Skip to main content
Erschienen in: Rare Metals 2/2021

08.08.2020 | Original Article

Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries

verfasst von: Min Huang, Ji-Xin Liu, Peng Huang, Hai Hu, Chao Lai

Erschienen in: Rare Metals | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A two-dimensional (2D) SnNb2O6/amino-functionalized graphene (En-RGO) nanocomposite with a representative 2D–2D architecture has been constructed by an easy self-assembly approach and firstly investigated as anode materials for secondary sodium-ion batteries. The SnNb2O6 nanosheets are evenly anchored with the amino-functionalized graphene through electrostatic attractive interplay between the negatively charged SnNb2O6 and positively charged En-RGO after modification. As a result, a remarkable reversible capacity of 300 mAh·g−1 was obtained at 50 mA·g−1, and significantly, the En-RGO electrode could also deliver ultra-long calendar life up to 1900 cycles with a high reversible capacity of 200 mAh·g−1 at current of 500 mA·g−1. Such excellent electrochemical characteristics can be mainly ascribed to its fast pseudo-capacitive energy storage mechanism, and the capacitive contribution can even reach up to 90% at 1.2 mV·s−1.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Li J, Liu WW, Zhou HM, Liu ZZ, Chen BR, Sun WJ. Anode material NbO for Li-ion battery and its electrochemical properties. Rare Met. 2018;37(2):118. Li J, Liu WW, Zhou HM, Liu ZZ, Chen BR, Sun WJ. Anode material NbO for Li-ion battery and its electrochemical properties. Rare Met. 2018;37(2):118.
[2]
Zurück zum Zitat Lu HH, Shi CS, Zhao NQ, Liu EZ, He CN, He F. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage. Rare Met. 2018;37(2):107. Lu HH, Shi CS, Zhao NQ, Liu EZ, He CN, He F. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage. Rare Met. 2018;37(2):107.
[3]
Zurück zum Zitat Dong Y, Ma Y, Li D, Liu Y, Chen W, Feng X, Zhang J. Construction of 3D architectures with Ni(HCO3)2 nanocubes wrapped by reduced graphene oxide for LIBs: ultrahigh capacity, ultrafast rate capability and ultralong cycle stability. Chem Sci. 2018;9(46):8682. Dong Y, Ma Y, Li D, Liu Y, Chen W, Feng X, Zhang J. Construction of 3D architectures with Ni(HCO3)2 nanocubes wrapped by reduced graphene oxide for LIBs: ultrahigh capacity, ultrafast rate capability and ultralong cycle stability. Chem Sci. 2018;9(46):8682.
[4]
Zurück zum Zitat Fan X, Li X. Recent advances in effective protection of sodium metal anode. Nano Energy. 2018;53:630. Fan X, Li X. Recent advances in effective protection of sodium metal anode. Nano Energy. 2018;53:630.
[5]
Zurück zum Zitat Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167. Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.
[6]
Zurück zum Zitat Qi S, Xu B, Tiong VT, Hu J, Ma J. Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem Eng J. 2020;379:122261. Qi S, Xu B, Tiong VT, Hu J, Ma J. Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem Eng J. 2020;379:122261.
[7]
Zurück zum Zitat Zhao C, Lu Y, Chen L, Hu Y. Flexible Na batteries. InfoMat. 2020;2(1):126. Zhao C, Lu Y, Chen L, Hu Y. Flexible Na batteries. InfoMat. 2020;2(1):126.
[8]
Zurück zum Zitat Liao J, Ni W, Wang C, Ma J. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem Eng J. 2019;391:123489. Liao J, Ni W, Wang C, Ma J. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem Eng J. 2019;391:123489.
[9]
Zurück zum Zitat Li Y, Sun CW, Goodenough JB. Electrochemical Lithium Intercalation in Monoclinic Nb12O29. Chem Mater. 2011;23(9):2292. Li Y, Sun CW, Goodenough JB. Electrochemical Lithium Intercalation in Monoclinic Nb12O29. Chem Mater. 2011;23(9):2292.
[10]
Zurück zum Zitat Li RJ, Qin Y, Liu X, Yang L, Lin CF, Xia R, Lin SW, Chen YJ, Li JB. Conductive Nb25O62 and Nb12O29 anode materials for use in high-performance lithium-ion storage. Electrochim Acta. 2018;266:202. Li RJ, Qin Y, Liu X, Yang L, Lin CF, Xia R, Lin SW, Chen YJ, Li JB. Conductive Nb25O62 and Nb12O29 anode materials for use in high-performance lithium-ion storage. Electrochim Acta. 2018;266:202.
[11]
Zurück zum Zitat Han JT, Huang YH, Goodenough JB. New anode framework for rechargeable lithium batteries. Chem Mater. 2011;23(8):2027. Han JT, Huang YH, Goodenough JB. New anode framework for rechargeable lithium batteries. Chem Mater. 2011;23(8):2027.
[12]
Zurück zum Zitat Zhu GZ, Li Q, Che RC. Hollow TiNb2O7@C spheres with superior rate capability and excellent cycle performance as anode material for lithium-ion batteries. Chem Eur J. 2018;24(49):12932. Zhu GZ, Li Q, Che RC. Hollow TiNb2O7@C spheres with superior rate capability and excellent cycle performance as anode material for lithium-ion batteries. Chem Eur J. 2018;24(49):12932.
[13]
Zurück zum Zitat Fu QF, Liu X, Hou JR, Pu YR, Lin CF, Yang L, Zhu XZ, Hu L, Lin SW, Luo LJ, Chen YJ. Highly conductive CrNb11O29 nanorods for use in high-energy, safe, fast-charging and stable lithium-ion batteries. J Power Sour. 2018;397:231. Fu QF, Liu X, Hou JR, Pu YR, Lin CF, Yang L, Zhu XZ, Hu L, Lin SW, Luo LJ, Chen YJ. Highly conductive CrNb11O29 nanorods for use in high-energy, safe, fast-charging and stable lithium-ion batteries. J Power Sour. 2018;397:231.
[14]
Zurück zum Zitat Pinus I, Catti M, Ruffo R, Salamone MM, Mari CM. Neutron diffraction and electrochemical study of FeNb11O29/Li11FeNb11O29 for lithium battery anode applications. Chem Mater. 2014;26(6):2203. Pinus I, Catti M, Ruffo R, Salamone MM, Mari CM. Neutron diffraction and electrochemical study of FeNb11O29/Li11FeNb11O29 for lithium battery anode applications. Chem Mater. 2014;26(6):2203.
[15]
Zurück zum Zitat Lou XM, Lin CF, Luo Q, Zhao JB, Wang B, Li JB, Shao Q, Guo XK, Wang N, Guo ZH. Crystal structure modification enhanced FeNb11O29 anodes for lithium-ion batteries. ChemElectroChem. 2017;4(12):3171. Lou XM, Lin CF, Luo Q, Zhao JB, Wang B, Li JB, Shao Q, Guo XK, Wang N, Guo ZH. Crystal structure modification enhanced FeNb11O29 anodes for lithium-ion batteries. ChemElectroChem. 2017;4(12):3171.
[16]
Zurück zum Zitat Yang C, Zhang YL, Lv F, Lin CF, Liu Y, Wang K, Feng JR, Wang XH, Chen YJ, Li JB, Guo SJ. Porous ZrNb24O62 nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. J Mater Chem A. 2017;5(42):22297. Yang C, Zhang YL, Lv F, Lin CF, Liu Y, Wang K, Feng JR, Wang XH, Chen YJ, Li JB, Guo SJ. Porous ZrNb24O62 nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. J Mater Chem A. 2017;5(42):22297.
[17]
Zurück zum Zitat Patous S, Dolle M, Rousse G, Masquelier C. A reversible lithium intercalation process in an ReO3 type structure PNb9O25. J Electrochem Soc. 2002;149(4):A391. Patous S, Dolle M, Rousse G, Masquelier C. A reversible lithium intercalation process in an ReO3 type structure PNb9O25. J Electrochem Soc. 2002;149(4):A391.
[18]
Zurück zum Zitat Qian SS, Yu HX, Yan L, Zhu HJ, Cheng X, Xie Y, Long NB, Shui M, Shu J. High-rate long-life pored nanoribbon VNb9O25 built by interconnected ultrafine nanoparticles as anode for lithium-ion batteries. ACS Appl Mater Interfaces. 2017;9(36):30608. Qian SS, Yu HX, Yan L, Zhu HJ, Cheng X, Xie Y, Long NB, Shui M, Shu J. High-rate long-life pored nanoribbon VNb9O25 built by interconnected ultrafine nanoparticles as anode for lithium-ion batteries. ACS Appl Mater Interfaces. 2017;9(36):30608.
[19]
Zurück zum Zitat Zhu XZ, Fu QF, Tang LF, Lin CF, Xu J, Liang GS, Li RJ, Luo LJ, Chen YJ. Mg2Nb34O87 porous microspheres for use in high-energy, safe, fast-charging, and stable lithium-ion batteries. ACS Appl Mater Interfaces. 2018;10(28):23711. Zhu XZ, Fu QF, Tang LF, Lin CF, Xu J, Liang GS, Li RJ, Luo LJ, Chen YJ. Mg2Nb34O87 porous microspheres for use in high-energy, safe, fast-charging, and stable lithium-ion batteries. ACS Appl Mater Interfaces. 2018;10(28):23711.
[20]
Zurück zum Zitat Yang C, Yu S, Lin CF, Lv F, Wu SQ, Yang Y, Wang W, Zhu ZZ, Li JB, Wang N, Guo SJ. Cr0.5Nb24.5O6.2 nanowires with high electronic conductivity for high-rate and long-life lithium-ion storage. ACS Nano. 2017;11(4):4217. Yang C, Yu S, Lin CF, Lv F, Wu SQ, Yang Y, Wang W, Zhu ZZ, Li JB, Wang N, Guo SJ. Cr0.5Nb24.5O6.2 nanowires with high electronic conductivity for high-rate and long-life lithium-ion storage. ACS Nano. 2017;11(4):4217.
[21]
Zurück zum Zitat Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature. 2018;559:556. Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature. 2018;559:556.
[22]
Zurück zum Zitat Liang Y, Zhao J, Han Z, Yu H. Application of lithium rare metal in rechargeable batteries. Chin J Rare Met. 2019;43(11):1187. Liang Y, Zhao J, Han Z, Yu H. Application of lithium rare metal in rechargeable batteries. Chin J Rare Met. 2019;43(11):1187.
[23]
Zurück zum Zitat Aricò AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4:366. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4:366.
[24]
Zurück zum Zitat Li J, Xu Z, Ji Z, Sun Q, Huang X. Overview on current technologies of recycling spent lithium-ion batteries. Chin J Rare Met. 2019;43(2):201. Li J, Xu Z, Ji Z, Sun Q, Huang X. Overview on current technologies of recycling spent lithium-ion batteries. Chin J Rare Met. 2019;43(2):201.
[25]
Zurück zum Zitat Lin CF, Fan XY, Xin YL, Cheng FQ, Lai MO, Zhou HH, Lu L. Li4Ti5O12-based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: a synergistic effect of doping, incorporating a conductive phase and reducing the particle size. J Mater Chem A. 2014;2(26):9982. Lin CF, Fan XY, Xin YL, Cheng FQ, Lai MO, Zhou HH, Lu L. Li4Ti5O12-based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: a synergistic effect of doping, incorporating a conductive phase and reducing the particle size. J Mater Chem A. 2014;2(26):9982.
[26]
Zurück zum Zitat Liu W, Chen Z, Zhou GM, Sun YM, Lee HR, Liu C, Yao HB, Bao ZN, Cui Y. 3D porous sponge-inspired electrode for stretchable lithium-ion batteries. Adv Mater. 2016;28(18):3578. Liu W, Chen Z, Zhou GM, Sun YM, Lee HR, Liu C, Yao HB, Bao ZN, Cui Y. 3D porous sponge-inspired electrode for stretchable lithium-ion batteries. Adv Mater. 2016;28(18):3578.
[27]
Zurück zum Zitat Zhao BT, Deng X, Ran R, Liu ML, Shao ZP. Facile synthesis of a 3D nanoarchitectured Li4Ti5O12 electrode for ultrafast energy storage. Adv Energy Mater. 2016;6(4):1500924. Zhao BT, Deng X, Ran R, Liu ML, Shao ZP. Facile synthesis of a 3D nanoarchitectured Li4Ti5O12 electrode for ultrafast energy storage. Adv Energy Mater. 2016;6(4):1500924.
[28]
Zurück zum Zitat Kim H, Lim E, Jo C, Yoon G, Hwang J, Jeong S, Lee J, Kang K. Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy. 2015;16:62. Kim H, Lim E, Jo C, Yoon G, Hwang J, Jeong S, Lee J, Kang K. Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy. 2015;16:62.
[29]
Zurück zum Zitat Lim E, Jo C, Kim MS, Kim MH, Chun J, Kim H, Park J, Roh KC, Kang K, Yoon S, Lee J. High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv Funct Mater. 2016;26(21):3711. Lim E, Jo C, Kim MS, Kim MH, Chun J, Kim H, Park J, Roh KC, Kang K, Yoon S, Lee J. High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv Funct Mater. 2016;26(21):3711.
[30]
Zurück zum Zitat Wang L, Bi X, Yang S. Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv Mater. 2016;28(35):7672. Wang L, Bi X, Yang S. Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv Mater. 2016;28(35):7672.
[31]
Zurück zum Zitat Yang L, Zhu YE, Sheng J, Li F, Tang B, Zhang Y, Zhou Z. T-Nb2O5/C nanofibers prepared through electrospinning with prolonged cycle durability for high-rate sodium-ion batteries induced by pseudocapacitance. Small. 2017;13(46):1702588. Yang L, Zhu YE, Sheng J, Li F, Tang B, Zhang Y, Zhou Z. T-Nb2O5/C nanofibers prepared through electrospinning with prolonged cycle durability for high-rate sodium-ion batteries induced by pseudocapacitance. Small. 2017;13(46):1702588.
[32]
Zurück zum Zitat Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22(46):3906. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22(46):3906.
[33]
Zurück zum Zitat Zhou X, Yin YX, Wan LJ, Guo YG. A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. J Mater Chem. 2012;22(34):17456. Zhou X, Yin YX, Wan LJ, Guo YG. A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. J Mater Chem. 2012;22(34):17456.
[34]
Zurück zum Zitat Yang S, Li Y, Sun J, Gao B. Laser induced oxygen-deficient TiO2/graphene hybrid for high-performance supercapacitor. J Power Sour. 2019;431:220. Yang S, Li Y, Sun J, Gao B. Laser induced oxygen-deficient TiO2/graphene hybrid for high-performance supercapacitor. J Power Sour. 2019;431:220.
[35]
Zurück zum Zitat Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449. Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.
[36]
Zurück zum Zitat Liang SJ, Liang RW, Wen LR, Yuan RS, Wu L, Fu XZ. Molecular recognitive photocatalytic degradation of various cationic pollutants by the selective adsorption on visible light-driven SnNb2O6 nanosheet photocatalyst. Appl Catal B-Environ. 2012;125:103. Liang SJ, Liang RW, Wen LR, Yuan RS, Wu L, Fu XZ. Molecular recognitive photocatalytic degradation of various cationic pollutants by the selective adsorption on visible light-driven SnNb2O6 nanosheet photocatalyst. Appl Catal B-Environ. 2012;125:103.
[37]
Zurück zum Zitat Cruz LP, Savariault JM, Rocha J, Jumas JC, Jesus JDPD. Synthesis and characterization of tin niobates. J Solid State Chem. 2001;156(2):349. Cruz LP, Savariault JM, Rocha J, Jumas JC, Jesus JDPD. Synthesis and characterization of tin niobates. J Solid State Chem. 2001;156(2):349.
[38]
Zurück zum Zitat Chen D, Ye JH. Selective-synthesis of high-performance single-crystalline Sr2Nb2O7 nanoribbon and SrNb2O6 nanorod photocatalysts. Chem Mat. 2009;21(11):2327. Chen D, Ye JH. Selective-synthesis of high-performance single-crystalline Sr2Nb2O7 nanoribbon and SrNb2O6 nanorod photocatalysts. Chem Mat. 2009;21(11):2327.
[39]
Zurück zum Zitat Hosogi Y, Tanabe K, Kato H, Kobayashi H, Kudo A. Energy structure and photocatalytic activity of niobates and tantalates containing Sn(II) with a 5s2 electron configuration. Chem Lett. 2004;33(1):28. Hosogi Y, Tanabe K, Kato H, Kobayashi H, Kudo A. Energy structure and photocatalytic activity of niobates and tantalates containing Sn(II) with a 5s2 electron configuration. Chem Lett. 2004;33(1):28.
[40]
Zurück zum Zitat Yuan L, Yang MQ, Xu YJ. Tuning the surface charge of graphene for self-assembly synthesis of a SnNb2O6 nanosheet–graphene (2D–2D) nanocomposite with enhanced visible light photoactivity. Nanoscale. 2014;6(12):6335. Yuan L, Yang MQ, Xu YJ. Tuning the surface charge of graphene for self-assembly synthesis of a SnNb2O6 nanosheet–graphene (2D–2D) nanocomposite with enhanced visible light photoactivity. Nanoscale. 2014;6(12):6335.
[41]
Zurück zum Zitat Yang S, Han Z, Sun J, Yang X, Li C, Wang R, Cao B. Preparation of defective ZnFe2O4/graphene composites and their charge storage properties. Electrochem Commun. 2018;92:19. Yang S, Han Z, Sun J, Yang X, Li C, Wang R, Cao B. Preparation of defective ZnFe2O4/graphene composites and their charge storage properties. Electrochem Commun. 2018;92:19.
[42]
Zurück zum Zitat Xie J, Zhang Y, Han Y, Li C. High-capacity molecular scale conversion anode enabled by hybridizing cluster-type framework of high loading with amino-functionalized graphene. ACS Nano. 2016;10(5):5304. Xie J, Zhang Y, Han Y, Li C. High-capacity molecular scale conversion anode enabled by hybridizing cluster-type framework of high loading with amino-functionalized graphene. ACS Nano. 2016;10(5):5304.
[43]
Zurück zum Zitat Santos I, Loureiro LH, Silva MFP, Cavaleiro AMV. Studies on the hydrothermal synthesis of niobium oxides. Polyhedron. 2002;21(20):2009. Santos I, Loureiro LH, Silva MFP, Cavaleiro AMV. Studies on the hydrothermal synthesis of niobium oxides. Polyhedron. 2002;21(20):2009.
[44]
Zurück zum Zitat Tang YJ, Liu CH, Huang W, Wang XL, Dong LZ, Li SL, Lan YQ. Bimetallic carbides-based nanocomposite as superior electrocatalyst for oxygen evolution reaction. ACS Appl Mater Interfaces. 2017;9(20):16978. Tang YJ, Liu CH, Huang W, Wang XL, Dong LZ, Li SL, Lan YQ. Bimetallic carbides-based nanocomposite as superior electrocatalyst for oxygen evolution reaction. ACS Appl Mater Interfaces. 2017;9(20):16978.
[45]
Zurück zum Zitat Huang X, Zhang K, Luo B, Hu H, Sun D, Wang S, Hu Y, Lin T, Jia Z, Wang L. Polyethylenimine expanded graphite oxide enables high sulfur loading and long-term stability of lithium-sulfur batteries. Small. 2019;15(29):1804578. Huang X, Zhang K, Luo B, Hu H, Sun D, Wang S, Hu Y, Lin T, Jia Z, Wang L. Polyethylenimine expanded graphite oxide enables high sulfur loading and long-term stability of lithium-sulfur batteries. Small. 2019;15(29):1804578.
[46]
Zurück zum Zitat Lin Z, Xia Q, Wang W, Li W, Chou S. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat. 2019;1(3):376. Lin Z, Xia Q, Wang W, Li W, Chou S. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat. 2019;1(3):376.
[47]
Zurück zum Zitat Atuchin VV, Kalabin IE, Kesler VG, Pervukhina NV. Nb 3d and O 1s core levels and chemical bonding in niobates. J Electron Spectrosc Relat Phenom. 2005;142(2):129. Atuchin VV, Kalabin IE, Kesler VG, Pervukhina NV. Nb 3d and O 1s core levels and chemical bonding in niobates. J Electron Spectrosc Relat Phenom. 2005;142(2):129.
[48]
Zurück zum Zitat Chao DL, Liang P, Chen Z, Bai LY, Shen H, Liu XX, Xia XH, Zhao YL, Savilov SV, Lin JY, Shen ZX. Pseudocapacitive Na-Ion storage boosts high rate and areal capacity of selfbranched 2D layered metal chalcogenide nanoarrays. ACS Nano. 2016;10(11):10211. Chao DL, Liang P, Chen Z, Bai LY, Shen H, Liu XX, Xia XH, Zhao YL, Savilov SV, Lin JY, Shen ZX. Pseudocapacitive Na-Ion storage boosts high rate and areal capacity of selfbranched 2D layered metal chalcogenide nanoarrays. ACS Nano. 2016;10(11):10211.
[49]
Zurück zum Zitat Muller GA, Cook JB, Kim HS, Tolbert SH, Dunn B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 2015;15(3):1911. Muller GA, Cook JB, Kim HS, Tolbert SH, Dunn B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 2015;15(3):1911.
[50]
Zurück zum Zitat Chao DL, Zhu CR, Yang PH, Xia XH, Liu JL, Wang J, Fan XF, Savilov SV, Lin JY, Fan HJ, Shen ZX. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun. 2016;7:12122. Chao DL, Zhu CR, Yang PH, Xia XH, Liu JL, Wang J, Fan XF, Savilov SV, Lin JY, Fan HJ, Shen ZX. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun. 2016;7:12122.
Metadaten
Titel
Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries
verfasst von
Min Huang
Ji-Xin Liu
Peng Huang
Hai Hu
Chao Lai
Publikationsdatum
08.08.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01527-w

Weitere Artikel der Ausgabe 2/2021

Rare Metals 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.