Skip to main content
Erschienen in: Rare Metals 3/2022

13.09.2021 | Letter

In situ structural reconstruction of NiMo alloy as a versatile organic oxidation electrode for boosting hydrogen production

verfasst von: Qi Liu, Meng-Yang Li, Yan-Mei Shi, Cui-Bo Liu, Yi-Fu Yu, Bin Zhang

Erschienen in: Rare Metals | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao SZ. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev. 2018;118(13):6337. Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao SZ. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev. 2018;118(13):6337.
[2]
Zurück zum Zitat Yu Y, Shi Y, Zhang B. Synergetic transformation of solid inorganic-organic hybrids into advanced nanomaterials for catalytic water splitting. Acc Chem Res. 2018;51(7):1711. Yu Y, Shi Y, Zhang B. Synergetic transformation of solid inorganic-organic hybrids into advanced nanomaterials for catalytic water splitting. Acc Chem Res. 2018;51(7):1711.
[3]
Zurück zum Zitat Hua W, Sun HH, Xu F, Wang JG. A review and perspective on molybdenum-based electrocatalystsfor hydrogen evolution reaction. Rare Met. 2020;39(4):335. Hua W, Sun HH, Xu F, Wang JG. A review and perspective on molybdenum-based electrocatalystsfor hydrogen evolution reaction. Rare Met. 2020;39(4):335.
[4]
Zurück zum Zitat Yu XP, Yang C, Song P, Peng J. Self-assembly of Au/MoS2 quantum dots core-satellite hybrid as efficient electrocatalyst for hydrogen production. Tungsten. 2020;2(2):194. Yu XP, Yang C, Song P, Peng J. Self-assembly of Au/MoS2 quantum dots core-satellite hybrid as efficient electrocatalyst for hydrogen production. Tungsten. 2020;2(2):194.
[5]
Zurück zum Zitat Li XX, Zhu PY, Li Q, Xu YX, Zhao Y, Pang H. Nitrogen-, phosphorus-doped carbon-carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Met. 2020;39(6):680. Li XX, Zhu PY, Li Q, Xu YX, Zhao Y, Pang H. Nitrogen-, phosphorus-doped carbon-carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Met. 2020;39(6):680.
[6]
Zurück zum Zitat Gao RJ, Zou JJ. Towards designing efficient catalyst for hydrogen oxidation reaction. Rare Met. 2020;39(10):1107. Gao RJ, Zou JJ. Towards designing efficient catalyst for hydrogen oxidation reaction. Rare Met. 2020;39(10):1107.
[7]
Zurück zum Zitat Jiang Y, Xu K, Zeng C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem Rev. 2018;118(9):4485. Jiang Y, Xu K, Zeng C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem Rev. 2018;118(9):4485.
[8]
Zurück zum Zitat Pollok D, Waldvogel SR. Electro-organic synthesis—a 21st century technique. Chem Sci. 2020;11(46):12386. Pollok D, Waldvogel SR. Electro-organic synthesis—a 21st century technique. Chem Sci. 2020;11(46):12386.
[9]
Zurück zum Zitat Sauermann N, Meyer TH, Qiu Y, Ackermann L. Electrocatalytic C–H activation. ACS Catal. 2018;8(8):7086. Sauermann N, Meyer TH, Qiu Y, Ackermann L. Electrocatalytic C–H activation. ACS Catal. 2018;8(8):7086.
[10]
Zurück zum Zitat Moeller KD. Using physical organic chemistry to shape the course of electrochemical reactions. Chem Rev. 2018;118(9):4817. Moeller KD. Using physical organic chemistry to shape the course of electrochemical reactions. Chem Rev. 2018;118(9):4817.
[11]
Zurück zum Zitat Yan M, Kawamata Y, Baran PS. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem Rev. 2017;117(21):13230. Yan M, Kawamata Y, Baran PS. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem Rev. 2017;117(21):13230.
[12]
Zurück zum Zitat Francke R, Little RD. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem Soc Rev. 2014;43(8):2492. Francke R, Little RD. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem Soc Rev. 2014;43(8):2492.
[14]
Zurück zum Zitat Chen W, Xie C, Wang Y, Zou Y, Dong CL, Huang YC, Xiao Z, Wei Z, Du S, Chen C, Zhou B, Ma J, Wang S. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem. 2020;6(11):2974. Chen W, Xie C, Wang Y, Zou Y, Dong CL, Huang YC, Xiao Z, Wei Z, Du S, Chen C, Zhou B, Ma J, Wang S. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem. 2020;6(11):2974.
[15]
Zurück zum Zitat Cui X, Chen M, Xiong R, Sun J, Liu X, Geng B. Ultrastable and efficient H2 production via membrane-free hybrid water electrolysis over a bifunctional catalyst of hierarchical Mo-Ni alloy nanoparticles. J Mater Chem A. 2019;7(27):16501. Cui X, Chen M, Xiong R, Sun J, Liu X, Geng B. Ultrastable and efficient H2 production via membrane-free hybrid water electrolysis over a bifunctional catalyst of hierarchical Mo-Ni alloy nanoparticles. J Mater Chem A. 2019;7(27):16501.
[16]
Zurück zum Zitat You B, Jiang N, Liu X, Sun Y. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew Chem Int Ed. 2016;55(34):9913. You B, Jiang N, Liu X, Sun Y. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew Chem Int Ed. 2016;55(34):9913.
[17]
Zurück zum Zitat Huang Y, Chong X, Liu C, Liang Y, Zhang B. Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angew Chem Int Ed. 2018;57(40):13163. Huang Y, Chong X, Liu C, Liang Y, Zhang B. Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angew Chem Int Ed. 2018;57(40):13163.
[18]
Zurück zum Zitat Huang C, Huang Y, Liu C, Yu Y, Zhang B. Integrating hydrogen production with aqueous selective semi-dehydrogenation of tetrahydroisoquinolines over a Ni2P bifunctional electrode. Angew Chem Int Ed. 2019;58(35):12014. Huang C, Huang Y, Liu C, Yu Y, Zhang B. Integrating hydrogen production with aqueous selective semi-dehydrogenation of tetrahydroisoquinolines over a Ni2P bifunctional electrode. Angew Chem Int Ed. 2019;58(35):12014.
[19]
Zurück zum Zitat Kawamata Y, Baran PS. Electrosynthesis: sustainability is not enough. Joule. 2020;4(4):701. Kawamata Y, Baran PS. Electrosynthesis: sustainability is not enough. Joule. 2020;4(4):701.
[20]
Zurück zum Zitat Meyer TH, Choi I, Tian C, Ackermann L. Powering the future: how can electrochemistry make a difference in organic synthesis? Chem. 2020;6(10):2484. Meyer TH, Choi I, Tian C, Ackermann L. Powering the future: how can electrochemistry make a difference in organic synthesis? Chem. 2020;6(10):2484.
[21]
Zurück zum Zitat Chen YY, Zhang Y, Zhang X, Tang T, Luo H, Niu S, Dai ZH, Wan LJ, Hu JS. Self-templated fabrication of MoNi4/MoO3-X nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv Mater. 2017;29(39):1703311. Chen YY, Zhang Y, Zhang X, Tang T, Luo H, Niu S, Dai ZH, Wan LJ, Hu JS. Self-templated fabrication of MoNi4/MoO3-X nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv Mater. 2017;29(39):1703311.
[22]
Zurück zum Zitat Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat Commun. 2017;8:15437. Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat Commun. 2017;8:15437.
[23]
Zurück zum Zitat Du W, Shi Y, Zhou W, Yu Y, Zhang B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew Chem Int Ed. 2021;60(13):7051. Du W, Shi Y, Zhou W, Yu Y, Zhang B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew Chem Int Ed. 2021;60(13):7051.
[24]
Zurück zum Zitat Chacón-Huete F, Lasso JD, Szavay P, Covone J, Forgione P. Synthesis of 2,5-diaryl nonsymmetric furans C6-platform chemicals via catalytic conversion of biomass and the formal synthesis of dantrolene. J Org Chem. 2021;86(1):515. Chacón-Huete F, Lasso JD, Szavay P, Covone J, Forgione P. Synthesis of 2,5-diaryl nonsymmetric furans C6-platform chemicals via catalytic conversion of biomass and the formal synthesis of dantrolene. J Org Chem. 2021;86(1):515.
[25]
Zurück zum Zitat Gao Z, Li C, Fan G, Yang L, Li F. Nitrogen-doped carbon-decorated copper catalyst for highly efficient transfer hydrogenolysis of 5-hydroxymethylfurfural to convertibly produce 2,5-dimethylfuran or 2,5-dimethyltetrahydrofuran. Appl Catal B Environ. 2018;226:523. Gao Z, Li C, Fan G, Yang L, Li F. Nitrogen-doped carbon-decorated copper catalyst for highly efficient transfer hydrogenolysis of 5-hydroxymethylfurfural to convertibly produce 2,5-dimethylfuran or 2,5-dimethyltetrahydrofuran. Appl Catal B Environ. 2018;226:523.
[26]
Zurück zum Zitat Wu J, Gao G, Li J, Sun P, Long X, Li F. Efficient and versatile CuNi alloy nanocatalysts for the highly selective hydrogenation of furfural. Appl Catal B Environ. 2017;203:227. Wu J, Gao G, Li J, Sun P, Long X, Li F. Efficient and versatile CuNi alloy nanocatalysts for the highly selective hydrogenation of furfural. Appl Catal B Environ. 2017;203:227.
[27]
Zurück zum Zitat You B, Liu X, Jiang N, Sun Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J Am Chem Soc. 2016;138(41):13639. You B, Liu X, Jiang N, Sun Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J Am Chem Soc. 2016;138(41):13639.
[28]
Zurück zum Zitat Sajid M, Zhao XB, Liu DH. Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chem. 2018;20(24):5427. Sajid M, Zhao XB, Liu DH. Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chem. 2018;20(24):5427.
[29]
Zurück zum Zitat Barwe S, Weidner J, Cychy S, Morales DM, Dieckhofer S, Hiltrop D, Masa J, Muhler M, Schuhmann W. Electrocatalytic oxidation of 5-(hydroxymethyl)furfural using high-surface-area nickel boride. Angew Chem Int Ed. 2018;57(35):11460. Barwe S, Weidner J, Cychy S, Morales DM, Dieckhofer S, Hiltrop D, Masa J, Muhler M, Schuhmann W. Electrocatalytic oxidation of 5-(hydroxymethyl)furfural using high-surface-area nickel boride. Angew Chem Int Ed. 2018;57(35):11460.
[30]
Zurück zum Zitat Poerwoprajitno AR, Gloag L, Watt J, Cychy S, Cheong S, Kumar PV, Benedetti TM, Deng C, Wu KH, Marjo CE, Huber DL, Muhler M, Gooding JJ, Schuhmann W, Wang DW, Tilley RD. Faceted branched nickel nanoparticles with tunable branch length for high-activity electrocatalytic oxidation of biomass. Angew Chem Int Ed. 2020;59(36):15487. Poerwoprajitno AR, Gloag L, Watt J, Cychy S, Cheong S, Kumar PV, Benedetti TM, Deng C, Wu KH, Marjo CE, Huber DL, Muhler M, Gooding JJ, Schuhmann W, Wang DW, Tilley RD. Faceted branched nickel nanoparticles with tunable branch length for high-activity electrocatalytic oxidation of biomass. Angew Chem Int Ed. 2020;59(36):15487.
[31]
Zurück zum Zitat Kwon Y, Schouten KJP, van der Waal JC, de Jong E, Koper MTM. Electrocatalytic conversion of furanic compounds. ACS Catal. 2016;6(10):6704. Kwon Y, Schouten KJP, van der Waal JC, de Jong E, Koper MTM. Electrocatalytic conversion of furanic compounds. ACS Catal. 2016;6(10):6704.
[32]
Zurück zum Zitat Li M, Liu C, Zhang B. Using water as the hydrogen source for electrocatalytic transfer hydrogen storage. Sci Bull. 2021;66(11):1047. Li M, Liu C, Zhang B. Using water as the hydrogen source for electrocatalytic transfer hydrogen storage. Sci Bull. 2021;66(11):1047.
[33]
Zurück zum Zitat Martin A, Kalevaru VN. Heterogeneously catalyzed ammoxidation: a valuable tool for one-step synthesis of nitriles. ChemCatChem. 2010;2(12):1504. Martin A, Kalevaru VN. Heterogeneously catalyzed ammoxidation: a valuable tool for one-step synthesis of nitriles. ChemCatChem. 2010;2(12):1504.
[34]
Zurück zum Zitat Jagadeesh RV, Junge H, Beller M. Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts. Nat Commun. 2014;5:4123. Jagadeesh RV, Junge H, Beller M. Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts. Nat Commun. 2014;5:4123.
[35]
Zurück zum Zitat Fleming FF, Yao LH, Ravikumar PC, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem. 2010;53(22):7902. Fleming FF, Yao LH, Ravikumar PC, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem. 2010;53(22):7902.
[36]
Zurück zum Zitat Yan G, Zhang Y, Wang J. Recent advances in the synthesis of aryl nitrile compounds. Adv Synth Catal. 2017;359(23):4068. Yan G, Zhang Y, Wang J. Recent advances in the synthesis of aryl nitrile compounds. Adv Synth Catal. 2017;359(23):4068.
[37]
Zurück zum Zitat Fleming FF. Nitrile-containing natural products. Nat Prod Rep. 1999;16(5):597. Fleming FF. Nitrile-containing natural products. Nat Prod Rep. 1999;16(5):597.
[38]
Zurück zum Zitat Liu RY, Bae M, Buchwald SL. Mechanistic insight facilitates discovery of a mild and efficient copper-catalyzed dehydration of primary amides to nitriles using hydrosilanes. J Am Chem Soc. 2018;140(5):1627. Liu RY, Bae M, Buchwald SL. Mechanistic insight facilitates discovery of a mild and efficient copper-catalyzed dehydration of primary amides to nitriles using hydrosilanes. J Am Chem Soc. 2018;140(5):1627.
[39]
Zurück zum Zitat Chaumontet M, Piccardi R, Baudoin O. Synthesis of 3,4-dihydroisoquinolines by a C(sp(3))-H activation/electrocyclization strategy: total synthesis of coralydine. Angew Chem Int Ed. 2009;48(1):179. Chaumontet M, Piccardi R, Baudoin O. Synthesis of 3,4-dihydroisoquinolines by a C(sp(3))-H activation/electrocyclization strategy: total synthesis of coralydine. Angew Chem Int Ed. 2009;48(1):179.
[40]
Zurück zum Zitat Zheng B, Trieu TH, Li FL, Zhu XL, He YG, Fan QQ, Shi XX. Copper-catalyzed benign and efficient oxidation of tetrahydroisoquinolines and dihydroisoquinolines using air as a clean oxidant. ACS Omega. 2018;3(7):8243. Zheng B, Trieu TH, Li FL, Zhu XL, He YG, Fan QQ, Shi XX. Copper-catalyzed benign and efficient oxidation of tetrahydroisoquinolines and dihydroisoquinolines using air as a clean oxidant. ACS Omega. 2018;3(7):8243.
[41]
Zurück zum Zitat Ziemska J, Guspiel A, Jarosz J, Nasulewicz-Goldeman A, Wietrzyk J, Kawecki R, Pypowski K, Jaroriczyk M, Solecka J. Molecular docking studies, biological and toxicity evaluation of dihydroisoquinoline derivatives as potential anticancer agents. Bioorg Med Chem. 2016;24(21):5302. Ziemska J, Guspiel A, Jarosz J, Nasulewicz-Goldeman A, Wietrzyk J, Kawecki R, Pypowski K, Jaroriczyk M, Solecka J. Molecular docking studies, biological and toxicity evaluation of dihydroisoquinoline derivatives as potential anticancer agents. Bioorg Med Chem. 2016;24(21):5302.
[42]
Zurück zum Zitat Wu Y, Yi H, Lei A. Electrochemical acceptorless dehydrogenation of N-heterocycles utilizing TEMPO as organo-electrocatalyst. ACS Catal. 2018;8(2):1192. Wu Y, Yi H, Lei A. Electrochemical acceptorless dehydrogenation of N-heterocycles utilizing TEMPO as organo-electrocatalyst. ACS Catal. 2018;8(2):1192.
[43]
Zurück zum Zitat Yang R, Yue S, Tan W, Xie Y, Cai H. DMSO/t-BuONa/O2-mediated aerobic dehydrogenation of saturated N-heterocycles. J Org Chem. 2020;85(11):7501. Yang R, Yue S, Tan W, Xie Y, Cai H. DMSO/t-BuONa/O2-mediated aerobic dehydrogenation of saturated N-heterocycles. J Org Chem. 2020;85(11):7501.
[44]
Zurück zum Zitat Xiong P, Xu HC. Chemistry with electrochemically generated N-centered radicals. Acc Chem Res. 2019;52(12):3339. Xiong P, Xu HC. Chemistry with electrochemically generated N-centered radicals. Acc Chem Res. 2019;52(12):3339.
[45]
Zurück zum Zitat Wijten JHJ, Riemersma RL, Gauthier J, Mandemaker LDB, Verhoeven MWGM, Hofmann JP, Chan K, Weckhuysen BM. Electrolyte effects on the stability of Ni-Mo cathodes for the hydrogen evolution reaction. Chemsuschem. 2019;12(15):3491. Wijten JHJ, Riemersma RL, Gauthier J, Mandemaker LDB, Verhoeven MWGM, Hofmann JP, Chan K, Weckhuysen BM. Electrolyte effects on the stability of Ni-Mo cathodes for the hydrogen evolution reaction. Chemsuschem. 2019;12(15):3491.
[46]
Zurück zum Zitat Nishimoto M, Muto I, Sugawara Y, Hara N. Morphological characteristics of trenching around MnS inclusions in type 316 stainless steel: the role of molybdenum in pitting corrosion resistance. J Electrochem Soc. 2019;166(11):C3081. Nishimoto M, Muto I, Sugawara Y, Hara N. Morphological characteristics of trenching around MnS inclusions in type 316 stainless steel: the role of molybdenum in pitting corrosion resistance. J Electrochem Soc. 2019;166(11):C3081.
[47]
Zurück zum Zitat Zhang P, Sheng X, Chen X, Fang Z, Jiang J, Wang M, Li F, Fan L, Ren Y, Zhang B, Timmer BJJ, Ahlquist MSG, Sun L. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angew Chem Int Ed. 2019;58(27):9155. Zhang P, Sheng X, Chen X, Fang Z, Jiang J, Wang M, Li F, Fan L, Ren Y, Zhang B, Timmer BJJ, Ahlquist MSG, Sun L. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angew Chem Int Ed. 2019;58(27):9155.
[48]
Zurück zum Zitat Garcia AC, Touzalin T, Nieuwland C, Perini N, Koper MTM. Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew Chem Int Ed. 2019;58(37):12999. Garcia AC, Touzalin T, Nieuwland C, Perini N, Koper MTM. Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew Chem Int Ed. 2019;58(37):12999.
Metadaten
Titel
In situ structural reconstruction of NiMo alloy as a versatile organic oxidation electrode for boosting hydrogen production
verfasst von
Qi Liu
Meng-Yang Li
Yan-Mei Shi
Cui-Bo Liu
Yi-Fu Yu
Bin Zhang
Publikationsdatum
13.09.2021
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 3/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01824-y

Weitere Artikel der Ausgabe 3/2022

Rare Metals 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.