Skip to main content
Erschienen in: Rare Metals 3/2022

20.10.2021 | Letter

Room-temperature hydrogen spillover achieving stoichiometric hydrogenation of NO3 and NO2 into N2 over CuPd nanowire network

verfasst von: Ruo-Yan Miao, Xue-Xiang Li, Qian Lei, Hu Liu, Zhen-Hui Ma, Xu-Dong Liu, Zhou-Yang Yin, Zuo-Bin Tang, Liang Zhang, Yu-Hong Tian

Erschienen in: Rare Metals | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …
The development of an efficient hydrogen spillover (HS) catalyst achieves the stoichiometric chemoselective hydrogenation of NO3 and NO2 into N2 at room temperature, which is extremely challenging. Herein, we report a CuxPd1−x nanowire network (NWN) (x = 7, 5, or 3) with tunable hydrogen spillover rate of formic acid (FA) with polyvinylpyrrolidine imine (PVPI) modifying its surface. The presence of PVPI boosts the catalytic selectivity and activity of CuPd NWN for FA dehydrogenation and, more importantly, serves as a modem to tune the HS rate of FA and to stoichiometrically hydrogenate NO3 and NO2 to N2 at room temperature. The density functional theory (DFT) reveals that the CuPd (130 h−1) has a weaker HS rate than AgPd (390 h−1), but the CuPd (> 99%) has a higher utilization of HS than AgPd (31%). Our studies demonstrate a new approach of tuning the FA HS rate and maximizing the application for stoichiometric chemoselective hydrogenation reaction, which will be important for hydrogen generation and its applications.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Liu H, Liu X, Yu Y, Yang W, Li J, Feng M, Li H. Bifunctional networked Ag/AgPd core/shell nanowires for the highly efficient dehydrogenation of formic acid and subsequent reduction of nitrate and nitrite in water. J Mater Chem A. 2018;6(11):4611.CrossRef Liu H, Liu X, Yu Y, Yang W, Li J, Feng M, Li H. Bifunctional networked Ag/AgPd core/shell nanowires for the highly efficient dehydrogenation of formic acid and subsequent reduction of nitrate and nitrite in water. J Mater Chem A. 2018;6(11):4611.CrossRef
[2]
Zurück zum Zitat Liu H, Shen M, Zhou P, Guo Z, Liu X, Yang W, Gao M, Chen M, Guan H, Padture N, Yu Y, Guo S, Sun S. Linking melem with conjugated Schiff-base bonds to boost photocatalytic efficiency of carbon nitride for overall water splitting. Nanoscale. 2021;13(20):9315–9321.CrossRef Liu H, Shen M, Zhou P, Guo Z, Liu X, Yang W, Gao M, Chen M, Guan H, Padture N, Yu Y, Guo S, Sun S. Linking melem with conjugated Schiff-base bonds to boost photocatalytic efficiency of carbon nitride for overall water splitting. Nanoscale. 2021;13(20):9315–9321.CrossRef
[3]
Zurück zum Zitat Teng W, Bai N, Liu Y, Liu Y, Fan J, Zhang WX. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environ Sci Technol. 2018;52(1):230.CrossRef Teng W, Bai N, Liu Y, Liu Y, Fan J, Zhang WX. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environ Sci Technol. 2018;52(1):230.CrossRef
[4]
Zurück zum Zitat Romanelli A, Soto DX, Matiatos I, Martínez DE, Esquius S. A biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems. Sci Total Environ. 2020;715:136909.CrossRef Romanelli A, Soto DX, Matiatos I, Martínez DE, Esquius S. A biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems. Sci Total Environ. 2020;715:136909.CrossRef
[5]
Zurück zum Zitat Knobeloch L, Salna B, Hogan A, Postle J, Anderson H. Blue babies and nitrate-contaminated well water. Environ Health Perspect. 2000;108(7):675.CrossRef Knobeloch L, Salna B, Hogan A, Postle J, Anderson H. Blue babies and nitrate-contaminated well water. Environ Health Perspect. 2000;108(7):675.CrossRef
[6]
Zurück zum Zitat Freedman DM, Cantor KP, Ward MH, Helzlsouer KJ. A case-control study of nitrate in drinking water and non-Hodgkin’s lymphoma in Minnesota. Arch Environ Health Int J. 2000;55(5):326.CrossRef Freedman DM, Cantor KP, Ward MH, Helzlsouer KJ. A case-control study of nitrate in drinking water and non-Hodgkin’s lymphoma in Minnesota. Arch Environ Health Int J. 2000;55(5):326.CrossRef
[7]
Zurück zum Zitat Li H, Guo S, Shin K, Wong MS, Henkelman G. Design of a Pd–Au nitrite reduction catalyst by identifying and optimizing active ensembles. ACS Catal. 2019;9(9):7957.CrossRef Li H, Guo S, Shin K, Wong MS, Henkelman G. Design of a Pd–Au nitrite reduction catalyst by identifying and optimizing active ensembles. ACS Catal. 2019;9(9):7957.CrossRef
[8]
Zurück zum Zitat Troutman JP, Li H, Haddix AM, Kienzle BA, Henkelman G, Humphrey SM, Werth CJ. PdAg alloy nanocatalysts: toward economically viable nitrite reduction in drinking water. ACS Catal. 2020;10(14):7979.CrossRef Troutman JP, Li H, Haddix AM, Kienzle BA, Henkelman G, Humphrey SM, Werth CJ. PdAg alloy nanocatalysts: toward economically viable nitrite reduction in drinking water. ACS Catal. 2020;10(14):7979.CrossRef
[9]
Zurück zum Zitat Li L, Tang C, Yao D, Zheng Y, Qiao SZ. Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte. ACS Energy Lett. 2019;4(9):2111.CrossRef Li L, Tang C, Yao D, Zheng Y, Qiao SZ. Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte. ACS Energy Lett. 2019;4(9):2111.CrossRef
[10]
Zurück zum Zitat Jiang M, Zheng X, Chen Y. Enhancement of denitrification performance with reduction of nitrite accumulation and N2O emission by Shewanella oneidensis MR-1 in microbial denitrifying process. Water Res. 2020;169:115242.CrossRef Jiang M, Zheng X, Chen Y. Enhancement of denitrification performance with reduction of nitrite accumulation and N2O emission by Shewanella oneidensis MR-1 in microbial denitrifying process. Water Res. 2020;169:115242.CrossRef
[11]
Zurück zum Zitat Hou Z, Chen F, Wang J, François-Xavier CP, Wintgens T. Novel Pd/GdCrO3 composite for photo-catalytic reduction of nitrate to N2 with high selectivity and activity. Appl Catal B. 2018;232:124.CrossRef Hou Z, Chen F, Wang J, François-Xavier CP, Wintgens T. Novel Pd/GdCrO3 composite for photo-catalytic reduction of nitrate to N2 with high selectivity and activity. Appl Catal B. 2018;232:124.CrossRef
[12]
Zurück zum Zitat Aristizábal A, Contreras S, Barrabés N, Llorca J, Tichit D, Medina F. Catalytic reduction of nitrates in water on Pt promoted Cu hydrotalcite-derived catalysts: effect of the Pt-Cu alloy formation. Appl Catal B. 2011;110:58.CrossRef Aristizábal A, Contreras S, Barrabés N, Llorca J, Tichit D, Medina F. Catalytic reduction of nitrates in water on Pt promoted Cu hydrotalcite-derived catalysts: effect of the Pt-Cu alloy formation. Appl Catal B. 2011;110:58.CrossRef
[13]
Zurück zum Zitat Mellor RB, Ronnenberg J, Campbell WH, Diekmann S. Reduction of nitrate and nitrite in water by immobilized enzymes. Nature. 1992;355(6362):717.CrossRef Mellor RB, Ronnenberg J, Campbell WH, Diekmann S. Reduction of nitrate and nitrite in water by immobilized enzymes. Nature. 1992;355(6362):717.CrossRef
[14]
Zurück zum Zitat Jiang L, Liu K, Hung SF, Zhou L, Qin R, Zhang Q, Zheng N. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat Nanotechnol. 2020;15(10):848.CrossRef Jiang L, Liu K, Hung SF, Zhou L, Qin R, Zhang Q, Zheng N. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat Nanotechnol. 2020;15(10):848.CrossRef
[15]
Zurück zum Zitat Zhang YH, Gong PF, Li LW, Sun H, Feng DC, Guo SH. Hydrogen storage thermodynamics and dynamics of La–Mg–Ni-based LaMg12-type alloys synthesized by mechanical milling. Rare Met. 2019;38(12):1144.CrossRef Zhang YH, Gong PF, Li LW, Sun H, Feng DC, Guo SH. Hydrogen storage thermodynamics and dynamics of La–Mg–Ni-based LaMg12-type alloys synthesized by mechanical milling. Rare Met. 2019;38(12):1144.CrossRef
[16]
Zurück zum Zitat Karim W, Spreafico C, Kleibert A, Gobrecht J, VandeVondele J, Ekinci Y, van Bokhoven JA. Catalyst support effects on hydrogen spillover. Nature. 2017;541(7635):68.CrossRef Karim W, Spreafico C, Kleibert A, Gobrecht J, VandeVondele J, Ekinci Y, van Bokhoven JA. Catalyst support effects on hydrogen spillover. Nature. 2017;541(7635):68.CrossRef
[17]
Zurück zum Zitat Zhou H, Wang XH, Liu HZ, Gao SC, Yan M. Improved hydrogen storage properties of LiBH4 confined with activated charcoal by ball milling. Rare Met. 2019;38(4):321.CrossRef Zhou H, Wang XH, Liu HZ, Gao SC, Yan M. Improved hydrogen storage properties of LiBH4 confined with activated charcoal by ball milling. Rare Met. 2019;38(4):321.CrossRef
[18]
Zurück zum Zitat Xiong M, Gao Z, Zhao P, Wang G, Yan W, Xing S, Qin Y. In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nat Commun. 2020;11(1):1.CrossRef Xiong M, Gao Z, Zhao P, Wang G, Yan W, Xing S, Qin Y. In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nat Commun. 2020;11(1):1.CrossRef
[19]
Zurück zum Zitat Li Y, Yang Y, Huang JW, Wang L, She HD, Zhong JB, Wang QZ. Preparation of CuS/BiVO4 thin film and its efficaciously photoelectrochemical performance in hydrogen generation. Rare Met. 2019;38(5):428.CrossRef Li Y, Yang Y, Huang JW, Wang L, She HD, Zhong JB, Wang QZ. Preparation of CuS/BiVO4 thin film and its efficaciously photoelectrochemical performance in hydrogen generation. Rare Met. 2019;38(5):428.CrossRef
[20]
Zurück zum Zitat Wang HH, Zhang JF, Chen ZL, Zhang MM, Han XP, Zhong C, Deng YD, Hu WB. Polycrystal Pd nanoparticles: green synthesis and size-dependent performance for formic acid oxidation. Rare Met. 2019;38(2):115.CrossRef Wang HH, Zhang JF, Chen ZL, Zhang MM, Han XP, Zhong C, Deng YD, Hu WB. Polycrystal Pd nanoparticles: green synthesis and size-dependent performance for formic acid oxidation. Rare Met. 2019;38(2):115.CrossRef
[21]
Zurück zum Zitat Ma Z, Yue M, Liu H, Yin Z, Wei K, Guan H, Lin H, Shen M, An S, Wu Q, Sun S. Stabilizing hard magnetic SmCo5 nanoparticles by N-doped graphitic carbon layer. J Am Chem Soc. 2020;142(18):8440.CrossRef Ma Z, Yue M, Liu H, Yin Z, Wei K, Guan H, Lin H, Shen M, An S, Wu Q, Sun S. Stabilizing hard magnetic SmCo5 nanoparticles by N-doped graphitic carbon layer. J Am Chem Soc. 2020;142(18):8440.CrossRef
[22]
Zurück zum Zitat Wang H, Zhang J, Chen Z, Zhang M, Han P, Zhong C, Deng Y, Hu W. Size-controllable synthesis and high-performance formic acid oxidation of polycrystalline Pd nanoparticles. Rare Met. 2019;38(2):115.CrossRef Wang H, Zhang J, Chen Z, Zhang M, Han P, Zhong C, Deng Y, Hu W. Size-controllable synthesis and high-performance formic acid oxidation of polycrystalline Pd nanoparticles. Rare Met. 2019;38(2):115.CrossRef
[23]
Zurück zum Zitat Liu H, Liu X, Yang W, Shen M, Geng S, Yu C, Yu Y. Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@gC3N4 Mott-Schottky heterojunction. J Mater Chem A. 2019;7(5):2022.CrossRef Liu H, Liu X, Yang W, Shen M, Geng S, Yu C, Yu Y. Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@gC3N4 Mott-Schottky heterojunction. J Mater Chem A. 2019;7(5):2022.CrossRef
[24]
Zurück zum Zitat Liu H, Huang B, Zhou J, Wang K, Yu Y, Yang W, Guo S. Enhanced electron transfer and light absorption on imino polymer capped PdAg nanowire networks for efficient room-temperature dehydrogenation of formic acid. J Mater Chem A. 2018;6(5):1979.CrossRef Liu H, Huang B, Zhou J, Wang K, Yu Y, Yang W, Guo S. Enhanced electron transfer and light absorption on imino polymer capped PdAg nanowire networks for efficient room-temperature dehydrogenation of formic acid. J Mater Chem A. 2018;6(5):1979.CrossRef
[25]
Zurück zum Zitat Liu H, Li XX, Liu XY, Ma ZH, Yin ZY, Yang WW, Yu YS. Schiff-base-rich gCxN4 supported PdAg nanowires as an efficient Mott-Schottky catalyst boosting photocatalytic dehydrogenation of formic acid. Rare Met. 2021;40(4):808.CrossRef Liu H, Li XX, Liu XY, Ma ZH, Yin ZY, Yang WW, Yu YS. Schiff-base-rich gCxN4 supported PdAg nanowires as an efficient Mott-Schottky catalyst boosting photocatalytic dehydrogenation of formic acid. Rare Met. 2021;40(4):808.CrossRef
[26]
Zurück zum Zitat Liu H, Guo Y, Yu Y, Yang W, Shen M, Liu X, Geng S, Li J, Yu C, Yin Z, Li H. Surface Pd-rich PdAg nanowires as highly efficient catalysts for dehydrogenation of formic acid and subsequent hydrogenation of adiponitrile. J Mater Chem A. 2018;6(36):17323.CrossRef Liu H, Guo Y, Yu Y, Yang W, Shen M, Liu X, Geng S, Li J, Yu C, Yin Z, Li H. Surface Pd-rich PdAg nanowires as highly efficient catalysts for dehydrogenation of formic acid and subsequent hydrogenation of adiponitrile. J Mater Chem A. 2018;6(36):17323.CrossRef
[27]
Zurück zum Zitat Metin Ö, Sun X, Sun S. Monodisperse gold–palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale. 2013;5(3):910.CrossRef Metin Ö, Sun X, Sun S. Monodisperse gold–palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale. 2013;5(3):910.CrossRef
[28]
Zurück zum Zitat Brosnahan JT, Zhang Z, Yin Z, Zhang S. Electrocatalytic reduction of furfural with high selectivity to furfuryl alcohol using AgPd alloy nanoparticles. Nanoscal. 2021;13(4):2312.CrossRef Brosnahan JT, Zhang Z, Yin Z, Zhang S. Electrocatalytic reduction of furfural with high selectivity to furfuryl alcohol using AgPd alloy nanoparticles. Nanoscal. 2021;13(4):2312.CrossRef
[29]
Zurück zum Zitat Cui M, Johnson G, Zhang Z, Li S, Hwang S, Zhang X, Zhang S. AgPd nanoparticles for electrocatalytic CO2 reduction: bimetallic composition-dependent ligand and ensemble effects. Nanoscale. 2020;12(26):14068.CrossRef Cui M, Johnson G, Zhang Z, Li S, Hwang S, Zhang X, Zhang S. AgPd nanoparticles for electrocatalytic CO2 reduction: bimetallic composition-dependent ligand and ensemble effects. Nanoscale. 2020;12(26):14068.CrossRef
[30]
Zurück zum Zitat Peng Y, Cui M, Zhang Z, Shu S, Shi X, Brosnahan JT, Liu C, Zhang Y, Godbold P, Zhang X, Dong F, Jiang G, Zhang S. Bimetallic composition-promoted electrocatalytic hydrodechlorination reaction on silver–palladium alloy nanoparticles. ACS Catal. 2019;9(12):10803.CrossRef Peng Y, Cui M, Zhang Z, Shu S, Shi X, Brosnahan JT, Liu C, Zhang Y, Godbold P, Zhang X, Dong F, Jiang G, Zhang S. Bimetallic composition-promoted electrocatalytic hydrodechlorination reaction on silver–palladium alloy nanoparticles. ACS Catal. 2019;9(12):10803.CrossRef
[31]
Zurück zum Zitat Zhang S, Metin Ö, Su D, Sun S. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angew Chem Int Ed. 2013;52(13):3681.CrossRef Zhang S, Metin Ö, Su D, Sun S. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angew Chem Int Ed. 2013;52(13):3681.CrossRef
[32]
Zurück zum Zitat Yu C, Guo X, Xi Z, Muzzio M, Yin Z, Shen B, Li J, Seto CT, Sun S. AgPd nanoparticles deposited on WO2.72 nanorods as an efficient catalyst for one-pot conversion of nitrophenol/nitroacetophenone into benzoxazole/quinazoline. J Am Chem Soc. 2017;139(16):5712.CrossRef Yu C, Guo X, Xi Z, Muzzio M, Yin Z, Shen B, Li J, Seto CT, Sun S. AgPd nanoparticles deposited on WO2.72 nanorods as an efficient catalyst for one-pot conversion of nitrophenol/nitroacetophenone into benzoxazole/quinazoline. J Am Chem Soc. 2017;139(16):5712.CrossRef
[33]
Zurück zum Zitat Yamauchi M, Abe R, Tsukuda T, Kato K, Takata M. Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2. J Am Chem Soc. 2011;133(5):1150.CrossRef Yamauchi M, Abe R, Tsukuda T, Kato K, Takata M. Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2. J Am Chem Soc. 2011;133(5):1150.CrossRef
[34]
Zurück zum Zitat Xu Y, Ren K, Ren T, Wang M, Liu M, Wang Z, Li X, Wang L, Wang H. Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia. Chem Commun. 2021;57(61):7525.CrossRef Xu Y, Ren K, Ren T, Wang M, Liu M, Wang Z, Li X, Wang L, Wang H. Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia. Chem Commun. 2021;57(61):7525.CrossRef
[35]
Zurück zum Zitat Ma Z, Liu H, Yue M. Magnetically recyclable Sm2Co17/Cu catalyst to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline under room temperature. Nano Res. 2019;12(12):3085. Ma Z, Liu H, Yue M. Magnetically recyclable Sm2Co17/Cu catalyst to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline under room temperature. Nano Res. 2019;12(12):3085.
[36]
Zurück zum Zitat Bletery Q, Thomas AM, Rempel AW, Karlstrom L, Sladen A, De Barros L. Mega-earthquakes rupture flat megathrusts. Science. 2016;354(6315):1027.CrossRef Bletery Q, Thomas AM, Rempel AW, Karlstrom L, Sladen A, De Barros L. Mega-earthquakes rupture flat megathrusts. Science. 2016;354(6315):1027.CrossRef
[37]
Zurück zum Zitat Wang L, Li Z, Wang K, Dai Q, Lei C, Yang B, Zhang Q, Lei L, Leung MKH, Hou Y. Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn–H2O cell over a wide pH range. Nano Energy. 2020;74:104850.CrossRef Wang L, Li Z, Wang K, Dai Q, Lei C, Yang B, Zhang Q, Lei L, Leung MKH, Hou Y. Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn–H2O cell over a wide pH range. Nano Energy. 2020;74:104850.CrossRef
[38]
Zurück zum Zitat Bletery Q, Thomas AM, Rempel AW, Karlstrom L, Anthony S, Barros LD. Mega-earthquakes rupture flat megathrusts. Science. 2016;354(6315):1027.CrossRef Bletery Q, Thomas AM, Rempel AW, Karlstrom L, Anthony S, Barros LD. Mega-earthquakes rupture flat megathrusts. Science. 2016;354(6315):1027.CrossRef
Metadaten
Titel
Room-temperature hydrogen spillover achieving stoichiometric hydrogenation of NO3− and NO2− into N2 over CuPd nanowire network
verfasst von
Ruo-Yan Miao
Xue-Xiang Li
Qian Lei
Hu Liu
Zhen-Hui Ma
Xu-Dong Liu
Zhou-Yang Yin
Zuo-Bin Tang
Liang Zhang
Yu-Hong Tian
Publikationsdatum
20.10.2021
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 3/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01854-6

Weitere Artikel der Ausgabe 3/2022

Rare Metals 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.