Skip to main content
Erschienen in: Neuroinformatics 3-4/2018

23.03.2018 | Original Article

Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer’s Disease Diagnosis

verfasst von: Manhua Liu, Danni Cheng, Kundong Wang, Yaping Wang, the Alzheimer’s Disease Neuroimaging Initiative

Erschienen in: Neuroinformatics | Ausgabe 3-4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accurate and early diagnosis of Alzheimer’s disease (AD) plays important role for patient care and development of future treatment. Structural and functional neuroimages, such as magnetic resonance images (MRI) and positron emission tomography (PET), are providing powerful imaging modalities to help understand the anatomical and functional neural changes related to AD. In recent years, machine learning methods have been widely studied on analysis of multi-modality neuroimages for quantitative evaluation and computer-aided-diagnosis (CAD) of AD. Most existing methods extract the hand-craft imaging features after image preprocessing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. This paper proposes to construct cascaded convolutional neural networks (CNNs) to learn the multi-level and multimodal features of MRI and PET brain images for AD classification. First, multiple deep 3D-CNNs are constructed on different local image patches to transform the local brain image into more compact high-level features. Then, an upper high-level 2D-CNN followed by softmax layer is cascaded to ensemble the high-level features learned from the multi-modality and generate the latent multimodal correlation features of the corresponding image patches for classification task. Finally, these learned features are combined by a fully connected layer followed by softmax layer for AD classification. The proposed method can automatically learn the generic multi-level and multimodal features from multiple imaging modalities for classification, which are robust to the scale and rotation variations to some extent. No image segmentation and rigid registration are required in pre-processing the brain images. Our method is evaluated on the baseline MRI and PET images of 397 subjects including 93 AD patients, 204 mild cognitive impairment (MCI, 76 pMCI +128 sMCI) and 100 normal controls (NC) from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 93.26% for classification of AD vs. NC and 82.95% for classification pMCI vs. NC, demonstrating the promising classification performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adrien, P.A.G.M. (2015). Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. arXiv:1502.02506 [cs.CV]. Adrien, P.A.G.M. (2015). Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. arXiv:1502.02506 [cs.CV].
Zurück zum Zitat Alberdi, A., Aztiria, A., & Basarab, A. (2016). On the early diagnosis of Alzheimer's disease from multimodal signals: A survey. Artificial Intelligence in Medicine, 71, 1–29.CrossRefPubMed Alberdi, A., Aztiria, A., & Basarab, A. (2016). On the early diagnosis of Alzheimer's disease from multimodal signals: A survey. Artificial Intelligence in Medicine, 71, 1–29.CrossRefPubMed
Zurück zum Zitat Cabral, C., Silveira, M., Neuroimaging, A.S.D. (2013). Classification of Alzheimer’s disease from FDG-PET images using favourite class ensembles. 2013 35th Annual International Conference of the Ieee Engineering in Medicine and Biology Society (Embc), pp. 2477–2480. Cabral, C., Silveira, M., Neuroimaging, A.S.D. (2013). Classification of Alzheimer’s disease from FDG-PET images using favourite class ensembles. 2013 35th Annual International Conference of the Ieee Engineering in Medicine and Biology Society (Embc), pp. 2477–2480.
Zurück zum Zitat Cheng, B., Liu, M., Suk, H. I., Shen, D., & Zhang, D. (2015). Multimodal manifold-regularized transfer learning for MCI conversion prediction. Brain Imaging and Behavior, 9, 913–926.CrossRefPubMedPubMedCentral Cheng, B., Liu, M., Suk, H. I., Shen, D., & Zhang, D. (2015). Multimodal manifold-regularized transfer learning for MCI conversion prediction. Brain Imaging and Behavior, 9, 913–926.CrossRefPubMedPubMedCentral
Zurück zum Zitat Gerardin, E., Chetelat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H. S., Niethammer, M., Dubois, B., Lehericy, S., Garnero, L., Eustache, F., Colliot, O., & Initi, A.s. D. N. (2009). Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. NeuroImage, 47, 1476–1486. Gerardin, E., Chetelat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H. S., Niethammer, M., Dubois, B., Lehericy, S., Garnero, L., Eustache, F., Colliot, O., & Initi, A.s. D. N. (2009). Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. NeuroImage, 47, 1476–1486.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. pp. 770–778. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. pp. 770–778.
Zurück zum Zitat Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M. K., & Johnson, S. C. (2009). Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage, 48, 138–149.CrossRefPubMedPubMedCentral Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M. K., & Johnson, S. C. (2009). Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage, 48, 138–149.CrossRefPubMedPubMedCentral
Zurück zum Zitat Hosseini-Asl, E., Keynton, R., & El-Baz, A. (2016). Alzheimer’s disease diagnostics by adaptation of 3D convolutional network. 2016 I.E. International Conference on Image Processing (ICIP), pp 126–130. Hosseini-Asl, E., Keynton, R., & El-Baz, A. (2016). Alzheimer’s disease diagnostics by adaptation of 3D convolutional network. 2016 I.E. International Conference on Image Processing (ICIP), pp 126–130.
Zurück zum Zitat Ishii, K., Kawachi, T., Sasaki, H., Kono, A. K., Fukuda, T., Kojima, Y., & Mori, E. (2005). Voxel-based morphometric comparison between early- and late-onset mild Alzheimer’s disease and assessment of diagnostic performance of z score images. AJNR American Journal of Neuroradiology, 26(2), 333–340.PubMed Ishii, K., Kawachi, T., Sasaki, H., Kono, A. K., Fukuda, T., Kojima, Y., & Mori, E. (2005). Voxel-based morphometric comparison between early- and late-onset mild Alzheimer’s disease and assessment of diagnostic performance of z score images. AJNR American Journal of Neuroradiology, 26(2), 333–340.PubMed
Zurück zum Zitat Jack Jr., C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., L Whitwell, J., Ward, C., Dale, A. M., Felmlee, J. P., Gunter, J. L., Hill, D. L., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., DeCarli, C. S., Krueger, G., Ward, H. A., Metzger, G. J., Scott, K. T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J. P., Fleisher, A. S., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., & Weiner, M. W. (2008). The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging: JMRI, 27, 685–691.CrossRefPubMed Jack Jr., C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., L Whitwell, J., Ward, C., Dale, A. M., Felmlee, J. P., Gunter, J. L., Hill, D. L., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., DeCarli, C. S., Krueger, G., Ward, H. A., Metzger, G. J., Scott, K. T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J. P., Fleisher, A. S., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., & Weiner, M. W. (2008). The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging: JMRI, 27, 685–691.CrossRefPubMed
Zurück zum Zitat Kabani, N., MacDonald, D., Holmes, C. J., & Evans, A. (1998). A 3D atlas of the human brain. NeuroImage, 7, S717.CrossRef Kabani, N., MacDonald, D., Holmes, C. J., & Evans, A. (1998). A 3D atlas of the human brain. NeuroImage, 7, S717.CrossRef
Zurück zum Zitat Kloppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C., Jack Jr, C.R., Ashburner, J., & Frackowiak, R.S.J. (2008). Automatic classification of MR scans in Alzheimer’s disease Brain 131(Pt 3):681–689. Kloppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C., Jack Jr, C.R., Ashburner, J., & Frackowiak, R.S.J. (2008). Automatic classification of MR scans in Alzheimer’s disease Brain 131(Pt 3):681–689.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012). ImageNet classification with deep convolutional neural networks. International Conference on Neural Information Processing Systems, pp. 1097–1105. Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012). ImageNet classification with deep convolutional neural networks. International Conference on Neural Information Processing Systems, pp. 1097–1105.
Zurück zum Zitat Lécun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc IEEE, 86, 2278–2324.CrossRef Lécun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc IEEE, 86, 2278–2324.CrossRef
Zurück zum Zitat Lerch, J. P., Pruessner, J., Zijdenbos, A. P., Collins, D. L., Teipel, S. J., Hampel, H., & Evans, A. C. (2008). Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls. Neurobiology of Aging, 29, 23–30.CrossRefPubMed Lerch, J. P., Pruessner, J., Zijdenbos, A. P., Collins, D. L., Teipel, S. J., Hampel, H., & Evans, A. C. (2008). Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls. Neurobiology of Aging, 29, 23–30.CrossRefPubMed
Zurück zum Zitat Li, R., Zhang, W., Suk, H.I., Wang, L., Li, J., Shen, D., Ji, S., (2014). Deep learning based imaging data completion for improved brain disease diagnosis. Medical image computing and computer-assisted intervention: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention 17, 305–312. Li, R., Zhang, W., Suk, H.I., Wang, L., Li, J., Shen, D., Ji, S., (2014). Deep learning based imaging data completion for improved brain disease diagnosis. Medical image computing and computer-assisted intervention: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention 17, 305–312.
Zurück zum Zitat Lin, T.Y., Roychowdhury, A., & Maji, S. (2015). Bilinear CNN models for fine-grained visual recognition. IEEE International Conference on Computer Vision, Santiago, Chile, pp 1449–1457. Lin, T.Y., Roychowdhury, A., & Maji, S. (2015). Bilinear CNN models for fine-grained visual recognition. IEEE International Conference on Computer Vision, Santiago, Chile, pp 1449–1457.
Zurück zum Zitat Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D., & Fulham, M. J. (2015). Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease. IEEE Transactions on Biomedical Engineering, 62, 1132–1140.CrossRefPubMed Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D., & Fulham, M. J. (2015). Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease. IEEE Transactions on Biomedical Engineering, 62, 1132–1140.CrossRefPubMed
Zurück zum Zitat Lu, S., Xia, Y., Cai, T.W., & Feng, D.D. (2015). Semi-supervised manifold learning with affinity regularization for Alzheimer's disease identification using positron emission tomography imaging. 2015 37th Annual International Conference of the Ieee Engineering in Medicine and Biology Society (Embc), pp. 2251–2254. Lu, S., Xia, Y., Cai, T.W., & Feng, D.D. (2015). Semi-supervised manifold learning with affinity regularization for Alzheimer's disease identification using positron emission tomography imaging. 2015 37th Annual International Conference of the Ieee Engineering in Medicine and Biology Society (Embc), pp. 2251–2254.
Zurück zum Zitat Minati, L., Edginton, T., Bruzzone, M. G., & Giaccone, G. (2009). Reviews: Current concepts in Alzheimer's disease: A multidisciplinary review. American Journal of Alzheimers Disease & Other Dementias, 24, 95–121.CrossRef Minati, L., Edginton, T., Bruzzone, M. G., & Giaccone, G. (2009). Reviews: Current concepts in Alzheimer's disease: A multidisciplinary review. American Journal of Alzheimers Disease & Other Dementias, 24, 95–121.CrossRef
Zurück zum Zitat Silveira M, Marques, J. (2010). Boosting Alzheimer disease diagnosis using PET images. 20th IEEE international conference on pattern recognition (ICPR), pp. 2556–2559. Silveira M, Marques, J. (2010). Boosting Alzheimer disease diagnosis using PET images. 20th IEEE international conference on pattern recognition (ICPR), pp. 2556–2559.
Zurück zum Zitat Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging, 17, 87–97.CrossRefPubMed Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging, 17, 87–97.CrossRefPubMed
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929–1958. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929–1958.
Zurück zum Zitat Suk, H.I., Shen, D., 2013. Deep learning-based feature representation for AD/MCI classification. Medical image computing and computer-assisted intervention: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention 16, 583–590. Suk, H.I., Shen, D., 2013. Deep learning-based feature representation for AD/MCI classification. Medical image computing and computer-assisted intervention: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention 16, 583–590.
Zurück zum Zitat Suk, H. I., Lee, S. W., & Shen, D. (2014). Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage, 101, 569–582.CrossRefPubMedPubMedCentral Suk, H. I., Lee, S. W., & Shen, D. (2014). Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage, 101, 569–582.CrossRefPubMedPubMedCentral
Zurück zum Zitat Suk, H. I., Lee, S. W., & Shen, D. (2015). Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Structure and Function, 220, 841–859.CrossRefPubMed Suk, H. I., Lee, S. W., & Shen, D. (2015). Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Structure and Function, 220, 841–859.CrossRefPubMed
Zurück zum Zitat Wang, Y., Nie, J., Yap, P. T., Shi, F., Guo, L., & Shen, D. (2011). Robust deformable-surface-based skull-stripping for large-scale studies. Medical Image Computing and Computer-Assisted Intervention – MICCAI, 14(3), 635–642.PubMed Wang, Y., Nie, J., Yap, P. T., Shi, F., Guo, L., & Shen, D. (2011). Robust deformable-surface-based skull-stripping for large-scale studies. Medical Image Computing and Computer-Assisted Intervention – MICCAI, 14(3), 635–642.PubMed
Zurück zum Zitat Wang, Y., Zhang, P., An, L., Ma, G., Kang, J., Shi, F., Wu, X., Zhou, J., Lalush, D. S., & Lin, W. (2016). Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation. Physics in Medicine and Biology, 61(2), 791–812.CrossRefPubMed Wang, Y., Zhang, P., An, L., Ma, G., Kang, J., Shi, F., Wu, X., Zhou, J., Lalush, D. S., & Lin, W. (2016). Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation. Physics in Medicine and Biology, 61(2), 791–812.CrossRefPubMed
Zurück zum Zitat Weinzaepfel, P., Harchaoui, Z., & Schmid, C. (2015). Learning to track for spatio-temporal action localization. pp. 3164–3172. Weinzaepfel, P., Harchaoui, Z., & Schmid, C. (2015). Learning to track for spatio-temporal action localization. pp. 3164–3172.
Zurück zum Zitat Yan, W., Ma, G., Le, A., Feng, S., Pei, Z., Xi, W., Zhou, J., & Shen, D. (2017). Semi-supervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. IEEE Transactions on Biomedical Engineering, 64, 569–579.CrossRef Yan, W., Ma, G., Le, A., Feng, S., Pei, Z., Xi, W., Zhou, J., & Shen, D. (2017). Semi-supervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. IEEE Transactions on Biomedical Engineering, 64, 569–579.CrossRef
Zurück zum Zitat Zeiler, M.D. (2012). ADADELTA: An adaptive learning rate method. Computer Science. Zeiler, M.D. (2012). ADADELTA: An adaptive learning rate method. Computer Science.
Zurück zum Zitat Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. Basel: Springer International Publishing.CrossRef Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. Basel: Springer International Publishing.CrossRef
Zurück zum Zitat Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011). Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage, 55, 856–867.CrossRefPubMedPubMedCentral Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011). Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage, 55, 856–867.CrossRefPubMedPubMedCentral
Metadaten
Titel
Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer’s Disease Diagnosis
verfasst von
Manhua Liu
Danni Cheng
Kundong Wang
Yaping Wang
the Alzheimer’s Disease Neuroimaging Initiative
Publikationsdatum
23.03.2018
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 3-4/2018
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-018-9370-4

Weitere Artikel der Ausgabe 3-4/2018

Neuroinformatics 3-4/2018 Zur Ausgabe

Premium Partner