng., A, 2006, 440, p 237–240 S. Morito, H. Yoshida, T. Maki, and X. Huang, Effect of Block Size on the Strength of Lath Martensite in Low Carbon Steels, Mater. Sci. Eng., A, 2006, 440, p 237–240
42.
Zurück zum Zitat C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, F. Zhang, and K. Sun, Effect of Martensitic Morphology on Mechanical Properties of an As-Quenched and Tempered 25CrMo48V Steel, Mater. Sci. Eng., A, 2012, 534, p 339–346 C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, F. Zhang, and K. Sun, Effect of Martensitic Morphology on Mechanical Properties of an As-Quenched and Tempered 25CrMo48V Steel, Mater. Sci. Eng., A, 2012, 534, p 339–346
43.
Zurück zum Zitat J.S.J. Hargreaves, Some Considerations Related to the Use of the Scherrer Equation in Powder X-Ray Diffraction as Applied to Heterogeneous Catalysts, Catal. Struct. React., 2016, 2(1-4), p 33–37 J.S.J. Hargreaves, Some Considerations Related to the Use of the Scherrer Equation in Powder X-Ray Diffraction as Applied to Heterogeneous Catalysts, Catal. Struct. React., 2016, 2(1-4), p 33–37
44.
Zurück zum Zitat G.K. Williamson and R.E. Smallman, III, Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-Ray Debye-Scherrer Spectrum, Philos. Mag., 1956, 1(1), p 34–46 G.K. Williamson and R.E. Smallman, III, Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-Ray Debye-Scherrer Spectrum, Philos. Mag., 1956, 1(1), p 34–46
45.
Zurück zum Zitat G. Krauss, Steels: Processing, Structure, and Performance, ASM International, Cleveland, 2005 G. Krauss, Steels: Processing, Structure, and Performance, ASM International, Cleveland, 2005
46.
Zurück zum Zitat S. Morito, J. Nishikawa, and T. Maki, Dislocation Density Within Lath Martensite in Fe–C and Fe–Ni Alloys, ISIJ Int., 2003, 43(9), p 1475–1477 S. Morito, J. Nishikawa, and T. Maki, Dislocation Density Within Lath Martensite in Fe–C and Fe–Ni Alloys, ISIJ Int., 2003, 43(9), p 1475–1477
47.
Zurück zum Zitat E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, A Model for the Microstructure Behaviour and Strength Evolution in Lath Martensite, Acta Mater., 2015, 98, p 81–93 E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, A Model for the Microstructure Behaviour and Strength Evolution in Lath Martensite, Acta Mater., 2015, 98, p 81–93
48.
Zurück zum Zitat H. Nakagawa and T. Miyazaki, Effect of Retained Austenite on the Microstructure and Mechanical Properties of Martensitic Precipitation Hardening Stainless Steel, J. Mater. Sci., 1999, 34(16), p 3901–3908 H. Nakagawa and T. Miyazaki, Effect of Retained Austenite on the Microstructure and Mechanical Properties of Martensitic Precipitation Hardening Stainless Steel, J. Mater. Sci., 1999, 34(16), p 3901–3908
49.
Zurück zum Zitat S. Morito, K. Oh-ishi, K. Hono, and T. Ohba, Carbon Enrichment in Retained Austenite Films in Low Carbon Lath Martensite Steel, ISIJ Int., 2011, 51(7), p 1200–1202 S. Morito, K. Oh-ishi, K. Hono, and T. Ohba, Carbon Enrichment in Retained Austenite Films in Low Carbon Lath Martensite Steel, ISIJ Int., 2011, 51(7), p 1200–1202
50.
Zurück zum Zitat X.D. Wang, N. Zhong, Y.H. Rong, T.Y. Hsu, Z.Y. Xu, and L. Wang, Novel Ultrahigh-Strength Nanolath Martensitic Steel by Quenching–Partitioning–Tempering Process, J. Mater. Res., 2009, 24(1), p 260–267 X.D. Wang, N. Zhong, Y.H. Rong, T.Y. Hsu, Z.Y. Xu, and L. Wang, Novel Ultrahigh-Strength Nanolath Martensitic Steel by Quenching–Partitioning–Tempering Process, J. Mater. Res., 2009, 24(1), p 260–267
51.
Zurück zum Zitat R. Bhadeshia and H. Honeycombe, Steels: Microstructure and Properties, 3rd ed., Butterworth-Heinemann, Oxford, 2006 R. Bhadeshia and H. Honeycombe, Steels: Microstructure and Properties, 3rd ed., Butterworth-Heinemann, Oxford, 2006
52.
Zurück zum Zitat C. Du, J.P.M. Hoefnagels, R. Vaes, and M.G.D. Geers, Block and Sub-block Boundary Strengthening in Lath Martensite, Scr. Mater., 2016, 116, p 117–121 C. Du, J.P.M. Hoefnagels, R. Vaes, and M.G.D. Geers, Block and Sub-block Boundary Strengthening in Lath Martensite, Scr. Mater., 2016, 116, p 117–121
53.
Zurück zum Zitat B. Hutchinson and J. Hagstro, Microstructures and Hardness of As-Quenched Martensites (0.1–0.5%C), Acta Mater., 2011, 59, p 5845–5858 B. Hutchinson and J. Hagstro, Microstructures and Hardness of As-Quenched Martensites (0.1–0.5%C), Acta Mater., 2011, 59, p 5845–5858
54.
Zurück zum Zitat Z. Jiang, Z. Guan, and J. Lian, Effects of Microstructural Variables on the Deformation Behaviour of Dual-Phase Steel, Mater. Sci. Eng., A, 1995, 190, p 55–64 Z. Jiang, Z. Guan, and J. Lian, Effects of Microstructural Variables on the Deformation Behaviour of Dual-Phase Steel, Mater. Sci. Eng., A, 1995, 190, p 55–64
Metadaten
Titel
Effects of Cyclic Heat Treatment on Microstructure and Mechanical Properties of 13%Cr-4%Ni Martensitic Stainless Steel
verfasst von
Jai Singh
S. K. Nath
Publikationsdatum
21.04.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04787-w

Weitere Artikel der Ausgabe 4/2020

Journal of Materials Engineering and Performance 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.