Skip to main content
Erschienen in: Rare Metals 6/2021

01.09.2020 | Original Article

ZnSe/NiO heterostructure-based chemiresistive-type sensors for low-concentration NO2 detection

verfasst von: Wei Liu, Ding Gu, Jian-Wei Zhang, Xiao-Gan Li, Marina N. Rumyantseva, Alexander M. Gaskov

Erschienen in: Rare Metals | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Novel ZnSe/NiO heterostructure nanocomposites were successfully prepared by one-step hydrothermal method. The ZnSe/NiO-based sensor exhibits a response of ~ 96.47% to 8 × 10−6 NO2 at 140 °C, which is significantly higher than those of intrinsic ZnSe-based (no response) and NiO-based (~ 19.65%) sensors. The theoretical detection limit (LOD) of the sensor is calculated to be 8.91 × 10−9, indicating that the sensor can be applied to detect the ultralow concentrations of NO2. The effect of NiO content on the gas-sensing performance of the nanocomposites was investigated in detail. The optimal NiO content in the nanocomposite is determined to be 15.16% to achieve the highest response. The as-fabricated sensor also presents an excellent selectivity to several possible interferents such as methanol, ethanol, acetone, benzene, ammonia and formaldehyde. The enhanced sensing performance can be attributed to the formation of p–p heterostructures between ZnSe and NiO, which induces the charge transfer across the interfaces and yields more active sites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Saboor FH, Ueda T, Kamada K, Hyodo T, Mortazavi Y, Khodadadi AA, Shimizu Y. Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature. Sens Actuators B Chem. 2016;223:429.CrossRef Saboor FH, Ueda T, Kamada K, Hyodo T, Mortazavi Y, Khodadadi AA, Shimizu Y. Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature. Sens Actuators B Chem. 2016;223:429.CrossRef
[2]
Zurück zum Zitat Ou JZ, Ge W, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y, Fu Z, Chrimes AF, Wlodarski W, Russo SP, Li YX, Kalantar-Zadeh K. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano. 2015;9(10):10313.CrossRef Ou JZ, Ge W, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y, Fu Z, Chrimes AF, Wlodarski W, Russo SP, Li YX, Kalantar-Zadeh K. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano. 2015;9(10):10313.CrossRef
[3]
Zurück zum Zitat Kumar R, Al-Dossary O, Kumar G, Umar A. Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 2015;7(2):97.CrossRef Kumar R, Al-Dossary O, Kumar G, Umar A. Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 2015;7(2):97.CrossRef
[4]
Zurück zum Zitat Loftus C, Yost M, Sampson P, Arias G, Torres E, Vasquez VB, Bhatti P, Karr C. Regional PM2.5 and asthma morbidity in an agricultural community: a panel study. Environ Res. 2015;136:505.CrossRef Loftus C, Yost M, Sampson P, Arias G, Torres E, Vasquez VB, Bhatti P, Karr C. Regional PM2.5 and asthma morbidity in an agricultural community: a panel study. Environ Res. 2015;136:505.CrossRef
[5]
Zurück zum Zitat Dai Z, Lee CS, Tian Y, Kim ID, Lee JH. Highly reversible switching from P- to N-type NO2 sensing in a monolayer Fe2O3 inverse opal film and the associated P–N transition phase diagram. J Mater Chem A. 2015;3(7):3372.CrossRef Dai Z, Lee CS, Tian Y, Kim ID, Lee JH. Highly reversible switching from P- to N-type NO2 sensing in a monolayer Fe2O3 inverse opal film and the associated P–N transition phase diagram. J Mater Chem A. 2015;3(7):3372.CrossRef
[6]
Zurück zum Zitat Macagnano A, Bearzotti A, De Cesare F, Zampetti E. Sensing asthma with portable devices equipped with ultrasensitive sensors based on electrospun nanomaterials. Electroanalysis. 2014;26(6):1419.CrossRef Macagnano A, Bearzotti A, De Cesare F, Zampetti E. Sensing asthma with portable devices equipped with ultrasensitive sensors based on electrospun nanomaterials. Electroanalysis. 2014;26(6):1419.CrossRef
[7]
Zurück zum Zitat Gu D, Wang X, Liu W, Li X, Lin S, Wang J, Rumyantseva MN, Gaskov AM, Akbar SA. Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sens Actuators B Chem. 2020;305:127455.CrossRef Gu D, Wang X, Liu W, Li X, Lin S, Wang J, Rumyantseva MN, Gaskov AM, Akbar SA. Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sens Actuators B Chem. 2020;305:127455.CrossRef
[8]
Zurück zum Zitat Miki H, Matsubara F, Nakashima S, Ochi S, Nakagawa K, Matsuguchi M, Sadaoka Y. A fractional exhaled nitric oxide sensor based on optical absorption of cobalt tetraphenylporphyrin derivatives. Sens Actuators B Chem. 2016;231:458.CrossRef Miki H, Matsubara F, Nakashima S, Ochi S, Nakagawa K, Matsuguchi M, Sadaoka Y. A fractional exhaled nitric oxide sensor based on optical absorption of cobalt tetraphenylporphyrin derivatives. Sens Actuators B Chem. 2016;231:458.CrossRef
[9]
Zurück zum Zitat Tai H, Wang S, Duan Z, Jiang Y. Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sens Actuators B Chem. 2020;318:128104.CrossRef Tai H, Wang S, Duan Z, Jiang Y. Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sens Actuators B Chem. 2020;318:128104.CrossRef
[10]
Zurück zum Zitat Li HY, Yoon JW, Lee CS, Lim K, Yoon JW, Lee JH. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens Actuators B Chem. 2018;255:2963.CrossRef Li HY, Yoon JW, Lee CS, Lim K, Yoon JW, Lee JH. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens Actuators B Chem. 2018;255:2963.CrossRef
[11]
Zurück zum Zitat Zhang Q, Xie G, Xu M, Su Y, Tai H, Du H, Jiang Y. Visible light-assisted room temperature gas sensing with ZnO–Ag heterostructure nanoparticles. Sens Actuators B Chem. 2018;259:269.CrossRef Zhang Q, Xie G, Xu M, Su Y, Tai H, Du H, Jiang Y. Visible light-assisted room temperature gas sensing with ZnO–Ag heterostructure nanoparticles. Sens Actuators B Chem. 2018;259:269.CrossRef
[12]
Zurück zum Zitat Chen Y, Zhang X, Liu Z, Zeng Z, Zhao H, Wang X, Xu J. Light enhanced room temperature resistive NO2 sensor based on a gold-loaded organic–inorganic hybrid perovskite incorporating tin dioxide. Microchim Acta. 2019;186(1):47.CrossRef Chen Y, Zhang X, Liu Z, Zeng Z, Zhao H, Wang X, Xu J. Light enhanced room temperature resistive NO2 sensor based on a gold-loaded organic–inorganic hybrid perovskite incorporating tin dioxide. Microchim Acta. 2019;186(1):47.CrossRef
[13]
Zurück zum Zitat Gao L, Cheng Z, Xiang Q, Zhang Y, Xu J. Porous corundum-type In2O3 nanosheets: synthesis and NO2 sensing properties. Sens Actuators B Chem. 2015;208:436.CrossRef Gao L, Cheng Z, Xiang Q, Zhang Y, Xu J. Porous corundum-type In2O3 nanosheets: synthesis and NO2 sensing properties. Sens Actuators B Chem. 2015;208:436.CrossRef
[14]
Zurück zum Zitat Kou X, Xie N, Chen F, Wang T, Guo L, Wang C, Wang Q, Ma J, Sun Y, Zhang H, Lu G. Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sens Actuators B Chem. 2018;256:861.CrossRef Kou X, Xie N, Chen F, Wang T, Guo L, Wang C, Wang Q, Ma J, Sun Y, Zhang H, Lu G. Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sens Actuators B Chem. 2018;256:861.CrossRef
[15]
Zurück zum Zitat Xu K, Li N, Zeng D, Tian S, Zhang S, Hu D, Xie C. Interface bonds determined gas-sensing of SnO2–SnS2 hybrids to ammonia at room temperature. ACS Appl Mater Interfaces. 2015;7(21):11359.CrossRef Xu K, Li N, Zeng D, Tian S, Zhang S, Hu D, Xie C. Interface bonds determined gas-sensing of SnO2–SnS2 hybrids to ammonia at room temperature. ACS Appl Mater Interfaces. 2015;7(21):11359.CrossRef
[16]
Zurück zum Zitat Wang F, Liu H, Hu K, Li Y, Zeng W, Zeng L. Hierarchical composites of MoS2 nanoflower anchored on SnO2 nanofiber for methane sensing. Ceram Int. 2019;45(17):22981.CrossRef Wang F, Liu H, Hu K, Li Y, Zeng W, Zeng L. Hierarchical composites of MoS2 nanoflower anchored on SnO2 nanofiber for methane sensing. Ceram Int. 2019;45(17):22981.CrossRef
[17]
Zurück zum Zitat Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuators B Chem. 2019;298:126874.CrossRef Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuators B Chem. 2019;298:126874.CrossRef
[18]
Zurück zum Zitat Yan H, Song P, Zhang S, Yang Z, Wang Q. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J Alloys Compd. 2016;662:118.CrossRef Yan H, Song P, Zhang S, Yang Z, Wang Q. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J Alloys Compd. 2016;662:118.CrossRef
[19]
Zurück zum Zitat Medina H, Li JG, Su TY, Lan YW, Lee SH, Chen CW, Chen YZ, Manikandan A, Tsai SH, Navabi A, Zhu X, Shih YC, Lin WS, Yang JH, Thomas SR, Wu BW, Shen CH, Shieh JM, Lin HN, Javey A, Wang KL, Chueh YL. Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx gas sensing by a low-temperature plasma-assisted selenization process. Chem Mater. 2017;29(4):1587.CrossRef Medina H, Li JG, Su TY, Lan YW, Lee SH, Chen CW, Chen YZ, Manikandan A, Tsai SH, Navabi A, Zhu X, Shih YC, Lin WS, Yang JH, Thomas SR, Wu BW, Shen CH, Shieh JM, Lin HN, Javey A, Wang KL, Chueh YL. Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx gas sensing by a low-temperature plasma-assisted selenization process. Chem Mater. 2017;29(4):1587.CrossRef
[20]
Zurück zum Zitat Han Y, Ma Y, Liu Y, Xu S, Chen X, Zeng M, Hu N, Su Y, Zhou Z, Yang Z. Construction of MoS2/SnO2 heterostructures for sensitive NO2 detection at room temperature. Appl Surf Sci. 2019;493:613.CrossRef Han Y, Ma Y, Liu Y, Xu S, Chen X, Zeng M, Hu N, Su Y, Zhou Z, Yang Z. Construction of MoS2/SnO2 heterostructures for sensitive NO2 detection at room temperature. Appl Surf Sci. 2019;493:613.CrossRef
[21]
Zurück zum Zitat Perrozzi F, Emamjomeh SM, Paolucci V, Taglieri G, Ottaviano L, Cantalini C. Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sens Actuators B Chem. 2017;243:812.CrossRef Perrozzi F, Emamjomeh SM, Paolucci V, Taglieri G, Ottaviano L, Cantalini C. Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sens Actuators B Chem. 2017;243:812.CrossRef
[22]
Zurück zum Zitat Kumar R, Goel N, Mishra M, Gupta G, Fanetti M, Valant M, Kumar M. Growth of MoS2–MoO3 hybrid microflowers via controlled vapor transport process for efficient gas sensing at room temperature. Adv Mater Interfaces. 2018;5(10):1800071.CrossRef Kumar R, Goel N, Mishra M, Gupta G, Fanetti M, Valant M, Kumar M. Growth of MoS2–MoO3 hybrid microflowers via controlled vapor transport process for efficient gas sensing at room temperature. Adv Mater Interfaces. 2018;5(10):1800071.CrossRef
[23]
Zurück zum Zitat Chen P, Xiao TY, Li HH, Yang JJ, Wang Z, Bin Yao H, Yu SH. Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities. ACS Nano. 2012;6(1):712.CrossRef Chen P, Xiao TY, Li HH, Yang JJ, Wang Z, Bin Yao H, Yu SH. Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities. ACS Nano. 2012;6(1):712.CrossRef
[24]
Zurück zum Zitat ThanhThuy TT, Feng H, Cai Q. Photocatalytic degradation of pentachlorophenol on ZnSe/TiO2 supported by photo-Fenton system. Chem Eng J. 2013;223:379.CrossRef ThanhThuy TT, Feng H, Cai Q. Photocatalytic degradation of pentachlorophenol on ZnSe/TiO2 supported by photo-Fenton system. Chem Eng J. 2013;223:379.CrossRef
[25]
Zurück zum Zitat Chen W, Zhang N, Zhang MY, Zhang XT, Gao H, Wen J. Controllable growth of ZnO–ZnSe heterostructures for visible-light photocatalysis. CrystEngComm. 2014;16(6):1201.CrossRef Chen W, Zhang N, Zhang MY, Zhang XT, Gao H, Wen J. Controllable growth of ZnO–ZnSe heterostructures for visible-light photocatalysis. CrystEngComm. 2014;16(6):1201.CrossRef
[26]
Zurück zum Zitat New E, Hancox I, Rochford LA, Walker M, Dearden CA, McConville CF, Jones TS. Organic photovoltaic cells utilising ZnO electron extraction layers produced through thermal conversion of ZnSe. J Mater Chem A. 2014;2(45):19201.CrossRef New E, Hancox I, Rochford LA, Walker M, Dearden CA, McConville CF, Jones TS. Organic photovoltaic cells utilising ZnO electron extraction layers produced through thermal conversion of ZnSe. J Mater Chem A. 2014;2(45):19201.CrossRef
[27]
Zurück zum Zitat Wang L, Tian G, Chen Y, Xiao Y, Fu H. In situ formation of a ZnO/ZnSe nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance. Nanoscale. 2016;8(17):9366.CrossRef Wang L, Tian G, Chen Y, Xiao Y, Fu H. In situ formation of a ZnO/ZnSe nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance. Nanoscale. 2016;8(17):9366.CrossRef
[28]
Zurück zum Zitat Wang Y, Qu F, Liu J, Wang Y, Zhou J, Ruan S. Enhanced H2S sensing characteristics of CuO–NiO core–shell microspheres sensors. Sens Actuators B Chem. 2015;209:515.CrossRef Wang Y, Qu F, Liu J, Wang Y, Zhou J, Ruan S. Enhanced H2S sensing characteristics of CuO–NiO core–shell microspheres sensors. Sens Actuators B Chem. 2015;209:515.CrossRef
[29]
Zurück zum Zitat Bai S, Liu J, Guo J, Luo R, Li D, Song Y, Liu CC, Chen A. Facile preparation of SnO2/NiO composites and enhancement of sensing performance to NO2. Sens Actuators B Chem. 2017;249:22.CrossRef Bai S, Liu J, Guo J, Luo R, Li D, Song Y, Liu CC, Chen A. Facile preparation of SnO2/NiO composites and enhancement of sensing performance to NO2. Sens Actuators B Chem. 2017;249:22.CrossRef
[30]
Zurück zum Zitat Ju D, Xu H, Xu Q, Gong H, Qiu Z, Guo J, Zhang J, Cao B. High triethylamine-sensing properties of NiO/SnO2 hollow sphere P–N heterojunction sensors. Sens Actuators B Chem. 2015;215:39.CrossRef Ju D, Xu H, Xu Q, Gong H, Qiu Z, Guo J, Zhang J, Cao B. High triethylamine-sensing properties of NiO/SnO2 hollow sphere P–N heterojunction sensors. Sens Actuators B Chem. 2015;215:39.CrossRef
[31]
Zurück zum Zitat Zhang J, Zeng D, Zhu Q, Wu J, Huang Q, Zhang W, Xie C. Enhanced room temperature NO2 response of NiO–SnO2 nanocomposites induced by interface bonds at the p–n heterojunction. Phys Chem Chem Phys. 2016;18(7):5386.CrossRef Zhang J, Zeng D, Zhu Q, Wu J, Huang Q, Zhang W, Xie C. Enhanced room temperature NO2 response of NiO–SnO2 nanocomposites induced by interface bonds at the p–n heterojunction. Phys Chem Chem Phys. 2016;18(7):5386.CrossRef
[32]
Zurück zum Zitat Liu S, Zhang Q, Zhang L, Gu L, Zou G, Bao J, Dai Z. Electrochemiluminescence tuned by electron-hole recombination from symmetry-breaking in wurtzite ZnSe. J Am Chem Soc. 2016;138(4):1154.CrossRef Liu S, Zhang Q, Zhang L, Gu L, Zou G, Bao J, Dai Z. Electrochemiluminescence tuned by electron-hole recombination from symmetry-breaking in wurtzite ZnSe. J Am Chem Soc. 2016;138(4):1154.CrossRef
[33]
Zurück zum Zitat Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd. 2019;781:201.CrossRef Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd. 2019;781:201.CrossRef
[34]
Zurück zum Zitat Lohar GM, Dhaygude HD, Patil RA, Ma YR, Fulari VJ. Studies of properties of Fe2+ doped ZnSe nano-needles for photoelectrochemical cell application. J Mater Sci Mater Electron. 2015;26(11):8904.CrossRef Lohar GM, Dhaygude HD, Patil RA, Ma YR, Fulari VJ. Studies of properties of Fe2+ doped ZnSe nano-needles for photoelectrochemical cell application. J Mater Sci Mater Electron. 2015;26(11):8904.CrossRef
[35]
Zurück zum Zitat Wang M, Wang Y, Liu J, Pei C, Liu B, Yuan Y, Zhao H, Liu S, Yang H. Enhanced sensing performance and sensing mechanism of hydrogenated NiO particles. Sens Actuators B Chem. 2017;250:208.CrossRef Wang M, Wang Y, Liu J, Pei C, Liu B, Yuan Y, Zhao H, Liu S, Yang H. Enhanced sensing performance and sensing mechanism of hydrogenated NiO particles. Sens Actuators B Chem. 2017;250:208.CrossRef
[36]
Zurück zum Zitat Geng X, Lahem D, Zhang C, Li CJ, Olivier MG, Debliquy M. Visible light enhanced black NiO sensors for ppb-level NO2 detection at room temperature. Ceram Int. 2019;45(4):4253.CrossRef Geng X, Lahem D, Zhang C, Li CJ, Olivier MG, Debliquy M. Visible light enhanced black NiO sensors for ppb-level NO2 detection at room temperature. Ceram Int. 2019;45(4):4253.CrossRef
[37]
Zurück zum Zitat Wu J, Feng S, Li Z, Tao K, Chu J, Miao J, Norford LK. Boosted sensitivity of graphene gas sensor via nanoporous thin film structures. Sens Actuators B Chem. 2018;255:1805.CrossRef Wu J, Feng S, Li Z, Tao K, Chu J, Miao J, Norford LK. Boosted sensitivity of graphene gas sensor via nanoporous thin film structures. Sens Actuators B Chem. 2018;255:1805.CrossRef
[38]
Zurück zum Zitat Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 2003;3(7):929.CrossRef Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 2003;3(7):929.CrossRef
[39]
Zurück zum Zitat Xu H, Zhang J, Rehman AU, Gong L, Kan K, Li L, Shi K. Synthesis of NiO@CuO nanocomposite as high-performance gas sensing material for NO2 at room temperature. Appl Surf Sci. 2017;412:230.CrossRef Xu H, Zhang J, Rehman AU, Gong L, Kan K, Li L, Shi K. Synthesis of NiO@CuO nanocomposite as high-performance gas sensing material for NO2 at room temperature. Appl Surf Sci. 2017;412:230.CrossRef
[40]
Zurück zum Zitat Ngo YLT, Hur SH. Low-temperature NO2 gas sensor fabricated with NiO and reduced graphene oxide hybrid structure. Mater Res Bull. 2016;84:168.CrossRef Ngo YLT, Hur SH. Low-temperature NO2 gas sensor fabricated with NiO and reduced graphene oxide hybrid structure. Mater Res Bull. 2016;84:168.CrossRef
[41]
Zurück zum Zitat Wang JK, Liao KT, Tseng WJ. NiO/SnO2 hybrid nanowires for enhanced NO2 gas sensing. Ceram Int. 2017;43:S541.CrossRef Wang JK, Liao KT, Tseng WJ. NiO/SnO2 hybrid nanowires for enhanced NO2 gas sensing. Ceram Int. 2017;43:S541.CrossRef
[42]
Zurück zum Zitat Bao M, Chen Y, Li F, Ma J, Lv T, Tang Y, Chen L, Xu Z, Wang T. Plate-like p–n heterogeneous NiO/WO3 nanocomposites for high performance room temperature NO2 sensors. Nanoscale. 2014;6(8):4063.CrossRef Bao M, Chen Y, Li F, Ma J, Lv T, Tang Y, Chen L, Xu Z, Wang T. Plate-like p–n heterogeneous NiO/WO3 nanocomposites for high performance room temperature NO2 sensors. Nanoscale. 2014;6(8):4063.CrossRef
[43]
Zurück zum Zitat Greiner MT, Helander MG, Bin Wang Z, Tang WM, Lu ZH. Effects of processing conditions on the work function and energy-level alignment of NiO thin films. J Phys Chem C. 2010;114(46):19777.CrossRef Greiner MT, Helander MG, Bin Wang Z, Tang WM, Lu ZH. Effects of processing conditions on the work function and energy-level alignment of NiO thin films. J Phys Chem C. 2010;114(46):19777.CrossRef
[44]
Zurück zum Zitat Woodall JM, Hodgson RT, Gunshor RL. Low-resistivity p-type ZnSe through surface Fermi level engineering. Appl Phys Lett. 1991;58(4):379.CrossRef Woodall JM, Hodgson RT, Gunshor RL. Low-resistivity p-type ZnSe through surface Fermi level engineering. Appl Phys Lett. 1991;58(4):379.CrossRef
[45]
Zurück zum Zitat Gao L, Ren F, Cheng Z, Zhang Y, Xiang Q, Xu J. Porous corundum-type In2O3 nanoflowers: controllable synthesis, enhanced ethanol-sensing properties and response mechanism. CrystEngComm. 2015;17(17):3268.CrossRef Gao L, Ren F, Cheng Z, Zhang Y, Xiang Q, Xu J. Porous corundum-type In2O3 nanoflowers: controllable synthesis, enhanced ethanol-sensing properties and response mechanism. CrystEngComm. 2015;17(17):3268.CrossRef
[46]
Zurück zum Zitat Gu D, Li X, Zhao Y, Wang J. Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sens Actuators B Chem. 2017;244:67.CrossRef Gu D, Li X, Zhao Y, Wang J. Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sens Actuators B Chem. 2017;244:67.CrossRef
[47]
Zurück zum Zitat Gurlo A, Bârsan N, Ivanovskaya M, Weimar U, Göpel W. In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3. Sens Actuators B Chem. 1998;47:92.CrossRef Gurlo A, Bârsan N, Ivanovskaya M, Weimar U, Göpel W. In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3. Sens Actuators B Chem. 1998;47:92.CrossRef
Metadaten
Titel
ZnSe/NiO heterostructure-based chemiresistive-type sensors for low-concentration NO2 detection
verfasst von
Wei Liu
Ding Gu
Jian-Wei Zhang
Xiao-Gan Li
Marina N. Rumyantseva
Alexander M. Gaskov
Publikationsdatum
01.09.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 6/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01564-5

Weitere Artikel der Ausgabe 6/2021

Rare Metals 6/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.