Skip to main content
Erschienen in: Rare Metals 6/2022

04.03.2022 | Original Article

Metallurgy of aluminum-inspired formation of aluminosilicate-coated nanosilicon for lithium-ion battery anode

verfasst von: Yu Zhou, Peng-Hu Niu, Zhong-Hua Li, Pan-Pan Zhang, Ming-Ru Su, Ai-Chun Dou, Xiao-Wei Li, Yun-Jian Liu

Erschienen in: Rare Metals | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modification of Si anode with various coating matrixes is a promising strategy to resolve the unstable solid electrolyte interphase issues. However, the complex preparation process and inherently weak interaction between Si and other matrixes impede its practical application. Inspired by the metallurgical process of aluminum, an aluminosilicate matrix was prepared as coating layer on the surface of Si nanoparticles after heat treatment. Si nanoparticles with a uniform native oxide layer were used as seed crystals for the adsorption of aluminum hydroxide. The strong symbiosis and bond between alumina and silica, such as mullite (3Al2O3·2SiO2) or kaolin (Al2O3·SiO2·2H2O), provide homogeneous and durable contact coating layer. The as-produced Si/SiO2·Al2O3 composite delivers a charge capacity of 1440 mAh·g−1 at 100 mA·g−1 and remains 879 mAh·g−1 at 3 A·g−1. After 200 cycles, the capacity retention remains high at 76%. The enhanced properties were ascribed to SiO2·Al2O3 synergistic composite coating layer, which could hinder the interfacial side chemical reaction and buffer volume change of Si.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Hwang SM, Lim YG, Kim JG, Heo YU, Lim JH, Yamauchi Y, Park MS, Kim YJ, Dou SX, Kim JH. A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries. Nano Energy. 2014;10:53.CrossRef Hwang SM, Lim YG, Kim JG, Heo YU, Lim JH, Yamauchi Y, Park MS, Kim YJ, Dou SX, Kim JH. A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries. Nano Energy. 2014;10:53.CrossRef
[2]
Zurück zum Zitat Yang H, Wu HH, Ge M, Li L, Yuan Y, Yao Q, Chen J, Xia L, Zheng J, Chen Z, Duan J, Kisslinger K, Zeng XC, Lee WK, Zhang Q, Lu J. Simultaneously dual modification of ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv Funct Mater. 2019;29(13):1808825.CrossRef Yang H, Wu HH, Ge M, Li L, Yuan Y, Yao Q, Chen J, Xia L, Zheng J, Chen Z, Duan J, Kisslinger K, Zeng XC, Lee WK, Zhang Q, Lu J. Simultaneously dual modification of ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv Funct Mater. 2019;29(13):1808825.CrossRef
[3]
Zurück zum Zitat He SR, Zou JP, Chen LB, Chen YJ. A nanostructured Ni/T-Nb2O5@carbon nanofibers as a long-life anode material for lithium-ion batteries. Rare Met. 2021;40(2):374.CrossRef He SR, Zou JP, Chen LB, Chen YJ. A nanostructured Ni/T-Nb2O5@carbon nanofibers as a long-life anode material for lithium-ion batteries. Rare Met. 2021;40(2):374.CrossRef
[4]
Zurück zum Zitat Hwang SM, Kim SY, Kim JG, Kim KJ, Lee JW, Park MS, Kim YJ, Shahabuddin M, Yamauchi Y, Kim JH. Electrospun manganese–cobalt oxide hollow nanofibres synthesized via combustion reactions and their lithium storage performance. Nanoscale. 2015;7(18):8351.CrossRef Hwang SM, Kim SY, Kim JG, Kim KJ, Lee JW, Park MS, Kim YJ, Shahabuddin M, Yamauchi Y, Kim JH. Electrospun manganese–cobalt oxide hollow nanofibres synthesized via combustion reactions and their lithium storage performance. Nanoscale. 2015;7(18):8351.CrossRef
[5]
Zurück zum Zitat He Y, Jiang L, Chen T, Xu Y, Jia H, Yi R, Xue D, Song M, Genc A, Bouchet Marquis C, Pullan L, Tessner T, Yoo J, Li X, Zhang JG, Zhang S, Wang C. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading. Nat Nanotechnol. 2021;16(10):1113.CrossRef He Y, Jiang L, Chen T, Xu Y, Jia H, Yi R, Xue D, Song M, Genc A, Bouchet Marquis C, Pullan L, Tessner T, Yoo J, Li X, Zhang JG, Zhang S, Wang C. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading. Nat Nanotechnol. 2021;16(10):1113.CrossRef
[6]
Zurück zum Zitat Li M, Su A, Qin Q, Qin Y, Dou A, Zhou Y, Su M. Liu Y High-rate capability of columbite CuNb2O6 anode materials for lithium-ion batteries. Mater Lett. 2021;284(1):128915.CrossRef Li M, Su A, Qin Q, Qin Y, Dou A, Zhou Y, Su M. Liu Y High-rate capability of columbite CuNb2O6 anode materials for lithium-ion batteries. Mater Lett. 2021;284(1):128915.CrossRef
[7]
Zurück zum Zitat Wang YY, Zhao ZW, Liu Y, Hou LR, Yuan CZ. Precipitant-free solvothermal construction of spindle-like CoCO3/reduced graphene oxide hybrid anode toward high-performance lithium-ion batteries. Rare Met. 2020;39(9):1082.CrossRef Wang YY, Zhao ZW, Liu Y, Hou LR, Yuan CZ. Precipitant-free solvothermal construction of spindle-like CoCO3/reduced graphene oxide hybrid anode toward high-performance lithium-ion batteries. Rare Met. 2020;39(9):1082.CrossRef
[8]
Zurück zum Zitat Xue H, Zhao J, Tang J, Gong H, He P, Zhou H, Yamauchi Y, He J. High-loading nano-SnO2 encapsulated in situ in three-dimensional rigid porous carbon for superior lithium-ion batteries. Chemistry. 2016;22(14):4915.CrossRef Xue H, Zhao J, Tang J, Gong H, He P, Zhou H, Yamauchi Y, He J. High-loading nano-SnO2 encapsulated in situ in three-dimensional rigid porous carbon for superior lithium-ion batteries. Chemistry. 2016;22(14):4915.CrossRef
[9]
Zurück zum Zitat Zhou X, Liu Y, Ren Y, Mu T, Yin X, Du C, Huo H, Cheng X, Zuo P, Yin G. Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in lithium-ion batteries. Adv Funct Mater. 2021;31(21):2101145.CrossRef Zhou X, Liu Y, Ren Y, Mu T, Yin X, Du C, Huo H, Cheng X, Zuo P, Yin G. Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in lithium-ion batteries. Adv Funct Mater. 2021;31(21):2101145.CrossRef
[10]
Zurück zum Zitat Cao C, Abate II, Sivonxay E, Shyam B, Jia C, Moritz B, Devereaux TP, Persson KA, Steinrück HG, Toney MF. Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries. Joule. 2019;3(3):762.CrossRef Cao C, Abate II, Sivonxay E, Shyam B, Jia C, Moritz B, Devereaux TP, Persson KA, Steinrück HG, Toney MF. Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries. Joule. 2019;3(3):762.CrossRef
[11]
Zurück zum Zitat An W, Gao B, Mei S, Xiang B, Fu J, Wang L, Zhang Q, Chu PK, Huo K. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat Commun. 2019;10(1):1447.CrossRef An W, Gao B, Mei S, Xiang B, Fu J, Wang L, Zhang Q, Chu PK, Huo K. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat Commun. 2019;10(1):1447.CrossRef
[12]
Zurück zum Zitat Zhou Y, Feng S, Zhu P, Guo H, Yan G, Li X, Su M, Liu Y, Wang Z, Wang J. Self-sacrificial-reaction guided formation of hierarchical electronic/ionic conductive shell enabling high-performance nano-silicon anode. Chem Eng J. 2021;415(3):128998.CrossRef Zhou Y, Feng S, Zhu P, Guo H, Yan G, Li X, Su M, Liu Y, Wang Z, Wang J. Self-sacrificial-reaction guided formation of hierarchical electronic/ionic conductive shell enabling high-performance nano-silicon anode. Chem Eng J. 2021;415(3):128998.CrossRef
[13]
Zurück zum Zitat Qu X, Yu Z, Ruan D, Dou A, Su M, Zhou Y, Liu Y, Chu D. Enhanced electrochemical performance of Ni-rich cathode materials with Li1.3Al0.3Ti1.7(PO4)3 coating. ACS Sustain Chem Eng. 2020;8(15):5819.CrossRef Qu X, Yu Z, Ruan D, Dou A, Su M, Zhou Y, Liu Y, Chu D. Enhanced electrochemical performance of Ni-rich cathode materials with Li1.3Al0.3Ti1.7(PO4)3 coating. ACS Sustain Chem Eng. 2020;8(15):5819.CrossRef
[14]
Zurück zum Zitat Feng K, Li M, Liu W, Kashkooli AG, Xiao X, Cai M, Chen Z. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small. 2018;14(8):1702737.CrossRef Feng K, Li M, Liu W, Kashkooli AG, Xiao X, Cai M, Chen Z. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small. 2018;14(8):1702737.CrossRef
[15]
Zurück zum Zitat Li L, Xia L, Yang H, Zhan X, Chen J, Chen Z, Duan J. Solid-state synthesis of lanthanum-based oxides Co-coated LiNi0.5Co0.2Mn0.3O2 for advanced lithium ion batteries. J Alloys Compd. 2020;832(15):154959.CrossRef Li L, Xia L, Yang H, Zhan X, Chen J, Chen Z, Duan J. Solid-state synthesis of lanthanum-based oxides Co-coated LiNi0.5Co0.2Mn0.3O2 for advanced lithium ion batteries. J Alloys Compd. 2020;832(15):154959.CrossRef
[16]
Zurück zum Zitat Zhang X, Wang D, Qiu X, Ma Y, Kong D, Mullen K, Li X, Zhi L. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat Commun. 2020;11(1):3826.CrossRef Zhang X, Wang D, Qiu X, Ma Y, Kong D, Mullen K, Li X, Zhi L. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat Commun. 2020;11(1):3826.CrossRef
[17]
Zurück zum Zitat Jo C, Groombridge AS, De La Verpilliere J, Lee JT, Son Y, Liang HL, Boies AM, De Volder M. Continuous-flow synthesis of carbon-coated silicon/iron silicide secondary particles for Li-ion batteries. ACS Nano. 2019;14(1):698.CrossRef Jo C, Groombridge AS, De La Verpilliere J, Lee JT, Son Y, Liang HL, Boies AM, De Volder M. Continuous-flow synthesis of carbon-coated silicon/iron silicide secondary particles for Li-ion batteries. ACS Nano. 2019;14(1):698.CrossRef
[18]
Zurück zum Zitat Wu SJ, Wu ZH, Fang S, Qi XP, Yu B, Yang JY. A comparison of core–shell Si/C and embedded structure Si/C composites as negative materials for lithium-ion batteries. Rare Met. 2021;40(9):2440.CrossRef Wu SJ, Wu ZH, Fang S, Qi XP, Yu B, Yang JY. A comparison of core–shell Si/C and embedded structure Si/C composites as negative materials for lithium-ion batteries. Rare Met. 2021;40(9):2440.CrossRef
[19]
Zurück zum Zitat Ai Q, Fang Q, Liang J, Xu X, Zhai T, Gao G, Guo H, Han G, Ci L, Lou J. Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy. 2020;72:104657.CrossRef Ai Q, Fang Q, Liang J, Xu X, Zhai T, Gao G, Guo H, Han G, Ci L, Lou J. Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy. 2020;72:104657.CrossRef
[20]
Zurück zum Zitat Zhou Y, Su M, Dou A, Liu Y. Facile synthesis of Si/NiSi2/C composite derived from metal-organic frameworks for high-performance lithium-ion battery anode. J Electroanal Chem. 2020;873(15):114398.CrossRef Zhou Y, Su M, Dou A, Liu Y. Facile synthesis of Si/NiSi2/C composite derived from metal-organic frameworks for high-performance lithium-ion battery anode. J Electroanal Chem. 2020;873(15):114398.CrossRef
[21]
Zurück zum Zitat Ren WF, Li JT, Zhang SJ, Lin AL, Chen YH, Gao ZG, Zhou Y, Deng L, Huang L, Sun SG. Fabrication of multi-shell coated silicon nanoparticles via in-situ electroless deposition as high performance anodes for lithium ion batteries. J Electroanal Chem. 2020;48:160. Ren WF, Li JT, Zhang SJ, Lin AL, Chen YH, Gao ZG, Zhou Y, Deng L, Huang L, Sun SG. Fabrication of multi-shell coated silicon nanoparticles via in-situ electroless deposition as high performance anodes for lithium ion batteries. J Electroanal Chem. 2020;48:160.
[22]
Zurück zum Zitat Jin Y, Li S, Kushima A, Zheng X, Sun Y, Xie J, Sun J, Xue W, Zhou G, Wu J, Shi F, Zhang R, Zhu Z, So K, Cui Y, Li J. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci. 2017;10(2):580.CrossRef Jin Y, Li S, Kushima A, Zheng X, Sun Y, Xie J, Sun J, Xue W, Zhou G, Wu J, Shi F, Zhang R, Zhu Z, So K, Cui Y, Li J. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci. 2017;10(2):580.CrossRef
[23]
Zurück zum Zitat Stetson C, Yin Y, Norman A, Harvey SP, Schnabel M, Ban C, Jiang CS, DeCaluwe SC, Al-Jassim M. Evolution of solid electrolyte interphase and active material in the silicon wafer model system. J Power Sources. 2021;482(15):228946.CrossRef Stetson C, Yin Y, Norman A, Harvey SP, Schnabel M, Ban C, Jiang CS, DeCaluwe SC, Al-Jassim M. Evolution of solid electrolyte interphase and active material in the silicon wafer model system. J Power Sources. 2021;482(15):228946.CrossRef
[24]
Zurück zum Zitat Jiang C, Xiang L, Miao S, Shi L, Xie D, Yan J, Zheng Z, Zhang X, Tang Y. Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv Mater. 2020;32(17):1908470.CrossRef Jiang C, Xiang L, Miao S, Shi L, Xie D, Yan J, Zheng Z, Zhang X, Tang Y. Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv Mater. 2020;32(17):1908470.CrossRef
[25]
Zurück zum Zitat Fu L, Xu A, Song Y, Ju JH, Sun H, Yan YR, Wu SP. Pinecone-like silicon@carbon microspheres covered by Al2O3 nano-petals for lithium-ion battery anode under high temperature. Electrochim Acta. 2021;387(10):138461.CrossRef Fu L, Xu A, Song Y, Ju JH, Sun H, Yan YR, Wu SP. Pinecone-like silicon@carbon microspheres covered by Al2O3 nano-petals for lithium-ion battery anode under high temperature. Electrochim Acta. 2021;387(10):138461.CrossRef
[26]
Zurück zum Zitat Dong M, Wang Z, Li H, Guo H, Li X, Shih K, Wang J. Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material. ACS Sustain Chem Eng. 2017;5(11):10199.CrossRef Dong M, Wang Z, Li H, Guo H, Li X, Shih K, Wang J. Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material. ACS Sustain Chem Eng. 2017;5(11):10199.CrossRef
[27]
Zurück zum Zitat Cheng Y, Wei K, Yu Z, Fan D, Yan DL, Pan Z, Tian B. Ternary Si-SiO-Al composite films as high-performance anodes for lithium-ion batteries. ACS Appl Mater Interfaces. 2021;13(29):34447.CrossRef Cheng Y, Wei K, Yu Z, Fan D, Yan DL, Pan Z, Tian B. Ternary Si-SiO-Al composite films as high-performance anodes for lithium-ion batteries. ACS Appl Mater Interfaces. 2021;13(29):34447.CrossRef
[28]
Zurück zum Zitat Shin J, Cho E. Agglomeration mechanism and a protective role of Al2O3 for prolonged cycle life of Si anode in lithium-ion batteries. Chem Mater. 2018;30(10):3233.CrossRef Shin J, Cho E. Agglomeration mechanism and a protective role of Al2O3 for prolonged cycle life of Si anode in lithium-ion batteries. Chem Mater. 2018;30(10):3233.CrossRef
[29]
Zurück zum Zitat Xu K, Zhang Z, Su W, Wei Z, Zhong G, Wang C, Huang X. Alumina coated nano silicon synthesized by aluminothermic reduction as anodes for lithium ion batteries. Funct Mater Lett. 2017;10(2):1650073.CrossRef Xu K, Zhang Z, Su W, Wei Z, Zhong G, Wang C, Huang X. Alumina coated nano silicon synthesized by aluminothermic reduction as anodes for lithium ion batteries. Funct Mater Lett. 2017;10(2):1650073.CrossRef
[30]
Zurück zum Zitat Zhu H, Shiraz M, Liu L, Hu Y, Liu J. A facile and low-cost Al2O3 coating as an artificial solid electrolyte interphase layer on graphite/silicon composites for lithium-ion batteries. Nanotechnology. 2021;32(14):144001.CrossRef Zhu H, Shiraz M, Liu L, Hu Y, Liu J. A facile and low-cost Al2O3 coating as an artificial solid electrolyte interphase layer on graphite/silicon composites for lithium-ion batteries. Nanotechnology. 2021;32(14):144001.CrossRef
[31]
Zurück zum Zitat Zhang Y, Xia G, Zhang J, Wang D, Dong P, Duan J. Boosting high-voltage cyclic stability of nickel-rich layered cathodes in full-cell by metallurgy-inspired coating strategy. Appl Surf Sci. 2020;509(15):145380.CrossRef Zhang Y, Xia G, Zhang J, Wang D, Dong P, Duan J. Boosting high-voltage cyclic stability of nickel-rich layered cathodes in full-cell by metallurgy-inspired coating strategy. Appl Surf Sci. 2020;509(15):145380.CrossRef
[32]
Zurück zum Zitat Liu G, Wu G, Chen W, Li X, Peng Z, Zhou Q, Qi T. Increasing precipitation rate from sodium aluminate solution by adding active seed and ammonia. Hydrometallurgy. 2018;176:253.CrossRef Liu G, Wu G, Chen W, Li X, Peng Z, Zhou Q, Qi T. Increasing precipitation rate from sodium aluminate solution by adding active seed and ammonia. Hydrometallurgy. 2018;176:253.CrossRef
[33]
Zurück zum Zitat Zhang H, Liu K, Liu Y, Lang Z, He W, Ma L, Man J, Jia G, Cui J, Sun J. Observably improving initial coulombic efficiency of C/SiOx anode using -C-O-PO3Li2 groups in lithium ion batteries. J Power Sources. 2020;447(31):227400.CrossRef Zhang H, Liu K, Liu Y, Lang Z, He W, Ma L, Man J, Jia G, Cui J, Sun J. Observably improving initial coulombic efficiency of C/SiOx anode using -C-O-PO3Li2 groups in lithium ion batteries. J Power Sources. 2020;447(31):227400.CrossRef
[34]
Zurück zum Zitat Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Chin J Rare Met. 2019;43(2):199.CrossRef Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Chin J Rare Met. 2019;43(2):199.CrossRef
[35]
Zurück zum Zitat Ke CZ, Liu F, Zheng ZM, Zhang HH, Cai MT, Li M, Yan QZ, Chen HX, Zhang QB. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met. 2021;40(6):1347.CrossRef Ke CZ, Liu F, Zheng ZM, Zhang HH, Cai MT, Li M, Yan QZ, Chen HX, Zhang QB. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met. 2021;40(6):1347.CrossRef
[36]
Zurück zum Zitat Lee J, Moon J, Han SA, Kim J, Malgras V, Heo YU, Kim H, Lee SM, Liu HK, Dou SX, Yamauchi Y, Park MS, Kim JH. Everlasting living and breathing Gyroid 3D network in Si@SiOx/C nanoarchitecture for lithium ion battery. ACS Nano. 2019;13(8):9607.CrossRef Lee J, Moon J, Han SA, Kim J, Malgras V, Heo YU, Kim H, Lee SM, Liu HK, Dou SX, Yamauchi Y, Park MS, Kim JH. Everlasting living and breathing Gyroid 3D network in Si@SiOx/C nanoarchitecture for lithium ion battery. ACS Nano. 2019;13(8):9607.CrossRef
[37]
Zurück zum Zitat Xiao Z, Lei C, Yu C, Chen X, Zhu Z, Jiang H, Wei F. Si@Si3N4@C composite with egg-like structure as high-performance anode material for lithium ion batteries. Energy Storage Mater. 2020;24:565.CrossRef Xiao Z, Lei C, Yu C, Chen X, Zhu Z, Jiang H, Wei F. Si@Si3N4@C composite with egg-like structure as high-performance anode material for lithium ion batteries. Energy Storage Mater. 2020;24:565.CrossRef
[39]
Zurück zum Zitat Liu Z, Li L, Chen J, Yang H, Xia L, Chen J, Duan J, Chen Z. Effects of chelating agents on electrochemical properties of Na0.9Ni0.45Mn0.55O2 cathode materials. J Alloys Compd. 2021;855(2):157485.CrossRef Liu Z, Li L, Chen J, Yang H, Xia L, Chen J, Duan J, Chen Z. Effects of chelating agents on electrochemical properties of Na0.9Ni0.45Mn0.55O2 cathode materials. J Alloys Compd. 2021;855(2):157485.CrossRef
[40]
Zurück zum Zitat Qu X, Huang H, Wan T, Hu L, Yu Z, Liu Y, Dou A, Zhou Y, Su M, Peng X, Wu H, Wu T, Chu D. An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy. 2022;91(1):106665.CrossRef Qu X, Huang H, Wan T, Hu L, Yu Z, Liu Y, Dou A, Zhou Y, Su M, Peng X, Wu H, Wu T, Chu D. An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy. 2022;91(1):106665.CrossRef
[41]
Zurück zum Zitat Li P, Hwang JY, Sun YK. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery. ACS Nano. 2019;13(2):2624. Li P, Hwang JY, Sun YK. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery. ACS Nano. 2019;13(2):2624.
Metadaten
Titel
Metallurgy of aluminum-inspired formation of aluminosilicate-coated nanosilicon for lithium-ion battery anode
verfasst von
Yu Zhou
Peng-Hu Niu
Zhong-Hua Li
Pan-Pan Zhang
Ming-Ru Su
Ai-Chun Dou
Xiao-Wei Li
Yun-Jian Liu
Publikationsdatum
04.03.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 6/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-022-01961-y

Weitere Artikel der Ausgabe 6/2022

Rare Metals 6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.