Skip to main content
Erschienen in: Rare Metals 2/2016

01.02.2016

Constitutive modeling of compression behavior of TC4 tube based on modified Arrhenius and artificial neural network models

verfasst von: Zhi-Jun Tao, He Yang, Heng Li, Jun Ma, Peng-Fei Gao

Erschienen in: Rare Metals | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled (LDTW) TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature, strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and 0.100 s−1. The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network (ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient (R), average absolute relative error (AARE) and its variation with the deformation parameters (temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573–773 K, strain rates of 0.010–0.100 s−1 and strain of 0.04–0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s−1 and strain of 0.36–0.48. Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions, which can be used to study the compression behavior of TC4 tube at the temperature range of 573–873 K and the strain rate of 0.001–0.100 s−1. It can provide guideline for the design of processing parameters in warm rotary draw bending of LDTW TC4 tubes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Yang H, Li H, Zhang ZY, Zhan M, Liu J, Li GJ. Advances and trends on tube bending forming technologies. Chinese J Aeronaut. 2012;25(1):1.CrossRef Yang H, Li H, Zhang ZY, Zhan M, Liu J, Li GJ. Advances and trends on tube bending forming technologies. Chinese J Aeronaut. 2012;25(1):1.CrossRef
[2]
Zurück zum Zitat Li H, Yang H, Liu K. Towards an integrated robust and loop tooling design for tube bending. Int J Adv Manuf Technol. 2013;9–12:1303.CrossRef Li H, Yang H, Liu K. Towards an integrated robust and loop tooling design for tube bending. Int J Adv Manuf Technol. 2013;9–12:1303.CrossRef
[3]
Zurück zum Zitat Zhang ZY, Yang H, Li H, Ren N, Wang D. Quasi-static tensile behavior and constitutive modeling of large diameter thin-walled commercial pure titanium tube. Mater Sci Eng A. 2013;569:96.CrossRef Zhang ZY, Yang H, Li H, Ren N, Wang D. Quasi-static tensile behavior and constitutive modeling of large diameter thin-walled commercial pure titanium tube. Mater Sci Eng A. 2013;569:96.CrossRef
[4]
Zurück zum Zitat Zhang ZY, Yang H, Li H, Tao ZJ, Wang D. Thermo-mechanical coupled 3D-FE modeling of heat rotary draw bending for large-diameter thin-walled CP-Ti tube. Int J Adv Manuf Tech. 2014;72:1187.CrossRef Zhang ZY, Yang H, Li H, Tao ZJ, Wang D. Thermo-mechanical coupled 3D-FE modeling of heat rotary draw bending for large-diameter thin-walled CP-Ti tube. Int J Adv Manuf Tech. 2014;72:1187.CrossRef
[5]
Zurück zum Zitat Zhang ZY, Yang H, Li H, Ren N, Tian YL. Bending behaviors of large diameter thin-walled CP-Ti tube in rotary draw bending. Prog Nat Sci Mater Int. 2011;21(5):401.CrossRef Zhang ZY, Yang H, Li H, Ren N, Tian YL. Bending behaviors of large diameter thin-walled CP-Ti tube in rotary draw bending. Prog Nat Sci Mater Int. 2011;21(5):401.CrossRef
[6]
Zurück zum Zitat Mandal S, Rakesh V, Sivaprasad PV, Venugopal S, Kasiviswanathan KV. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel. Mater Sci Eng A. 2009;500:114.CrossRef Mandal S, Rakesh V, Sivaprasad PV, Venugopal S, Kasiviswanathan KV. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel. Mater Sci Eng A. 2009;500:114.CrossRef
[7]
Zurück zum Zitat Yin F, Hua L, Mao HJ, Han XH. Constitutive modeling for flow behavior of GCr15 steel under hot compression experiments. Mater Des. 2013;43:393.CrossRef Yin F, Hua L, Mao HJ, Han XH. Constitutive modeling for flow behavior of GCr15 steel under hot compression experiments. Mater Des. 2013;43:393.CrossRef
[8]
Zurück zum Zitat Luo J, Li MQ, Li XL, Shi YP. Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mec Mater. 2010;42(2):157.CrossRef Luo J, Li MQ, Li XL, Shi YP. Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mec Mater. 2010;42(2):157.CrossRef
[9]
Zurück zum Zitat Kotkunde Nitin, Deole Aditya D. Amit Kumar Gupta, Swadesh Kumar Singh. Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures. Mater Des. 2014;55:999.CrossRef Kotkunde Nitin, Deole Aditya D. Amit Kumar Gupta, Swadesh Kumar Singh. Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures. Mater Des. 2014;55:999.CrossRef
[10]
Zurück zum Zitat Sun SD, Zong YY, Shan DB, Guo B. Hot deformation behavior and microstructure evolution of TC4 titanium alloy. Trans Non Met Soc China. 2010;11(20):2181.CrossRef Sun SD, Zong YY, Shan DB, Guo B. Hot deformation behavior and microstructure evolution of TC4 titanium alloy. Trans Non Met Soc China. 2010;11(20):2181.CrossRef
[11]
Zurück zum Zitat Kotkunde N, Krishnamurthy HN, Puranik P, Gupta AK, Singh SK. Microstructure study and constitutive modeling of Ti–6Al–4V alloy at elevated temperatures. Mater Des. 2014;54:96.CrossRef Kotkunde N, Krishnamurthy HN, Puranik P, Gupta AK, Singh SK. Microstructure study and constitutive modeling of Ti–6Al–4V alloy at elevated temperatures. Mater Des. 2014;54:96.CrossRef
[12]
Zurück zum Zitat Zhan M, Du HF, Liu J, Ren N. A method for establishing the plastic constitutive relationship of the weld bead and heat-affected zone of welded tubes based on the rule of mixtures and microhardness test. Mater Sci Eng A. 2010;527:2864.CrossRef Zhan M, Du HF, Liu J, Ren N. A method for establishing the plastic constitutive relationship of the weld bead and heat-affected zone of welded tubes based on the rule of mixtures and microhardness test. Mater Sci Eng A. 2010;527:2864.CrossRef
[13]
Zurück zum Zitat Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des. 2001;32:1733.CrossRef Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des. 2001;32:1733.CrossRef
[14]
Zurück zum Zitat Jonas JJ, Sellars CM, Mc Tegart WJ. Strength and structure under hot-working conditions. Int Met Rev. 1969;14:1.CrossRef Jonas JJ, Sellars CM, Mc Tegart WJ. Strength and structure under hot-working conditions. Int Met Rev. 1969;14:1.CrossRef
[15]
Zurück zum Zitat Samantaray D, Phaniraj C, Mandal S, Bhaduri AK. Strain dependent rate equation to predict elevated temperature flow behavior of modified 9Cr–1Mo (P91) steel. Mater Sci Eng A. 2011;528:1071.CrossRef Samantaray D, Phaniraj C, Mandal S, Bhaduri AK. Strain dependent rate equation to predict elevated temperature flow behavior of modified 9Cr–1Mo (P91) steel. Mater Sci Eng A. 2011;528:1071.CrossRef
[16]
Zurück zum Zitat Peng WW, Zeng WD, Wang QJ, Yu HQ. Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Mater Des. 2013;51:95.CrossRef Peng WW, Zeng WD, Wang QJ, Yu HQ. Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Mater Des. 2013;51:95.CrossRef
[17]
Zurück zum Zitat Lin YC, Chen MS, Zhong J. Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mech Res Commun. 2008;35(3):142.CrossRef Lin YC, Chen MS, Zhong J. Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mech Res Commun. 2008;35(3):142.CrossRef
[18]
Zurück zum Zitat Marandi A, Zarei-Hanzaki A, Haghdadi N, Eskandari M. The prediction of hot deformation behavior in Fe–21Mn–2.5Si–1.5Al transformation-twinning induced plasticity steel. Mater Sci Eng A. 2012;554:72.CrossRef Marandi A, Zarei-Hanzaki A, Haghdadi N, Eskandari M. The prediction of hot deformation behavior in Fe–21Mn–2.5Si–1.5Al transformation-twinning induced plasticity steel. Mater Sci Eng A. 2012;554:72.CrossRef
[19]
Zurück zum Zitat Ji GL, Li FG, Li QH, Li HQ, Li Z. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high temperature deformation behaviour in Aermet100 steel. Mater Sci Eng A. 2011;528:4774.CrossRef Ji GL, Li FG, Li QH, Li HQ, Li Z. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high temperature deformation behaviour in Aermet100 steel. Mater Sci Eng A. 2011;528:4774.CrossRef
[20]
Zurück zum Zitat Lin YC, Xia YC, Chen XM, Chen MS. Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate. Comput Mater Sci. 2010;50(1):227.CrossRef Lin YC, Xia YC, Chen XM, Chen MS. Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate. Comput Mater Sci. 2010;50(1):227.CrossRef
[21]
Zurück zum Zitat Samantaray D, Mandal S, Bhaduri AK. Constitutive analysis to predict high temperature flow stress in modified 9Cr–1Mo (P91) steel. Mater Des. 2010;31:981.CrossRef Samantaray D, Mandal S, Bhaduri AK. Constitutive analysis to predict high temperature flow stress in modified 9Cr–1Mo (P91) steel. Mater Des. 2010;31:981.CrossRef
[22]
Zurück zum Zitat Rezaei Ashtiania HR, Parsab MH, Bisadi H. Constitutive equations for elevated temperature flow behavior of commercial purity aluminum. Mater Sci Eng A. 2012;545:61.CrossRef Rezaei Ashtiania HR, Parsab MH, Bisadi H. Constitutive equations for elevated temperature flow behavior of commercial purity aluminum. Mater Sci Eng A. 2012;545:61.CrossRef
[23]
Zurück zum Zitat Lin YC, Chen XM. A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel. Comput Mater Sci. 2010;49(3):628.CrossRef Lin YC, Chen XM. A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel. Comput Mater Sci. 2010;49(3):628.CrossRef
[24]
Zurück zum Zitat He A, Xie GL, Zhang HL, Wang XT. A modified Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel. Mater Des. 2014;56:122.CrossRef He A, Xie GL, Zhang HL, Wang XT. A modified Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel. Mater Des. 2014;56:122.CrossRef
[25]
Zurück zum Zitat Momeni A, Dehghani K, Ebrahimi GR, Keshmiri H. Modeling the flow curve characteristics of 410 martensitic stainless steel under hot working condition. Metall Mater Trans A. 2010;41(11):2898.CrossRef Momeni A, Dehghani K, Ebrahimi GR, Keshmiri H. Modeling the flow curve characteristics of 410 martensitic stainless steel under hot working condition. Metall Mater Trans A. 2010;41(11):2898.CrossRef
[26]
Zurück zum Zitat Wang L, Liu F, Zuo Q, Chen CF. Prediction of flow stress for N08028 alloy under hot working conditions. Mater Des. 2013;47:737.CrossRef Wang L, Liu F, Zuo Q, Chen CF. Prediction of flow stress for N08028 alloy under hot working conditions. Mater Des. 2013;47:737.CrossRef
[27]
Zurück zum Zitat Dipti S, Sumantra M, Bhaduri AK. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr–1Mo steel. Comput Mater Sci. 2009;47(2):568.CrossRef Dipti S, Sumantra M, Bhaduri AK. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr–1Mo steel. Comput Mater Sci. 2009;47(2):568.CrossRef
[28]
Zurück zum Zitat Dipti S, Alpesh P, Utpal B, Albert SK, Bhaduri AK. Constitutive flow behavior of IFAC-1 austenitic stainless steel depicting strain saturation over a wide range of strain rates and temperatures. Mater Des. 2014;56:565.CrossRef Dipti S, Alpesh P, Utpal B, Albert SK, Bhaduri AK. Constitutive flow behavior of IFAC-1 austenitic stainless steel depicting strain saturation over a wide range of strain rates and temperatures. Mater Des. 2014;56:565.CrossRef
[29]
Zurück zum Zitat Rusinek A, Rodríguez-Martínez JA, Arias A. A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper. Int J Mech Sci. 2010;52(2):120.CrossRef Rusinek A, Rodríguez-Martínez JA, Arias A. A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper. Int J Mech Sci. 2010;52(2):120.CrossRef
[30]
Zurück zum Zitat Mandal S, Sivaprasad PV, Venugopal S. Capability of a feed-forward artificial neural network to predict the constitutive flow behavior of as cast 304 stainless steel under hot deformation. Trans ASME J Eng Mater Technol. 2007;129:242.CrossRef Mandal S, Sivaprasad PV, Venugopal S. Capability of a feed-forward artificial neural network to predict the constitutive flow behavior of as cast 304 stainless steel under hot deformation. Trans ASME J Eng Mater Technol. 2007;129:242.CrossRef
[31]
Zurück zum Zitat Sun Y, Zeng WD, Zhao YQ, Zhang XM, Shu Y, Zhou YG. Modeling constitutive relationship of Ti40 alloy using artificial neural network. Mater Des. 2011;32:1537.CrossRef Sun Y, Zeng WD, Zhao YQ, Zhang XM, Shu Y, Zhou YG. Modeling constitutive relationship of Ti40 alloy using artificial neural network. Mater Des. 2011;32:1537.CrossRef
[32]
Zurück zum Zitat Han YF, Zeng WD, Zhao YQ, Zhang XM, Sun Y, Ma X. Modeling of constitutive relationship of Ti–25V–15Cr–0.2Si alloy during hot deformation process by fuzzy-neural network. Mater Des. 2010;31:4380.CrossRef Han YF, Zeng WD, Zhao YQ, Zhang XM, Sun Y, Ma X. Modeling of constitutive relationship of Ti–25V–15Cr–0.2Si alloy during hot deformation process by fuzzy-neural network. Mater Des. 2010;31:4380.CrossRef
[33]
Zurück zum Zitat Li HY, Wei DD, Li YH, Wang XF. Application of artificial neural network and constitutive equations to describe the hot compressive behavior of 28CrMnMoV steel. Mater Des. 2012;35:557.CrossRef Li HY, Wei DD, Li YH, Wang XF. Application of artificial neural network and constitutive equations to describe the hot compressive behavior of 28CrMnMoV steel. Mater Des. 2012;35:557.CrossRef
[34]
Zurück zum Zitat Lin YC, Zhang J, Zhong J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Comp Mater Sci. 2008;43(4):752.CrossRef Lin YC, Zhang J, Zhong J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Comp Mater Sci. 2008;43(4):752.CrossRef
[35]
Zurück zum Zitat Liu J, Cui ZS, Li CX. Modelling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B. Comp Mater Sci. 2008;41(3):375.CrossRef Liu J, Cui ZS, Li CX. Modelling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B. Comp Mater Sci. 2008;41(3):375.CrossRef
[36]
Zurück zum Zitat Ma X, Zeng WD, Sun Y, Wang KX, Lai YJ, Zhou YG. Modeling constitutive relationship of Ti17 titanium alloy with lamellar starting microstructure. Mater Sci Eng A. 2012;538:182.CrossRef Ma X, Zeng WD, Sun Y, Wang KX, Lai YJ, Zhou YG. Modeling constitutive relationship of Ti17 titanium alloy with lamellar starting microstructure. Mater Sci Eng A. 2012;538:182.CrossRef
Metadaten
Titel
Constitutive modeling of compression behavior of TC4 tube based on modified Arrhenius and artificial neural network models
verfasst von
Zhi-Jun Tao
He Yang
Heng Li
Jun Ma
Peng-Fei Gao
Publikationsdatum
01.02.2016
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2016
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-015-0620-4

Weitere Artikel der Ausgabe 2/2016

Rare Metals 2/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.