Skip to main content
Erschienen in: Rare Metals 8/2022

20.03.2022 | Original Article

A novel Mo8.7Nb6.1Ox@NCs egg-nest composite structure as superior anode material for lithium-ion storage

verfasst von: Shu-Ling Cheng, Xiu-Ping Yin, Samrat Sarkar, Zhen-Wei Wang, Qiu-An Huang, Jiu-Jun Zhang, Yu-Feng Zhao

Erschienen in: Rare Metals | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Anode materials of lithium-ion batteries (LIBs) endowed with high-rate performance and fast charging capability are crucial for future energy storage systems. Here, Mo8.7Nb6.1Ox@NCs (nitrogen-doped carbon nanotubes, NCs) egg-nest structure synthesized by an in-situ solvothermal method is reported. The Mo8.7Nb6.1Ox@NCs egg-nest exhibits high embedding potential, high pseudo-capacitance contribution rate (87.5%), and low charge transfer resistance. The electrochemical results show that Mo8.7Nb6.1Ox@NCs demonstrates excellent rate performance (reversible capacity of 196.8 mAh·Ag−1 at 10 A·Ag−1, and full charging only takes 1.1 min) and excellent cycle stability (reversible capacity of 513 mAh.Ag−1 at 0.5 A.Ag−1 combined with a capacity loss of only 5.4% after 100 cycles), outperforming the state-of-the-art literature. The full cell is assembled with Mo8.7Nb6.1Ox@NCs as the anode and LiFePO4 as the cathode, which can provide a remarkably high energy density of 731.9 Wh·kg−1, indicating its excellent prospect for practical applications.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.CrossRef Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.CrossRef
[2]
Zurück zum Zitat Hu H, Wu M. Heavy oil-derived carbon for energy storage application. J Mater Chem A. 2020;8(15):7066.CrossRef Hu H, Wu M. Heavy oil-derived carbon for energy storage application. J Mater Chem A. 2020;8(15):7066.CrossRef
[3]
Zurück zum Zitat Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.CrossRef Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.CrossRef
[4]
Zurück zum Zitat Zhao H, Qiuwei WU, Wang C, Cheng L, Rasmussen CN. Fuzzy logic based coordinated control of battery energy storage system and dispatchable distributed generation for microgrid. J Mod Power Syst Cle. 2015;3(3):422.CrossRef Zhao H, Qiuwei WU, Wang C, Cheng L, Rasmussen CN. Fuzzy logic based coordinated control of battery energy storage system and dispatchable distributed generation for microgrid. J Mod Power Syst Cle. 2015;3(3):422.CrossRef
[5]
Zurück zum Zitat Zou C, Zhao Q, Zhang G, Xiong B. Energy revolution: from a fossil energy era to a new energy era. Natural Gas Industry B. 2016;3(1):1.CrossRef Zou C, Zhao Q, Zhang G, Xiong B. Energy revolution: from a fossil energy era to a new energy era. Natural Gas Industry B. 2016;3(1):1.CrossRef
[6]
Zurück zum Zitat Yin X, Sarkar S, Shi S, Huang QA, Zhao H, Yan L, Zhao Y, Zhang J. Sodium-ion batteries: recent progress in advanced organic electrode materials for sodium-ion batteries: synthesis, mechanisms, challenges and perspectives. Adv Funct Mater. 2020;30(11):2070071.CrossRef Yin X, Sarkar S, Shi S, Huang QA, Zhao H, Yan L, Zhao Y, Zhang J. Sodium-ion batteries: recent progress in advanced organic electrode materials for sodium-ion batteries: synthesis, mechanisms, challenges and perspectives. Adv Funct Mater. 2020;30(11):2070071.CrossRef
[7]
Zurück zum Zitat Wang X, Roy S, Shi Q, Li Y, Zhao Y, Zhang J. Progress in and application prospects of advanced and cost-effective iron (Fe)-based cathode materials for sodium-ion batteries. J Mater Chem A. 2021;9(4):1938.CrossRef Wang X, Roy S, Shi Q, Li Y, Zhao Y, Zhang J. Progress in and application prospects of advanced and cost-effective iron (Fe)-based cathode materials for sodium-ion batteries. J Mater Chem A. 2021;9(4):1938.CrossRef
[8]
Zurück zum Zitat Xu JY, Xu YF, Lai CL, Xia TT, Zhang BN, Zhou XS. Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries. Sci China Chem. 2021;64(8):1267.CrossRef Xu JY, Xu YF, Lai CL, Xia TT, Zhang BN, Zhou XS. Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries. Sci China Chem. 2021;64(8):1267.CrossRef
[9]
Zurück zum Zitat Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2009;22(3):587.CrossRef Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2009;22(3):587.CrossRef
[10]
Zurück zum Zitat Huang S, Wang M, Jia P, Wang B, Zhang J, Zhao Y. N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage. Energy Storage Mater. 2019;20:225.CrossRef Huang S, Wang M, Jia P, Wang B, Zhang J, Zhao Y. N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage. Energy Storage Mater. 2019;20:225.CrossRef
[11]
Zurück zum Zitat Tie D, Huang S, Wang J, Ma J, Zhang J, Zhao Y. Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater. 2019;21:22.CrossRef Tie D, Huang S, Wang J, Ma J, Zhang J, Zhao Y. Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater. 2019;21:22.CrossRef
[12]
Zurück zum Zitat Thackeray MM, David WIF, Bruce PG, Goodenough JB. Lithium insertion into manganese spinels. Mater Res Bull. 1983;18(4):461.CrossRef Thackeray MM, David WIF, Bruce PG, Goodenough JB. Lithium insertion into manganese spinels. Mater Res Bull. 1983;18(4):461.CrossRef
[13]
Zurück zum Zitat Padhi A, Nanjundaswamy KS, Goodenough J. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188.CrossRef Padhi A, Nanjundaswamy KS, Goodenough J. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188.CrossRef
[14]
Zurück zum Zitat Zhu B, Liu G, Lv G, Mu Y, Zhao Y, Wang Y, Li X, Yao P, Deng Y, Cui Y, Zhu J. Minimized lithium trapping by isovalent isomorphism for high initial coulombic efficiency of silicon anodes. Sci Adv. 2019;5(11):eaax0651.CrossRef Zhu B, Liu G, Lv G, Mu Y, Zhao Y, Wang Y, Li X, Yao P, Deng Y, Cui Y, Zhu J. Minimized lithium trapping by isovalent isomorphism for high initial coulombic efficiency of silicon anodes. Sci Adv. 2019;5(11):eaax0651.CrossRef
[15]
Zurück zum Zitat Xia F, Tie D, Wang J, Song H, Wen W, Ye X, Wu J, Hou Y, Lu X, Zhao Y. Ultrahigh rate and durable sodium-ion storage at a wide potential window via lanthanide doping and perovskite surface decoration on layered manganese oxides. Energy Storage Mater. 2021;42:209.CrossRef Xia F, Tie D, Wang J, Song H, Wen W, Ye X, Wu J, Hou Y, Lu X, Zhao Y. Ultrahigh rate and durable sodium-ion storage at a wide potential window via lanthanide doping and perovskite surface decoration on layered manganese oxides. Energy Storage Mater. 2021;42:209.CrossRef
[16]
Zurück zum Zitat Wu YP, Rahm E, Holze R. Carbon anode materials for lithium ion batteries. J Power Sources. 2003;114(2):228.CrossRef Wu YP, Rahm E, Holze R. Carbon anode materials for lithium ion batteries. J Power Sources. 2003;114(2):228.CrossRef
[17]
Zurück zum Zitat Chou SL, Wang JZ, Liu HK, Dou SX. Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J Phys Chem C. 2011;115(32):16220.CrossRef Chou SL, Wang JZ, Liu HK, Dou SX. Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J Phys Chem C. 2011;115(32):16220.CrossRef
[18]
Zurück zum Zitat Ying S, Wen L, Feng L, Cheng HM. Nanosized Li4Ti5O12/ graphene hybrid materials with low polarization for high rate lithium ion batteries. J Power Sources. 2011;196(20):8610.CrossRef Ying S, Wen L, Feng L, Cheng HM. Nanosized Li4Ti5O12/ graphene hybrid materials with low polarization for high rate lithium ion batteries. J Power Sources. 2011;196(20):8610.CrossRef
[19]
Zurück zum Zitat Jia X, Kan Y, Zhu X, Ning G, Lu Y, Wei F. Building flexible Li4Ti5O12/CNT lithium-ion battery anodes with superior rate performance and ultralong cycling stability. Nano Energy. 2014;10:344.CrossRef Jia X, Kan Y, Zhu X, Ning G, Lu Y, Wei F. Building flexible Li4Ti5O12/CNT lithium-ion battery anodes with superior rate performance and ultralong cycling stability. Nano Energy. 2014;10:344.CrossRef
[20]
Zurück zum Zitat Yi TF, Yang SY, Xie Y. Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J Mater Chem A. 2015;3(11):5750.CrossRef Yi TF, Yang SY, Xie Y. Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J Mater Chem A. 2015;3(11):5750.CrossRef
[21]
Zurück zum Zitat Gatehouse BM, Wadsley AD. The crystal structure of the high temperature form of niobium pentoxide. Acta Crystallogr. 1964;17(12):1545.CrossRef Gatehouse BM, Wadsley AD. The crystal structure of the high temperature form of niobium pentoxide. Acta Crystallogr. 1964;17(12):1545.CrossRef
[22]
Zurück zum Zitat Yu H, Lan H, Yan L, Qian S, Cheng X, Zhu H, Long N, Shui M, Shu J. TiNb2O7 hollow nanofiber anode with superior electrochemical performance in rechargeable lithium ion batteries. Nano Energy. 2017;38:109.CrossRef Yu H, Lan H, Yan L, Qian S, Cheng X, Zhu H, Long N, Shui M, Shu J. TiNb2O7 hollow nanofiber anode with superior electrochemical performance in rechargeable lithium ion batteries. Nano Energy. 2017;38:109.CrossRef
[23]
Zurück zum Zitat Liu GY, Zhao YY, Tang YF, Liu XD, Wu PJ. In situ sol–gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudo-capacitive contribution for a high-rate lithium-ion battery. Rare Met. 2020;39(9):1063.CrossRef Liu GY, Zhao YY, Tang YF, Liu XD, Wu PJ. In situ sol–gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudo-capacitive contribution for a high-rate lithium-ion battery. Rare Met. 2020;39(9):1063.CrossRef
[24]
Zurück zum Zitat Tian T, Lu LL, Yin YC, Li F, Zhang TW, Song YH, Tan YH, Yao HB. Multiscale designed niobium titanium oxide anode for fast charging lithium ion batteries. Adv Funct Mater. 2020;31(4):2007419.CrossRef Tian T, Lu LL, Yin YC, Li F, Zhang TW, Song YH, Tan YH, Yao HB. Multiscale designed niobium titanium oxide anode for fast charging lithium ion batteries. Adv Funct Mater. 2020;31(4):2007419.CrossRef
[25]
Zurück zum Zitat Zhu X, Xu J, Luo Y, Fu Q, Liang G, Luo L, Chen Y, Lin C, Zhao XS. MoNb12O33 as a new anode material for high-capacity, safe, rapid and durable Li+ storage: structural characteristics, electrochemical properties and working mechanisms. J Mater Chem A. 2019;7(11):6522.CrossRef Zhu X, Xu J, Luo Y, Fu Q, Liang G, Luo L, Chen Y, Lin C, Zhao XS. MoNb12O33 as a new anode material for high-capacity, safe, rapid and durable Li+ storage: structural characteristics, electrochemical properties and working mechanisms. J Mater Chem A. 2019;7(11):6522.CrossRef
[26]
Zurück zum Zitat Ma X, Chen P, Qian M, Wu D, Du J, Chen X, Dai R, Sha M, Zi Z, Dai J. Rod-like Nb14Mo3O44 nanoparticles fabricated by a facile solvothermal method as novel anode for lithium-ion batteries. J Alloys Compd. 2021;864:158379.CrossRef Ma X, Chen P, Qian M, Wu D, Du J, Chen X, Dai R, Sha M, Zi Z, Dai J. Rod-like Nb14Mo3O44 nanoparticles fabricated by a facile solvothermal method as novel anode for lithium-ion batteries. J Alloys Compd. 2021;864:158379.CrossRef
[27]
Zurück zum Zitat Ette PM, Babu DB, Roy ML, Ramesha K. Mo3Nb2O14: a high-rate intercalation electrode material for Li-ion batteries with liquid and garnet based hybrid solid electrolytes. J Power Sources. 2019;436:226850.CrossRef Ette PM, Babu DB, Roy ML, Ramesha K. Mo3Nb2O14: a high-rate intercalation electrode material for Li-ion batteries with liquid and garnet based hybrid solid electrolytes. J Power Sources. 2019;436:226850.CrossRef
[28]
Zurück zum Zitat Yan L, Lan H, Yu H, Qian S, Cheng X, Long N, Zhang R, Shui M, Shu J. Electrospun WNb12O33 nanowires: superior lithium storage capability and their working mechanism. J Mater Chem A. 2017;5(19):8972.CrossRef Yan L, Lan H, Yu H, Qian S, Cheng X, Long N, Zhang R, Shui M, Shu J. Electrospun WNb12O33 nanowires: superior lithium storage capability and their working mechanism. J Mater Chem A. 2017;5(19):8972.CrossRef
[29]
Zurück zum Zitat Yan L, Cheng X, Yu H, Zhu H, Liu T, Zheng R, Zhang R, Shui M, Shu J. Ultrathin W9Nb8O47 nanofibers modified with thermal NH3 for superior electrochemical energy storage. Energy Storage Mater. 2018;14:159.CrossRef Yan L, Cheng X, Yu H, Zhu H, Liu T, Zheng R, Zhang R, Shui M, Shu J. Ultrathin W9Nb8O47 nanofibers modified with thermal NH3 for superior electrochemical energy storage. Energy Storage Mater. 2018;14:159.CrossRef
[30]
Zurück zum Zitat Yan L, Shu J, Li C, Cheng X, Zhu H, Yu H, Zhang C, Zheng Y, Xie Y, Guo Z. W3Nb14O44 nanowires: ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Storage Mater. 2019;16:535.CrossRef Yan L, Shu J, Li C, Cheng X, Zhu H, Yu H, Zhang C, Zheng Y, Xie Y, Guo Z. W3Nb14O44 nanowires: ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Storage Mater. 2019;16:535.CrossRef
[31]
Zurück zum Zitat Ye W, Yu H, Cheng X, Zhu H, Zheng R, Liu T, Long N, Shui M, Shu J. Constructing hollow nanofibers to boost electrochemical performance: insight into kinetics and the Li storage mechanism for CrNb49O124. ACS Appl Energy Mater. 2019;2(4):2672.CrossRef Ye W, Yu H, Cheng X, Zhu H, Zheng R, Liu T, Long N, Shui M, Shu J. Constructing hollow nanofibers to boost electrochemical performance: insight into kinetics and the Li storage mechanism for CrNb49O124. ACS Appl Energy Mater. 2019;2(4):2672.CrossRef
[32]
Zurück zum Zitat Huang M, Liu JX, Huang P, Hu H, Lai C. Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries. Rare Met. 2021;40(2):425.CrossRef Huang M, Liu JX, Huang P, Hu H, Lai C. Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries. Rare Met. 2021;40(2):425.CrossRef
[33]
Zurück zum Zitat Zhu H, Cheng X, Yu H, Ye W, Peng N, Zheng R, Liu T, Shui M, Shu J. K6Nb10.8O30 groove nanobelts as high performance lithium-ion battery anode towards long-life energy storage. Nano Energy. 2018;52:192.CrossRef Zhu H, Cheng X, Yu H, Ye W, Peng N, Zheng R, Liu T, Shui M, Shu J. K6Nb10.8O30 groove nanobelts as high performance lithium-ion battery anode towards long-life energy storage. Nano Energy. 2018;52:192.CrossRef
[34]
Zurück zum Zitat Qin L, Liu Y, Zhu SH, Wu DX, Wang GY, Zhang JY, Wang YY, Hou LR, Yuan CZ. Formation and operating mechanisms of single-crystalline perovskite NaNbO3 nanocubes/few-layered Nb2CTx MXene hybrids towards Li-ion capacitors. J Mater Chem A. 2021;9(36):20405.CrossRef Qin L, Liu Y, Zhu SH, Wu DX, Wang GY, Zhang JY, Wang YY, Hou LR, Yuan CZ. Formation and operating mechanisms of single-crystalline perovskite NaNbO3 nanocubes/few-layered Nb2CTx MXene hybrids towards Li-ion capacitors. J Mater Chem A. 2021;9(36):20405.CrossRef
[35]
Zurück zum Zitat He S, Zou J, Chen LB, Chen Y. A nanostructured Ni/T-Nb2O5@carbon nanofibers as a long-life anode material for lithium-ion batteries. Rare Met. 2021;40(2):374.CrossRef He S, Zou J, Chen LB, Chen Y. A nanostructured Ni/T-Nb2O5@carbon nanofibers as a long-life anode material for lithium-ion batteries. Rare Met. 2021;40(2):374.CrossRef
[36]
Zurück zum Zitat Qin L, Liu Y, Xu S, Wang S, Sun X, Zhu S, Hou L, Yuan C. In-plane assembled single-crystalline T-Nb2O5 nanorods derived from few-layered Nb2CTx MXene nanosheets for advanced Li-ion capacitors. Small Methods. 2020;4(12):2000630.CrossRef Qin L, Liu Y, Xu S, Wang S, Sun X, Zhu S, Hou L, Yuan C. In-plane assembled single-crystalline T-Nb2O5 nanorods derived from few-layered Nb2CTx MXene nanosheets for advanced Li-ion capacitors. Small Methods. 2020;4(12):2000630.CrossRef
[37]
Zurück zum Zitat Pei C, Yin Y, Liao X, Xiong F, An Q, Jin M, Zhao Y, Mai L. Structural properties and electrochemical performance of different polymorphs of Nb2O5 in magnesium-based batteries. J Energy Chem. 2021;58:586.CrossRef Pei C, Yin Y, Liao X, Xiong F, An Q, Jin M, Zhao Y, Mai L. Structural properties and electrochemical performance of different polymorphs of Nb2O5 in magnesium-based batteries. J Energy Chem. 2021;58:586.CrossRef
[38]
Zurück zum Zitat Sun R, Yue Y, Cheng X, Zhang K, Jin S, Liu G, Fan Y, Bao Y, Liu X. Ionic liquid-induced ultrathin and uniform N-doped carbon-wrapped T-Nb2O5 microsphere anode for high-performance lithium-ion battery. Rare Met. 2021;40(11):3205.CrossRef Sun R, Yue Y, Cheng X, Zhang K, Jin S, Liu G, Fan Y, Bao Y, Liu X. Ionic liquid-induced ultrathin and uniform N-doped carbon-wrapped T-Nb2O5 microsphere anode for high-performance lithium-ion battery. Rare Met. 2021;40(11):3205.CrossRef
[39]
Zurück zum Zitat Wen B, Guo R, Liu X, Luo W, He Q, Niu C, Meng J, Li Q, Zhao Y, Mai L. Niobium oxyphosphate nanosheet assembled two-dimensional anode material for enhanced lithium storage. J Energy Chem. 2021;53:268.CrossRef Wen B, Guo R, Liu X, Luo W, He Q, Niu C, Meng J, Li Q, Zhao Y, Mai L. Niobium oxyphosphate nanosheet assembled two-dimensional anode material for enhanced lithium storage. J Energy Chem. 2021;53:268.CrossRef
[40]
Zurück zum Zitat Viet AL, Reddy MV, Jose R, Chowdari B, Ramakrishna S. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J Phys Chem C. 2009;114(1):664.CrossRef Viet AL, Reddy MV, Jose R, Chowdari B, Ramakrishna S. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J Phys Chem C. 2009;114(1):664.CrossRef
[41]
Zurück zum Zitat Zhou X, Wan LJ, Guo YG. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater. 2013;25(15):2152.CrossRef Zhou X, Wan LJ, Guo YG. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater. 2013;25(15):2152.CrossRef
[42]
Zurück zum Zitat Zhou X, Yu L, Lou XWD. Formation of uniform N-doped carbon-coated SnO2 submicroboxes with enhanced lithium storage properties. Adv Energy Mater. 2016;6(14):1600451.CrossRef Zhou X, Yu L, Lou XWD. Formation of uniform N-doped carbon-coated SnO2 submicroboxes with enhanced lithium storage properties. Adv Energy Mater. 2016;6(14):1600451.CrossRef
[43]
Zurück zum Zitat Zhou XS, Yu L, Yu XY, Lou XW. Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Adv Energy Mater. 2016;6(22):1601177.CrossRef Zhou XS, Yu L, Yu XY, Lou XW. Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Adv Energy Mater. 2016;6(22):1601177.CrossRef
[44]
Zurück zum Zitat Han JT, Huang YH, Goodenough JB. New anode framework for rechargeable lithium batteries. Chem Mater. 2011;23(8):2027.CrossRef Han JT, Huang YH, Goodenough JB. New anode framework for rechargeable lithium batteries. Chem Mater. 2011;23(8):2027.CrossRef
[45]
Zurück zum Zitat Zheng R, Li Y, Yu H, Liu T, Xia M, Zhang X, Peng N, Zhang J, Bai Y, Shu J. Rational construction and decoration of Fe0.5Nb24.5O62−x@C nanowires as superior anode material for lithium storage. Chem Eng J. 2020;384:123314.CrossRef Zheng R, Li Y, Yu H, Liu T, Xia M, Zhang X, Peng N, Zhang J, Bai Y, Shu J. Rational construction and decoration of Fe0.5Nb24.5O62−x@C nanowires as superior anode material for lithium storage. Chem Eng J. 2020;384:123314.CrossRef
[46]
Zurück zum Zitat Li XF, Li J, Ali RN, Wang Z, Hu GJ, Xiang B. Preparation of ZnNb2O6/N-doped carbon composites for lithium ion storage. Chem Eng J. 2019;368:764.CrossRef Li XF, Li J, Ali RN, Wang Z, Hu GJ, Xiang B. Preparation of ZnNb2O6/N-doped carbon composites for lithium ion storage. Chem Eng J. 2019;368:764.CrossRef
[47]
Zurück zum Zitat Hei P, Luo S, Wei K, Zhou J, Zhao Y, Gao F. P4Nb2O15@CNTs: a new type of niobium phosphate compositing carbon nanotube used as anode material for high-rate lithium storage. ACS Sustain Chem Eng. 2020;9(1):216.CrossRef Hei P, Luo S, Wei K, Zhou J, Zhao Y, Gao F. P4Nb2O15@CNTs: a new type of niobium phosphate compositing carbon nanotube used as anode material for high-rate lithium storage. ACS Sustain Chem Eng. 2020;9(1):216.CrossRef
[48]
Zurück zum Zitat Cheng Q, Liang J, Zhu Y, Si L, Guo C, Qian Y. Bulk Ti2Nb10O29 as long-life and high-power Li-ion battery anodes. J Mater Chem A. 2014;2(41):17258.CrossRef Cheng Q, Liang J, Zhu Y, Si L, Guo C, Qian Y. Bulk Ti2Nb10O29 as long-life and high-power Li-ion battery anodes. J Mater Chem A. 2014;2(41):17258.CrossRef
[49]
Zurück zum Zitat Li Y, Zheng R, Yu H, Cheng X, Liu T, Peng N, Zhang J, Shui M, Shu J. Fabrication of one-dimensional architecture Bi5Nb3O15 nanowires by electrospinning for lithium-ion batteries with enhanced electrochemical performance. Electrochim Acta. 2019;299:894.CrossRef Li Y, Zheng R, Yu H, Cheng X, Liu T, Peng N, Zhang J, Shui M, Shu J. Fabrication of one-dimensional architecture Bi5Nb3O15 nanowires by electrospinning for lithium-ion batteries with enhanced electrochemical performance. Electrochim Acta. 2019;299:894.CrossRef
[51]
Zurück zum Zitat Wang Z, Zheng R, Li Y, Yu H, Liu T, Peng N, Zhang J, Shui M, Shu J. Electrochemical uptake/release of lithium in GaNb11O29 nanowires as anode material for rechargeable lithium ion battery. Ceram Int. 2020;46(12):20537.CrossRef Wang Z, Zheng R, Li Y, Yu H, Liu T, Peng N, Zhang J, Shui M, Shu J. Electrochemical uptake/release of lithium in GaNb11O29 nanowires as anode material for rechargeable lithium ion battery. Ceram Int. 2020;46(12):20537.CrossRef
[52]
Zurück zum Zitat Zhang P, Guo S, Liu J, Zhou C, Li S, Yang Y, Wu J, Yu D, Chen L. Highly uniform nitrogen-doped carbon decorated MoO2 nanopopcorns as anode for high-performance lithium/sodium-ion storage. J Colloid Interface Sci. 2020;563:318.CrossRef Zhang P, Guo S, Liu J, Zhou C, Li S, Yang Y, Wu J, Yu D, Chen L. Highly uniform nitrogen-doped carbon decorated MoO2 nanopopcorns as anode for high-performance lithium/sodium-ion storage. J Colloid Interface Sci. 2020;563:318.CrossRef
[53]
Zurück zum Zitat Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruna HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518.CrossRef Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruna HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518.CrossRef
[54]
Zurück zum Zitat Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7(5):1597.CrossRef Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7(5):1597.CrossRef
[55]
Zurück zum Zitat Cheng X, Zhao Y, Lushington A, Gao J, Li Q, Zuo P, Wang B, Gao Y, Ma Y. Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy. 2017;34:15.CrossRef Cheng X, Zhao Y, Lushington A, Gao J, Li Q, Zuo P, Wang B, Gao Y, Ma Y. Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy. 2017;34:15.CrossRef
[56]
Zurück zum Zitat Shen L, Wang Y, Lv H, Chen S, van Aken PA, Wu X, Maier J, Yu Y. Ultrathin Ti2Nb2O9 nanosheets with pseudocapacitive properties as superior anode for sodium-ion batteries. Adv Mater. 2018;30(51):1804378.CrossRef Shen L, Wang Y, Lv H, Chen S, van Aken PA, Wu X, Maier J, Yu Y. Ultrathin Ti2Nb2O9 nanosheets with pseudocapacitive properties as superior anode for sodium-ion batteries. Adv Mater. 2018;30(51):1804378.CrossRef
[57]
Zurück zum Zitat Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C. 2007;111(40):14925.CrossRef Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C. 2007;111(40):14925.CrossRef
[58]
Zurück zum Zitat Wang X, Yin X, Feng X, Li Y, Dong X, Shi Q, Zhao Y, Zhang J. Rational design of Na0.67Ni0.2Co0.2Mn0.6O2 microsphere cathode material for stable and low temperature sodium ion storage. Chem Eng J. 2021;428:130990.CrossRef Wang X, Yin X, Feng X, Li Y, Dong X, Shi Q, Zhao Y, Zhang J. Rational design of Na0.67Ni0.2Co0.2Mn0.6O2 microsphere cathode material for stable and low temperature sodium ion storage. Chem Eng J. 2021;428:130990.CrossRef
Metadaten
Titel
A novel Mo8.7Nb6.1Ox@NCs egg-nest composite structure as superior anode material for lithium-ion storage
verfasst von
Shu-Ling Cheng
Xiu-Ping Yin
Samrat Sarkar
Zhen-Wei Wang
Qiu-An Huang
Jiu-Jun Zhang
Yu-Feng Zhao
Publikationsdatum
20.03.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 8/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01952-5

Weitere Artikel der Ausgabe 8/2022

Rare Metals 8/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.