Skip to main content
Erschienen in: Rare Metals 2/2021

17.07.2020 | Original Article

Promoting performance of lithium–sulfur battery via in situ sulfur reduced graphite oxide coating

verfasst von: Yuan Li, Xiao-Tian Guo, Song-Tao Zhang, Huan Pang

Erschienen in: Rare Metals | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Activated graphene/sulfur structure sheathed in a flexible graphene layer is presented as the cathode material of lithium–sulfur battery. The surface coating graphite oxide sheets are reduced by a one-step in situ sulfur reduction method under vacuum at 600 °C without any additional reductant. The high reduction degree of in situ sulfur reduced graphite oxide (RGO) coating layer will facilitate the rapid charge transfer at high current rate. The flexible encapsulated RGO structure will retard the diffusion of polysulfides and adjust the volume change of sulfur in cycling. As a result, the electrochemical evaluation of the RGO–activated graphene (AG)/S electrode demonstrates superior capacity, cycling and rate performance. The RGO–AG/S electrode with 60 wt% sulfur loading achieves a stable cyclability over 2000 galvanostatic charge/discharge process (capacity-fade rate of only 0.03% per cycle at 1600 mA·g−1). The average Coulombic efficiency remains at ~ 96% with no electrolyte additives (such as LiNO3). The outstanding property of RGO–AG/S electrode is attributed to the distinctive in situ sulfur RGO-coated hierarchical texture.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Manthiram A, Fu Y, Chung SH, Zu C, Su YS. Rechargeable lithium–sulfur batteries. Chem Rev. 2014;114(23):11751.CrossRef Manthiram A, Fu Y, Chung SH, Zu C, Su YS. Rechargeable lithium–sulfur batteries. Chem Rev. 2014;114(23):11751.CrossRef
[2]
Zurück zum Zitat Li M, Zhang Y, Bai Z, Liu WW, Liu T, Gim J, Jiang G, Yuan Y, Luo D, Feng K, Yassar RS, Wang X, Chen Z, Lu J. A lithium–sulfur battery using a 2D current collector architecture with a large-sized sulfur host operated under high areal loading and low E/S ratio. Adv Mater. 2018;30(46):1804271.CrossRef Li M, Zhang Y, Bai Z, Liu WW, Liu T, Gim J, Jiang G, Yuan Y, Luo D, Feng K, Yassar RS, Wang X, Chen Z, Lu J. A lithium–sulfur battery using a 2D current collector architecture with a large-sized sulfur host operated under high areal loading and low E/S ratio. Adv Mater. 2018;30(46):1804271.CrossRef
[3]
Zurück zum Zitat Zheng S, Li X, Yan B, Hu Q, Xu Y, Xiao X, Xue H, Pang H. Transition-metal (Fe Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater. 2017;7(18):1602733.CrossRef Zheng S, Li X, Yan B, Hu Q, Xu Y, Xiao X, Xue H, Pang H. Transition-metal (Fe Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater. 2017;7(18):1602733.CrossRef
[4]
Zurück zum Zitat Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H. Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci. 2018;5(3):1700592.CrossRef Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H. Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci. 2018;5(3):1700592.CrossRef
[5]
Zurück zum Zitat Ye Y, Wu F, Xu S, Qu W, Li L, Chen R. Designing realizable and scalable techniques for practical lithium sulfur batteries: a perspective. J Phys Chem Lett. 2018;9(6):1398.CrossRef Ye Y, Wu F, Xu S, Qu W, Li L, Chen R. Designing realizable and scalable techniques for practical lithium sulfur batteries: a perspective. J Phys Chem Lett. 2018;9(6):1398.CrossRef
[6]
Zurück zum Zitat Zhu R, Ding J, Xu Y, Yang J, Xu Q, Pang H. \(\uppi\)-Conjugated molecule boosts metal–organic frameworks as efficient oxygen evolution reaction catalysts. Small. 2018;14(50):1803576.CrossRef Zhu R, Ding J, Xu Y, Yang J, Xu Q, Pang H. \(\uppi\)-Conjugated molecule boosts metal–organic frameworks as efficient oxygen evolution reaction catalysts. Small. 2018;14(50):1803576.CrossRef
[7]
Zurück zum Zitat Du G, Xu Y, Zheng S, Xue H, Pang H. The state of research regarding ordered mesoporous materials in batteries. Small. 2019;15(11):1804600.CrossRef Du G, Xu Y, Zheng S, Xue H, Pang H. The state of research regarding ordered mesoporous materials in batteries. Small. 2019;15(11):1804600.CrossRef
[8]
Zurück zum Zitat Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;36(6):449.CrossRef Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;36(6):449.CrossRef
[9]
Zurück zum Zitat Li Q, Song Y, Xu R, Zhang L, Gao J, Xia Z, Tian Z, Wei N, Rümmeli MH, Zou X, Sun J, Liu Z. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li–S batteries. ACS Nano. 2018;12(10):10240.CrossRef Li Q, Song Y, Xu R, Zhang L, Gao J, Xia Z, Tian Z, Wei N, Rümmeli MH, Zou X, Sun J, Liu Z. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li–S batteries. ACS Nano. 2018;12(10):10240.CrossRef
[10]
Zurück zum Zitat Hu Y, Chen W, Lei T, Zhou B, Jiao Y, Yan Y, Du X, Huang J, Wu C, Wang X, Wang Y, Chen B, Xu J, Wang C, Xiong J. Carbon quantum dots–modified interfacial interactions and ion conductivity for enhanced high current density performance in lithium–sulfur batteries. Adv Energy Mater. 2019;9(7):1802955.CrossRef Hu Y, Chen W, Lei T, Zhou B, Jiao Y, Yan Y, Du X, Huang J, Wu C, Wang X, Wang Y, Chen B, Xu J, Wang C, Xiong J. Carbon quantum dots–modified interfacial interactions and ion conductivity for enhanced high current density performance in lithium–sulfur batteries. Adv Energy Mater. 2019;9(7):1802955.CrossRef
[11]
Zurück zum Zitat Wang C, Wang X, Wang Y, Chen J, Zhou H, Huang Y. Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium–sulfur battery. Nano Energy. 2015;11:678.CrossRef Wang C, Wang X, Wang Y, Chen J, Zhou H, Huang Y. Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium–sulfur battery. Nano Energy. 2015;11:678.CrossRef
[12]
Zurück zum Zitat Yang CS, Gao KN, Zhang XP, Sun Z, Zhang T. Rechargeable solid-state Li-air batteries: a status report. Rare Met. 2018;36(6):459.CrossRef Yang CS, Gao KN, Zhang XP, Sun Z, Zhang T. Rechargeable solid-state Li-air batteries: a status report. Rare Met. 2018;36(6):459.CrossRef
[13]
Zurück zum Zitat Shi JL, Tang C, Huang JQ, Zhu W, Zhang Q. Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries. J Energy Chem. 2018;27(1):167.CrossRef Shi JL, Tang C, Huang JQ, Zhu W, Zhang Q. Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries. J Energy Chem. 2018;27(1):167.CrossRef
[14]
Zurück zum Zitat Zhang S, Li N, Lu H, Zheng J, Zang R, Cao J. Improving lithium–sulfur battery performance via a carbon-coating layer derived from the hydrothermal carbonization of glucose. RSC Adv. 2015;5(63):50983.CrossRef Zhang S, Li N, Lu H, Zheng J, Zang R, Cao J. Improving lithium–sulfur battery performance via a carbon-coating layer derived from the hydrothermal carbonization of glucose. RSC Adv. 2015;5(63):50983.CrossRef
[15]
Zurück zum Zitat Li B, Kong L, Zhao C, Jin Q, Chen X, Peng H, Qin J, Chen J, Yuan H, Zhang Q, Huang J. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium–sulfur batteries. InfoMat. 2019;1(4):533.CrossRef Li B, Kong L, Zhao C, Jin Q, Chen X, Peng H, Qin J, Chen J, Yuan H, Zhang Q, Huang J. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium–sulfur batteries. InfoMat. 2019;1(4):533.CrossRef
[16]
Zurück zum Zitat Li G, Sun J, Hou W, Jiang S, Huang Y, Geng J. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries. Nat Commun. 2016;7:10601.CrossRef Li G, Sun J, Hou W, Jiang S, Huang Y, Geng J. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries. Nat Commun. 2016;7:10601.CrossRef
[17]
Zurück zum Zitat Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;36(11):929.CrossRef Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;36(11):929.CrossRef
[18]
Zurück zum Zitat Zhang LH, He B, Li WC, Lu AH. Surface free energy-induced assembly to the synthesis of grid-like multicavity carbon spheres with high level in-cavity encapsulation for lithium–sulfur cathode. Adv Energy Mater. 2017;7(22):1701518.CrossRef Zhang LH, He B, Li WC, Lu AH. Surface free energy-induced assembly to the synthesis of grid-like multicavity carbon spheres with high level in-cavity encapsulation for lithium–sulfur cathode. Adv Energy Mater. 2017;7(22):1701518.CrossRef
[19]
Zurück zum Zitat Hu C, Kirk C, Cai Q, Cuadrado-Collados C, Silvestre-Albero J, Rodríguez-Reinoso F, Biggs MJ. A high-volumetric-capacity cathode based on interconnected close-packed N-doped porous carbon nanospheres for long-life lithium–sulfur batteries. Adv Energy Mater. 2017;7(22):1701082.CrossRef Hu C, Kirk C, Cai Q, Cuadrado-Collados C, Silvestre-Albero J, Rodríguez-Reinoso F, Biggs MJ. A high-volumetric-capacity cathode based on interconnected close-packed N-doped porous carbon nanospheres for long-life lithium–sulfur batteries. Adv Energy Mater. 2017;7(22):1701082.CrossRef
[20]
Zurück zum Zitat Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537.CrossRef Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537.CrossRef
[21]
Zurück zum Zitat You Y, Zeng W, Yin YX, Zhang J, Yang CP, Zhu Y, Guo YG. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. J Mater Chem A. 2015;3(9):4799.CrossRef You Y, Zeng W, Yin YX, Zhang J, Yang CP, Zhu Y, Guo YG. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. J Mater Chem A. 2015;3(9):4799.CrossRef
[22]
Zurück zum Zitat Zheng M, Zhang S, Chen S, Lin Z, Pang H, Yu Y. Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries. Nano Res. 2017;10(12):4305.CrossRef Zheng M, Zhang S, Chen S, Lin Z, Pang H, Yu Y. Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries. Nano Res. 2017;10(12):4305.CrossRef
[23]
Zurück zum Zitat Yan M, Wang WP, Yin YX, Wan LJ, Guo YG. Interfacial design for lithium–sulfur batteries: from liquid to solid. EnergyChem. 2019;1:100002.CrossRef Yan M, Wang WP, Yin YX, Wan LJ, Guo YG. Interfacial design for lithium–sulfur batteries: from liquid to solid. EnergyChem. 2019;1:100002.CrossRef
[24]
Zurück zum Zitat Yu M, Li R, Tong Y, Li Y, Li C, Hong JD, Shi G. A graphene wrapped hair-derived carbon/sulfur composite for lithium-sulfur batteries. J Mater Chem A. 2015;3(18):9609.CrossRef Yu M, Li R, Tong Y, Li Y, Li C, Hong JD, Shi G. A graphene wrapped hair-derived carbon/sulfur composite for lithium-sulfur batteries. J Mater Chem A. 2015;3(18):9609.CrossRef
[25]
Zurück zum Zitat Huang Q, Gao ZF, Yang R, Fang YY, Shi JM. Survey and research process on electrode materials of lithium-sulfur batteries. Chin J Rare Met. 2018;42(7):772. Huang Q, Gao ZF, Yang R, Fang YY, Shi JM. Survey and research process on electrode materials of lithium-sulfur batteries. Chin J Rare Met. 2018;42(7):772.
[26]
Zurück zum Zitat Zhou HM, Zhu YH, Li J, Sun WJ, Liu ZZ. Electrochemical Performance of Al2O3 precoated spinel LiMn2O4. Rare Met. 2019;36(2):128.CrossRef Zhou HM, Zhu YH, Li J, Sun WJ, Liu ZZ. Electrochemical Performance of Al2O3 precoated spinel LiMn2O4. Rare Met. 2019;36(2):128.CrossRef
[27]
Zurück zum Zitat Chen D, Tan H, Rui X, Zhang Q, Feng Y, Geng H, Li C, Huang S, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat. 2019;1(2):251. Chen D, Tan H, Rui X, Zhang Q, Feng Y, Geng H, Li C, Huang S, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat. 2019;1(2):251.
[28]
Zurück zum Zitat Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y. Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano. 2011;5(11):9187.CrossRef Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y. Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano. 2011;5(11):9187.CrossRef
[29]
Zurück zum Zitat Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806.CrossRef Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806.CrossRef
[30]
Zurück zum Zitat Li N, Zheng M, Lu H, Hu Z, Shen C, Chang X, Ji G, Cao J, Shi Y. High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem Commun. 2012;48(34):4106.CrossRef Li N, Zheng M, Lu H, Hu Z, Shen C, Chang X, Ji G, Cao J, Shi Y. High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem Commun. 2012;48(34):4106.CrossRef
[31]
Zurück zum Zitat Rong J, Ge M, Fang X, Zhou C. Solution ionic strength engineering as a generic strategy to coat graphene oxide (GO) on various functional particles and its application in high-performance lithium-sulfur (Li–S) batteries. Nano Lett. 2014;14(2):473.CrossRef Rong J, Ge M, Fang X, Zhou C. Solution ionic strength engineering as a generic strategy to coat graphene oxide (GO) on various functional particles and its application in high-performance lithium-sulfur (Li–S) batteries. Nano Lett. 2014;14(2):473.CrossRef
[32]
Zurück zum Zitat Yang X, Zhang L, Zhang F, Huang Y, Chen Y. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium–sulfur batteries. ACS Nano. 2014;8(5):5208.CrossRef Yang X, Zhang L, Zhang F, Huang Y, Chen Y. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium–sulfur batteries. ACS Nano. 2014;8(5):5208.CrossRef
[33]
Zurück zum Zitat Zhang S, Zheng M, Lin Z, Li N, Liu Y, Zhao B, Pang H, Cao J, He P, Shi Y. Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. J Mater Chem A. 2014;2(38):15889.CrossRef Zhang S, Zheng M, Lin Z, Li N, Liu Y, Zhao B, Pang H, Cao J, He P, Shi Y. Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. J Mater Chem A. 2014;2(38):15889.CrossRef
[34]
Zurück zum Zitat Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater. 2009;8(6):500.CrossRef Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater. 2009;8(6):500.CrossRef
[35]
Zurück zum Zitat Zheng S, Wen Y, Zhu Y, Han Z, Wang J, Yang J, Wang C. In situ sulfur reduction and intercalation of graphite oxides for Li–S battery cathodes. Adv Energy Mater. 2014;4(16):1400482.CrossRef Zheng S, Wen Y, Zhu Y, Han Z, Wang J, Yang J, Wang C. In situ sulfur reduction and intercalation of graphite oxides for Li–S battery cathodes. Adv Energy Mater. 2014;4(16):1400482.CrossRef
[36]
Zurück zum Zitat Yang W, Li X, Li Y, Zhu R, Pang H. Applications of metal–organic-framework-derived carbon materials. Adv Mater. 2019;31(6):1804740. Yang W, Li X, Li Y, Zhu R, Pang H. Applications of metal–organic-framework-derived carbon materials. Adv Mater. 2019;31(6):1804740.
[37]
Zurück zum Zitat Zheng M, Xiao X, Li L, Gu P, Dai X, Tang H, Hu Q, Xue H, Pang H. Hierarchically nanostructured transition metal oxides for supercapacitors. Sci Chin Mater. 2018;61(2):185.CrossRef Zheng M, Xiao X, Li L, Gu P, Dai X, Tang H, Hu Q, Xue H, Pang H. Hierarchically nanostructured transition metal oxides for supercapacitors. Sci Chin Mater. 2018;61(2):185.CrossRef
[38]
Zurück zum Zitat Zhao Z, Wang S, Liang R, Li Z, Shi Z, Chen G. Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li–S batteries. J Mater Chem A. 2014;2(33):13509.CrossRef Zhao Z, Wang S, Liang R, Li Z, Shi Z, Chen G. Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li–S batteries. J Mater Chem A. 2014;2(33):13509.CrossRef
[39]
Zurück zum Zitat Chen X, Xiao Z, Ning X, Liu Z, Yang Z, Zou C, Wang S, Chen X, Chen Y, Huang S. Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for high-performance lithium-sulfur batteries. Adv Energy Mater. 2014;4(13):1301988.CrossRef Chen X, Xiao Z, Ning X, Liu Z, Yang Z, Zou C, Wang S, Chen X, Chen Y, Huang S. Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for high-performance lithium-sulfur batteries. Adv Energy Mater. 2014;4(13):1301988.CrossRef
Metadaten
Titel
Promoting performance of lithium–sulfur battery via in situ sulfur reduced graphite oxide coating
verfasst von
Yuan Li
Xiao-Tian Guo
Song-Tao Zhang
Huan Pang
Publikationsdatum
17.07.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01498-y

Weitere Artikel der Ausgabe 2/2021

Rare Metals 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.