Skip to main content
Erschienen in: Rare Metals 9/2018

14.05.2018

Design and fabrication of a low modulus β-type Ti–Nb–Zr alloy by controlling martensitic transformation

verfasst von: Qing-Kun Meng, Yu-Fei Huo, Wen Ma, Yan-Wei Sui, Jin-Yong Zhang, Shun Guo, Xin-Qing Zhao

Erschienen in: Rare Metals | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, high density of dislocations, grain boundaries and nanometer-scale α precipitates were introduced to a metastable Ti–36Nb–5Zr alloy (wt%) through a thermo-mechanical approach including severe cold rolling and short-time annealing treatment. The martensitic transformation was retarded, and the β phase with low content of β stabilizers was retained at room temperature after the thermo-mechanical treatment. As a result, both low modulus (57 GPa) and high strength (950 MPa) are obtained. The results indicate that it is a feasible strategy to control martensitic transformation start temperature through microstructure optimization instead of composition design, with the aim of fabricating low modulus β-type Ti alloy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54(3):397.CrossRef Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54(3):397.CrossRef
[2]
Zurück zum Zitat Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1621.CrossRef Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1621.CrossRef
[3]
Zurück zum Zitat Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R. 2015;87:1.CrossRef Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R. 2015;87:1.CrossRef
[4]
Zurück zum Zitat Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30.CrossRef Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30.CrossRef
[5]
Zurück zum Zitat Biesiekierski A, Wang J, Abdel-Hady Gepreel M, Wen C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8(5):1661.CrossRef Biesiekierski A, Wang J, Abdel-Hady Gepreel M, Wen C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8(5):1661.CrossRef
[6]
Zurück zum Zitat Saito T, Furuta T, Hwang J-H, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakum T. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science. 2003;300(5618):464.CrossRef Saito T, Furuta T, Hwang J-H, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakum T. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science. 2003;300(5618):464.CrossRef
[7]
Zurück zum Zitat Hao YL, Zhang ZB, Li SJ, Yang R. Microstructure and mechanical behavior of a Ti–24Nb–4Zr–8Sn alloy processed by warm swaging and warm rolling. Acta Mater. 2012;60(5):2169.CrossRef Hao YL, Zhang ZB, Li SJ, Yang R. Microstructure and mechanical behavior of a Ti–24Nb–4Zr–8Sn alloy processed by warm swaging and warm rolling. Acta Mater. 2012;60(5):2169.CrossRef
[8]
Zurück zum Zitat Jin M, Lu X, Qiao Y, Wang LN, Volinsky AA. Fabrication and characterization of anodic oxide nanotubes on TiNb alloys. Rare Met. 2016;35(2):140.CrossRef Jin M, Lu X, Qiao Y, Wang LN, Volinsky AA. Fabrication and characterization of anodic oxide nanotubes on TiNb alloys. Rare Met. 2016;35(2):140.CrossRef
[9]
Zurück zum Zitat Qu WT, Sun XG, Yuan BF, Li KM, Wang ZG, Li Y. Tribological behaviour of biomedical Ti–Zr-based shape memory alloys. Rare Met. 2017;36(6):478.CrossRef Qu WT, Sun XG, Yuan BF, Li KM, Wang ZG, Li Y. Tribological behaviour of biomedical Ti–Zr-based shape memory alloys. Rare Met. 2017;36(6):478.CrossRef
[10]
Zurück zum Zitat Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr Mater. 2006;55(5):477.CrossRef Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr Mater. 2006;55(5):477.CrossRef
[11]
Zurück zum Zitat Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844.CrossRef Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844.CrossRef
[12]
Zurück zum Zitat Guo S, Meng Q, Zhao X, Wei Q, Xu H. Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength. Sci Rep. 2015;5:14688.CrossRef Guo S, Meng Q, Zhao X, Wei Q, Xu H. Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength. Sci Rep. 2015;5:14688.CrossRef
[13]
Zurück zum Zitat Hu L, Guo S, Meng QK, Zhao XQ. Metastable β-type Ti–30Nb–1Mo–4Sn alloy with ultralow Young’s modulus and high strength. Metall Mater Trans A. 2014;45(2):547.CrossRef Hu L, Guo S, Meng QK, Zhao XQ. Metastable β-type Ti–30Nb–1Mo–4Sn alloy with ultralow Young’s modulus and high strength. Metall Mater Trans A. 2014;45(2):547.CrossRef
[14]
Zurück zum Zitat Hao YL, Li SJ, Sun SY, Zheng CY, Yang R. Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater. 2007;3(2):277.CrossRef Hao YL, Li SJ, Sun SY, Zheng CY, Yang R. Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater. 2007;3(2):277.CrossRef
[15]
Zurück zum Zitat Yu ZG, Xiong CY, Xue PF, Li Y, Yuan BF, Qu WT. Shape memory behavior of Ti–20Zr–10Nb–5Al alloy subjected to annealing treatment. Rare Met. 2016;35(11):831.CrossRef Yu ZG, Xiong CY, Xue PF, Li Y, Yuan BF, Qu WT. Shape memory behavior of Ti–20Zr–10Nb–5Al alloy subjected to annealing treatment. Rare Met. 2016;35(11):831.CrossRef
[16]
Zurück zum Zitat Sun F, Nowak S, Gloriant T, Laheurte P, Eberhardt A, Prima F. Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy. Scr Mater. 2010;63(11):1053.CrossRef Sun F, Nowak S, Gloriant T, Laheurte P, Eberhardt A, Prima F. Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy. Scr Mater. 2010;63(11):1053.CrossRef
[17]
Zurück zum Zitat Niinomi M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr. Biomaterials. 2003;24(16):2673.CrossRef Niinomi M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr. Biomaterials. 2003;24(16):2673.CrossRef
[18]
Zurück zum Zitat Hao YL, Wang HL, Li T, Cairney JM, Ceguerra AV, Wang YD, Wang Y, Wang D, Obbard EG, Li SJ, Yang R. Superelasticity and tunable thermal expansion across a wide temperature range. J Mater Sci Technol. 2016;32(8):705.CrossRef Hao YL, Wang HL, Li T, Cairney JM, Ceguerra AV, Wang YD, Wang Y, Wang D, Obbard EG, Li SJ, Yang R. Superelasticity and tunable thermal expansion across a wide temperature range. J Mater Sci Technol. 2016;32(8):705.CrossRef
[19]
Zurück zum Zitat Wang HL, Hao YL, He SY, Du K, Li T, Obbard EG, Hudspeth J, Wang JG, Wang YD, Wang Y, Prima F, Lu N, Kim MJ, Cairney JM, Li SJ, Yang R. Tracing the coupled atomic shear and shuffle for a cubic to a hexagonal crystal transition. Scr Mater. 2017;133:70.CrossRef Wang HL, Hao YL, He SY, Du K, Li T, Obbard EG, Hudspeth J, Wang JG, Wang YD, Wang Y, Prima F, Lu N, Kim MJ, Cairney JM, Li SJ, Yang R. Tracing the coupled atomic shear and shuffle for a cubic to a hexagonal crystal transition. Scr Mater. 2017;133:70.CrossRef
[20]
Zurück zum Zitat Xu W, Wu X, Calin M, Stoica M, Eckert J, Xia K. Formation of an ultrafine-grained structure during equal-channel angular pressing of a β-titanium alloy with low phase stability. Scr Mater. 2009;60(11):1012.CrossRef Xu W, Wu X, Calin M, Stoica M, Eckert J, Xia K. Formation of an ultrafine-grained structure during equal-channel angular pressing of a β-titanium alloy with low phase stability. Scr Mater. 2009;60(11):1012.CrossRef
[21]
Zurück zum Zitat Cai MH, Lee CY, Kang S, Lee YK. Fine-grained structure fabricated by strain-induced martensite and its reverse transformations in a metastable β titanium alloy. Scr Mater. 2011;64(12):1098.CrossRef Cai MH, Lee CY, Kang S, Lee YK. Fine-grained structure fabricated by strain-induced martensite and its reverse transformations in a metastable β titanium alloy. Scr Mater. 2011;64(12):1098.CrossRef
[22]
Zurück zum Zitat Nag S, Banerjee R, Srinivasan R, Hwang JY, Harper M, Fraser HL. ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β titanium alloy. Acta Mater. 2009;57(7):2136.CrossRef Nag S, Banerjee R, Srinivasan R, Hwang JY, Harper M, Fraser HL. ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β titanium alloy. Acta Mater. 2009;57(7):2136.CrossRef
[23]
Zurück zum Zitat Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511.CrossRef Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511.CrossRef
[24]
Zurück zum Zitat Hao YL, Li SJ, Sun SY, Yang R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater Sci Eng A. 2006;441(1–2):112.CrossRef Hao YL, Li SJ, Sun SY, Yang R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater Sci Eng A. 2006;441(1–2):112.CrossRef
[25]
Zurück zum Zitat Inamura T, Fukui Y, Hosoda H, Wakashima K, Miyazaki S. Mechanical properties of Ti–Nb biomedical shape memory alloys containing Ge or Ga. Mater Sci Eng C. 2005;25(3):426.CrossRef Inamura T, Fukui Y, Hosoda H, Wakashima K, Miyazaki S. Mechanical properties of Ti–Nb biomedical shape memory alloys containing Ge or Ga. Mater Sci Eng C. 2005;25(3):426.CrossRef
[26]
Zurück zum Zitat Tane M, Akita S, Nakano T, Hagihara K, Umakoshi Y, Niinomi M, Mori H, Nakajima H. Low Young’s modulus of Ti–Nb–Ta–Zr alloys caused by softening in shear moduli c′ and c44 near lower limit of body-centered cubic phase stability. Acta Mater. 2010;58(20):6790.CrossRef Tane M, Akita S, Nakano T, Hagihara K, Umakoshi Y, Niinomi M, Mori H, Nakajima H. Low Young’s modulus of Ti–Nb–Ta–Zr alloys caused by softening in shear moduli c′ and c44 near lower limit of body-centered cubic phase stability. Acta Mater. 2010;58(20):6790.CrossRef
[27]
Zurück zum Zitat Bertrand E, Castany P, Gloriant T. Investigation of the martensitic transformation and the damping behavior of a superelastic Ti–Ta–Nb alloy. Acta Mater. 2013;61(2):511.CrossRef Bertrand E, Castany P, Gloriant T. Investigation of the martensitic transformation and the damping behavior of a superelastic Ti–Ta–Nb alloy. Acta Mater. 2013;61(2):511.CrossRef
[28]
Zurück zum Zitat Matsumoto H, Watanabe S, Hanada S. Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated. J Alloys Compd. 2007;39(1–2):146.CrossRef Matsumoto H, Watanabe S, Hanada S. Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated. J Alloys Compd. 2007;39(1–2):146.CrossRef
[29]
Zurück zum Zitat Sun F, Hao YL, Nowak S, Gloriant T, Laheurte P, Prima F. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr (at.%) alloys. J Mech Behav Biomed Mater. 2011;4(8):1864.CrossRef Sun F, Hao YL, Nowak S, Gloriant T, Laheurte P, Prima F. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr (at.%) alloys. J Mech Behav Biomed Mater. 2011;4(8):1864.CrossRef
[30]
Zurück zum Zitat Hao YL, Li SJ, Yang R. Biomedical titanium alloys and their additive manufacturing. Rare Met. 2016;35(9):661.CrossRef Hao YL, Li SJ, Yang R. Biomedical titanium alloys and their additive manufacturing. Rare Met. 2016;35(9):661.CrossRef
Metadaten
Titel
Design and fabrication of a low modulus β-type Ti–Nb–Zr alloy by controlling martensitic transformation
verfasst von
Qing-Kun Meng
Yu-Fei Huo
Wen Ma
Yan-Wei Sui
Jin-Yong Zhang
Shun Guo
Xin-Qing Zhao
Publikationsdatum
14.05.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 9/2018
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1055-5

Weitere Artikel der Ausgabe 9/2018

Rare Metals 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.