Skip to main content
Erschienen in: Rare Metals 7/2022

06.04.2022 | Mini Review

State-of-the-art advancements of transition metal oxides as photoelectrode materials for solar water splitting

verfasst von: Gai-Li Ke, Bi Jia, Hui-Chao He, Yong Zhou, Ming Zhou

Erschienen in: Rare Metals | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Photoelectrochemical (PEC) water splitting can convert renewable solar energy into clean hydrogen fuel. Photoelectrodes are the core components of water-splitting cells. In the past 40 years, a series of binary and ternary transition metal oxides have been investigated as photoelectrode materials for solar water splitting, and numerous studies have been carried out to modify their water-splitting performances. Although satisfactory transition metal oxide photoelectrode materials have not been found, it is necessary to summarize the recent advancements in transition metal oxide photoelectrode materials to guide future research. In this review, the background and principle of PEC water splitting are introduced. The semiconductor properties and modification progress of typical binary and ternary metal oxide photoanodes and photocathodes for solar water splitting are summarized. Based on the newly developed strategies in recent years, a brief outlook is presented for efficient PEC water splitting using transition metal oxide photoelectrodes.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Office of fossil energy. Enabling a low-carbon economy. Washington, DC: U.S. Department of Energy; 2020. Office of fossil energy. Enabling a low-carbon economy. Washington, DC: U.S. Department of Energy; 2020.
[2]
Zurück zum Zitat Juhrich K. CO2 emission factors for fossil fuels. Germany: Umweltbundesamt. Dessau-Roßlau. 2016. 4. Juhrich K. CO2 emission factors for fossil fuels. Germany: Umweltbundesamt. Dessau-Roßlau. 2016. 4.
[3]
Zurück zum Zitat Raj AGK, Murugan C, Pandikumar A. Efficient photoelectrochemical reduction of carbon dioxide into alcohols assisted by photoanode driven water oxidation with gold nanoparticles decorated titania nanotubes. J CO2 Util. 2021;52:101684.CrossRef Raj AGK, Murugan C, Pandikumar A. Efficient photoelectrochemical reduction of carbon dioxide into alcohols assisted by photoanode driven water oxidation with gold nanoparticles decorated titania nanotubes. J CO2 Util. 2021;52:101684.CrossRef
[4]
Zurück zum Zitat Ding Y, Alpay E. Adsorption-enhanced steam-methane reforming. Chem Eng Sci. 2000;55(18):3923.CrossRef Ding Y, Alpay E. Adsorption-enhanced steam-methane reforming. Chem Eng Sci. 2000;55(18):3923.CrossRef
[5]
Zurück zum Zitat Domenichini R, Gallio M, Lazzaretto A. Combined production of hydrogen and power from heavy oil gasification: pinch analysis, thermodynamic and economic evaluation. Energy. 2010;35(5):2184.CrossRef Domenichini R, Gallio M, Lazzaretto A. Combined production of hydrogen and power from heavy oil gasification: pinch analysis, thermodynamic and economic evaluation. Energy. 2010;35(5):2184.CrossRef
[6]
Zurück zum Zitat Stiegel GJ, Ramezan M. Hydrogen from coal gasification: an economical pathway to a sustainable energy future. Int J Coal Geol. 2006;65(3–4):173.CrossRef Stiegel GJ, Ramezan M. Hydrogen from coal gasification: an economical pathway to a sustainable energy future. Int J Coal Geol. 2006;65(3–4):173.CrossRef
[7]
Zurück zum Zitat Ni M, Leung DY, Leung MK, Sumathy K. An overview of hydrogen production from biomass. Fuel Process Technol. 2006;87(5):461.CrossRef Ni M, Leung DY, Leung MK, Sumathy K. An overview of hydrogen production from biomass. Fuel Process Technol. 2006;87(5):461.CrossRef
[8]
Zurück zum Zitat Wang MY, Wang Z, Gong XZ, Guo ZC. The intensification technologies to water electrolysis for hydrogen production-a review. Renew Sust Energ Rev. 2014;29(C):573.CrossRef Wang MY, Wang Z, Gong XZ, Guo ZC. The intensification technologies to water electrolysis for hydrogen production-a review. Renew Sust Energ Rev. 2014;29(C):573.CrossRef
[9]
Zurück zum Zitat Ball M, Wietschel M. The future of hydrogen-opportunities and challenges. Int J Hydrogen Energ. 2009;34:615.CrossRef Ball M, Wietschel M. The future of hydrogen-opportunities and challenges. Int J Hydrogen Energ. 2009;34:615.CrossRef
[10]
Zurück zum Zitat Hollada JD, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today. 2009;139(4):244.CrossRef Hollada JD, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today. 2009;139(4):244.CrossRef
[11]
Zurück zum Zitat Damyanova S, Pawelec B, Arishtirova K, Fierro JLG. Ni-based catalysts for reforming of methane with CO2. Int J Hydrogen Energ. 2012;37(21):15966.CrossRef Damyanova S, Pawelec B, Arishtirova K, Fierro JLG. Ni-based catalysts for reforming of methane with CO2. Int J Hydrogen Energ. 2012;37(21):15966.CrossRef
[12]
Zurück zum Zitat Kim JH, Hansora D, Sharma P, Jang JW, Lee JS. Toward practical solar hydrogen production—an artificial photosynthetic leaf-to-farm challenge. Chem Soc Rev. 2019;48(7):1908.CrossRef Kim JH, Hansora D, Sharma P, Jang JW, Lee JS. Toward practical solar hydrogen production—an artificial photosynthetic leaf-to-farm challenge. Chem Soc Rev. 2019;48(7):1908.CrossRef
[13]
Zurück zum Zitat Nayak PK, Mahesh S, Snaith HJ, Cahen D. Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater. 2019;4(4):269.CrossRef Nayak PK, Mahesh S, Snaith HJ, Cahen D. Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater. 2019;4(4):269.CrossRef
[14]
Zurück zum Zitat Guo PF, Zhu HF, Zhao WH, Liu C, Zhu LG, Ye Q, Jia N, Wang HY, Zhang XH, Huang WX, Vinokurov VA, Ivanov E, Shchukin D, Harvey D, Ulloa JM, Hierro A, Wang HQ. Interfacial embedding of laser-manufactured fluorinated gold clusters enabling stable perovskite solar cells with efficiency over 24%. Adv Mater. 2021;33(36):2101590.CrossRef Guo PF, Zhu HF, Zhao WH, Liu C, Zhu LG, Ye Q, Jia N, Wang HY, Zhang XH, Huang WX, Vinokurov VA, Ivanov E, Shchukin D, Harvey D, Ulloa JM, Hierro A, Wang HQ. Interfacial embedding of laser-manufactured fluorinated gold clusters enabling stable perovskite solar cells with efficiency over 24%. Adv Mater. 2021;33(36):2101590.CrossRef
[15]
Zurück zum Zitat Spasiano D, Marotta R, Malato S, Fernandez-Ibañez P, Somma ID. Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B-Environ. 2015;170–171:90.CrossRef Spasiano D, Marotta R, Malato S, Fernandez-Ibañez P, Somma ID. Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B-Environ. 2015;170–171:90.CrossRef
[16]
Zurück zum Zitat Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energ. 2013;104:538.CrossRef Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energ. 2013;104:538.CrossRef
[17]
Zurück zum Zitat Jiang CR, Moniz SJA, Wang AQ, Zhang T, Tang JW. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem Soc Rev. 2017;46(15):4645.CrossRef Jiang CR, Moniz SJA, Wang AQ, Zhang T, Tang JW. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem Soc Rev. 2017;46(15):4645.CrossRef
[18]
[19]
Zurück zum Zitat He HC, Liao AZ, Guo WL, Luo WJ, Zhou Y, Zou ZG. State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis. Nano Today. 2019;28:100763.CrossRef He HC, Liao AZ, Guo WL, Luo WJ, Zhou Y, Zou ZG. State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis. Nano Today. 2019;28:100763.CrossRef
[20]
Zurück zum Zitat Sathre R, Scown CD, Morrow WR, Stevens JC, Sharp ID, Ager JW, Walczak K, Houleae FA, Greenblatt JB. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energ Environ Sci. 2014;7(10):3264.CrossRef Sathre R, Scown CD, Morrow WR, Stevens JC, Sharp ID, Ager JW, Walczak K, Houleae FA, Greenblatt JB. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energ Environ Sci. 2014;7(10):3264.CrossRef
[21]
Zurück zum Zitat Jacobsson TJ, Fjällström V, Sahlberg M, Edoff M, Edvinsson T. A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energ Environ Sci. 2013;6(12):3676.CrossRef Jacobsson TJ, Fjällström V, Sahlberg M, Edoff M, Edvinsson T. A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energ Environ Sci. 2013;6(12):3676.CrossRef
[22]
Zurück zum Zitat Chen ZB, Jaramillo TF, Deutsch TG, Kleiman-Shwarsctein A, Forman AJ, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland EW, Domen K, Miller EL, Turner JA, Dinh HN. Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J Mater Res. 2010;25(1):3.CrossRef Chen ZB, Jaramillo TF, Deutsch TG, Kleiman-Shwarsctein A, Forman AJ, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland EW, Domen K, Miller EL, Turner JA, Dinh HN. Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J Mater Res. 2010;25(1):3.CrossRef
[23]
Zurück zum Zitat Prévot MS, Sivula K. Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C. 2013;117(35):17879.CrossRef Prévot MS, Sivula K. Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C. 2013;117(35):17879.CrossRef
[24]
Zurück zum Zitat Zhao X, Yao X, Chen S, Chen Z. Clarifying the roles of oxygen vacancy in W doped BiVO4 for solar water splitting. ACS Appl Energ Mater. 2018;1(7):3410.CrossRef Zhao X, Yao X, Chen S, Chen Z. Clarifying the roles of oxygen vacancy in W doped BiVO4 for solar water splitting. ACS Appl Energ Mater. 2018;1(7):3410.CrossRef
[25]
Zurück zum Zitat Yang LP, Liu ZY. Study on light intensity in the process of photocatalytic degradation of indoor gaseous formaldehyde for saving energy. Energ Convers Manage. 2007;48(3):882.CrossRef Yang LP, Liu ZY. Study on light intensity in the process of photocatalytic degradation of indoor gaseous formaldehyde for saving energy. Energ Convers Manage. 2007;48(3):882.CrossRef
[26]
Zurück zum Zitat Li YP, Li FT, Wang XJ, Zhao J, Wei JN, Hao YJ, Liu Y. Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4 hybrids for enhanced photocatalytic hydrogen production. Int J Hydrogen Energ. 2017;42(47):28327.CrossRef Li YP, Li FT, Wang XJ, Zhao J, Wei JN, Hao YJ, Liu Y. Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4 hybrids for enhanced photocatalytic hydrogen production. Int J Hydrogen Energ. 2017;42(47):28327.CrossRef
[27]
Zurück zum Zitat Cui Y, Pan L, Chen Y, Nisha A, Sana U, Liu DY, Wang L, Zhang XW, Zou JJ. Defected ZnWO4-decorated WO3 nanorod arrays for efficient photoelectrochemical water splitting. RSC Adv. 2019;9(10):5492.CrossRef Cui Y, Pan L, Chen Y, Nisha A, Sana U, Liu DY, Wang L, Zhang XW, Zou JJ. Defected ZnWO4-decorated WO3 nanorod arrays for efficient photoelectrochemical water splitting. RSC Adv. 2019;9(10):5492.CrossRef
[28]
Zurück zum Zitat Lamba R, Umar A, Mehta SK, Kansal SK. Sb2O3-ZnO nanospindles: a potential material for photocatalytic and sensing applications. Ceram Int. 2015;41(4):5429.CrossRef Lamba R, Umar A, Mehta SK, Kansal SK. Sb2O3-ZnO nanospindles: a potential material for photocatalytic and sensing applications. Ceram Int. 2015;41(4):5429.CrossRef
[29]
Zurück zum Zitat Raizada P, Sudhaik A, Patial S, Hasija V, Khan AAP, Singh P, Gautam S, Kaur M, Nguyen VH. Engineering nanostructures of CuO-based photocatalysts for water treatment: current progress and future challenges. Arab J Chem. 2020;13(11):8424.CrossRef Raizada P, Sudhaik A, Patial S, Hasija V, Khan AAP, Singh P, Gautam S, Kaur M, Nguyen VH. Engineering nanostructures of CuO-based photocatalysts for water treatment: current progress and future challenges. Arab J Chem. 2020;13(11):8424.CrossRef
[30]
Zurück zum Zitat Wang JC, Zhang L, Fang WX, Ren J, Li YY, Yao HC, Wang JS, Li ZJ. Enhanced photoreduction CO2 activity over direct Z-scheme α-Fe2O3/Cu2O heterostructures under visible light irradiation. ACS Appl Mater Inter. 2015;7(16):8631.CrossRef Wang JC, Zhang L, Fang WX, Ren J, Li YY, Yao HC, Wang JS, Li ZJ. Enhanced photoreduction CO2 activity over direct Z-scheme α-Fe2O3/Cu2O heterostructures under visible light irradiation. ACS Appl Mater Inter. 2015;7(16):8631.CrossRef
[31]
Zurück zum Zitat Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37.CrossRef Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37.CrossRef
[32]
Zurück zum Zitat Li YY, Peng YK, Hu LS, Zheng JW, Prabhakaran D, Wu S, Puchtler TJ, Li M, Wong KY, Taylor RA, Tsang SCE. Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. Nat Commun. 2019;10(1):1. Li YY, Peng YK, Hu LS, Zheng JW, Prabhakaran D, Wu S, Puchtler TJ, Li M, Wong KY, Taylor RA, Tsang SCE. Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. Nat Commun. 2019;10(1):1.
[33]
Zurück zum Zitat Tu WG, Guo WL, Hu JQ, He HC, Li HJ, Li ZS, Luo WJ, Zhou Y, Zou ZG. State-of-the-art advancements of crystal facet-exposed photocatalysts beyond TiO2: design and dependent performance for solar energy conversion and environment applications. Mater Today. 2020;33:75.CrossRef Tu WG, Guo WL, Hu JQ, He HC, Li HJ, Li ZS, Luo WJ, Zhou Y, Zou ZG. State-of-the-art advancements of crystal facet-exposed photocatalysts beyond TiO2: design and dependent performance for solar energy conversion and environment applications. Mater Today. 2020;33:75.CrossRef
[34]
Zurück zum Zitat Kumar PD, Reddy NL, Kumari MM, Srinivas B, Kumari VD, Sreedhar B, Roddatis V, Bondarchuk O, Karthik M, Neppolian B, Shankar MV. Cu2O-sensitized TiO2 nanorods with nanocavities for highly efficient photocatalytic hydrogen production under solar irradiation. Sol Energ Mat Sol C. 2015;136:157.CrossRef Kumar PD, Reddy NL, Kumari MM, Srinivas B, Kumari VD, Sreedhar B, Roddatis V, Bondarchuk O, Karthik M, Neppolian B, Shankar MV. Cu2O-sensitized TiO2 nanorods with nanocavities for highly efficient photocatalytic hydrogen production under solar irradiation. Sol Energ Mat Sol C. 2015;136:157.CrossRef
[35]
Zurück zum Zitat Annamalai A, Shinde PS, Jeon TH, Lee HH, Kim HG, Choi W, Jang JS. Fabrication of superior α-Fe2O3 nanorod photoanodes through ex-situ Sn-doping for solar water splitting. Sol Energ Mat Sol C. 2016;144(C):247.CrossRef Annamalai A, Shinde PS, Jeon TH, Lee HH, Kim HG, Choi W, Jang JS. Fabrication of superior α-Fe2O3 nanorod photoanodes through ex-situ Sn-doping for solar water splitting. Sol Energ Mat Sol C. 2016;144(C):247.CrossRef
[36]
Zurück zum Zitat Sharma P, Jang JW, Lee JS. Key strategies to advance the photoelectrochemical water splitting performance of α-Fe2O3 photoanode. ChemCatChem. 2019;11(1):157.CrossRef Sharma P, Jang JW, Lee JS. Key strategies to advance the photoelectrochemical water splitting performance of α-Fe2O3 photoanode. ChemCatChem. 2019;11(1):157.CrossRef
[37]
Zurück zum Zitat Mirbagheri N, Wang DG, Peng C, Wang JQ, Huang Q, Fan CH, Ferapontova EE. Visible light driven photoelectrochemical water oxidation by Zn-and Ti-doped hematite nanostructures. ACS Catal. 2014;4(6):2006.CrossRef Mirbagheri N, Wang DG, Peng C, Wang JQ, Huang Q, Fan CH, Ferapontova EE. Visible light driven photoelectrochemical water oxidation by Zn-and Ti-doped hematite nanostructures. ACS Catal. 2014;4(6):2006.CrossRef
[38]
Zurück zum Zitat Cesar I, Kay A, Martinez JAG, Grätzel M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. J Am Chem Soc. 2006;128(14):4582.CrossRef Cesar I, Kay A, Martinez JAG, Grätzel M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. J Am Chem Soc. 2006;128(14):4582.CrossRef
[39]
Zurück zum Zitat Cao DP, Luo WJ, Feng JY, Zhao X, Li ZS, Zou ZG. Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction. Energ Environ Sci. 2014;7(2):752.CrossRef Cao DP, Luo WJ, Feng JY, Zhao X, Li ZS, Zou ZG. Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction. Energ Environ Sci. 2014;7(2):752.CrossRef
[40]
Zurück zum Zitat Gurudayal Chiam SY, Kumar MH, Bassi PS, Seng HL, Barber J, Wong LH. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese. ACS Appl Mater Inter. 2014;6(8):5852.CrossRef Gurudayal Chiam SY, Kumar MH, Bassi PS, Seng HL, Barber J, Wong LH. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese. ACS Appl Mater Inter. 2014;6(8):5852.CrossRef
[41]
Zurück zum Zitat Andebet GT, Su WN, Amare AD, Chen HM, Bing-Joe H. Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) alpha-Fe2O3 photoanode. J Mater Chem A. 2015;3(11):5949.CrossRef Andebet GT, Su WN, Amare AD, Chen HM, Bing-Joe H. Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) alpha-Fe2O3 photoanode. J Mater Chem A. 2015;3(11):5949.CrossRef
[42]
Zurück zum Zitat Li MY, Yang Y, Ling YC, Qiu WT, Wang FX, Liu TY, Song Y, Liu XX, Fang PP, Tong YX, Li Y. Morphology and doping engineering of Sn-doped hematite nanowire photoanodes. Nano Lett. 2017;17(4):2490.CrossRef Li MY, Yang Y, Ling YC, Qiu WT, Wang FX, Liu TY, Song Y, Liu XX, Fang PP, Tong YX, Li Y. Morphology and doping engineering of Sn-doped hematite nanowire photoanodes. Nano Lett. 2017;17(4):2490.CrossRef
[43]
Zurück zum Zitat Jiao TT, Lu C, Feng K, Deng JJ, Long D, Zhong J. N and Sn Co-doped hematite photoanodes for efficient solar water oxidation. J Colloid Interf Sci. 2021;585:660.CrossRef Jiao TT, Lu C, Feng K, Deng JJ, Long D, Zhong J. N and Sn Co-doped hematite photoanodes for efficient solar water oxidation. J Colloid Interf Sci. 2021;585:660.CrossRef
[44]
Zurück zum Zitat Zhang YC, Jiang SQ, Song WJ, Zhou P, Ji HW, Ma WH, Hao WC, Chen CC, Zhao JC. Nonmetal P-doped hematite photoanode with enhanced electron mobility and high water oxidation activity. Energ Environ Sci. 2015;8(4):1231.CrossRef Zhang YC, Jiang SQ, Song WJ, Zhou P, Ji HW, Ma WH, Hao WC, Chen CC, Zhao JC. Nonmetal P-doped hematite photoanode with enhanced electron mobility and high water oxidation activity. Energ Environ Sci. 2015;8(4):1231.CrossRef
[45]
Zurück zum Zitat Luo ZB, Li CC, Liu SS, Wang T, Gong JL. Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation. Chem Sci. 2017;8(1):91.CrossRef Luo ZB, Li CC, Liu SS, Wang T, Gong JL. Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation. Chem Sci. 2017;8(1):91.CrossRef
[46]
Zurück zum Zitat Ling Y, Wang G, Reddy J, Wang C, Zhang JZ, Li Y. The influence of oxygen content on the thermal activation of hematite nanowires. Angew Chem Int Ed Engl. 2012;51(17):4074.CrossRef Ling Y, Wang G, Reddy J, Wang C, Zhang JZ, Li Y. The influence of oxygen content on the thermal activation of hematite nanowires. Angew Chem Int Ed Engl. 2012;51(17):4074.CrossRef
[47]
Zurück zum Zitat Yang TY, Kang HY, Sim U, Lee YJ, Lee JH, Koo B, Nam KT, Joo YC. A new hematite photoanode doping strategy for solar water splitting: oxygen vacancy generation. Phys Chem Chem Phys. 2013;15(6):2117.CrossRef Yang TY, Kang HY, Sim U, Lee YJ, Lee JH, Koo B, Nam KT, Joo YC. A new hematite photoanode doping strategy for solar water splitting: oxygen vacancy generation. Phys Chem Chem Phys. 2013;15(6):2117.CrossRef
[48]
Zurück zum Zitat Zhu C, Li C, Zheng M, Delaunay JJ. Plasma-induced oxygen vacancies in ultrathin hematite nanoflakes promoting photoelectrochemical water oxidation. ACS Appl Mater Inter. 2015;7(40):22355.CrossRef Zhu C, Li C, Zheng M, Delaunay JJ. Plasma-induced oxygen vacancies in ultrathin hematite nanoflakes promoting photoelectrochemical water oxidation. ACS Appl Mater Inter. 2015;7(40):22355.CrossRef
[49]
Zurück zum Zitat Zhao X, Feng J, Chen S, Huang Y, Sum TC, Chen Z. New insight into the roles of oxygen vacancies in hematite for solar water splitting. Phys Chem Chem Phys. 2017;19(2):1074.CrossRef Zhao X, Feng J, Chen S, Huang Y, Sum TC, Chen Z. New insight into the roles of oxygen vacancies in hematite for solar water splitting. Phys Chem Chem Phys. 2017;19(2):1074.CrossRef
[50]
Zurück zum Zitat Wang Z, Mao X, Chen P, Xiao M, Monny SA, Wang S, Konarova M, Du A, Wang L. Understanding the roles of oxygen vacancies in hematite based photoelectrochemical processes. Angew Chem Int Ed Engl. 2019;58(4):1030.CrossRef Wang Z, Mao X, Chen P, Xiao M, Monny SA, Wang S, Konarova M, Du A, Wang L. Understanding the roles of oxygen vacancies in hematite based photoelectrochemical processes. Angew Chem Int Ed Engl. 2019;58(4):1030.CrossRef
[51]
Zurück zum Zitat Almeida TP, Fay MW, Zhu YQ, Brown PD. Hydrothermal growth mechanism of α-Fe2O3 nanorods derived by near in situ analysis. Nanoscale. 2010;2(11):2390.CrossRef Almeida TP, Fay MW, Zhu YQ, Brown PD. Hydrothermal growth mechanism of α-Fe2O3 nanorods derived by near in situ analysis. Nanoscale. 2010;2(11):2390.CrossRef
[52]
Zurück zum Zitat Singh A, Tejasvi R, Karmakar S, Basu S. α-Fe2O3 nanorods decorated with NiMnO3 co-catalyst as photoanode for enhanced oxygen evolution reaction in photoelectrochemical water splitting. Mater Today Commun. 2021;27:102231.CrossRef Singh A, Tejasvi R, Karmakar S, Basu S. α-Fe2O3 nanorods decorated with NiMnO3 co-catalyst as photoanode for enhanced oxygen evolution reaction in photoelectrochemical water splitting. Mater Today Commun. 2021;27:102231.CrossRef
[53]
Zurück zum Zitat Masoud T, Hossein S. Optimization of the Co-Pi/α-Fe2O3 catalyst synthesis parameters using the Taguchi method for water-splitting application. Russ J Electrochem. 2020;56(3):254.CrossRef Masoud T, Hossein S. Optimization of the Co-Pi/α-Fe2O3 catalyst synthesis parameters using the Taguchi method for water-splitting application. Russ J Electrochem. 2020;56(3):254.CrossRef
[54]
Zurück zum Zitat Li L, She XJ, Yi JJ, Pan L, Xia KX, Wei W, Zhu XW, Chen ZG, Xu H, Li HM. Integrating CoOx cocatalyst on hexagonal α-Fe2O3 for effective photocatalytic oxygen evolution. Appl Surf Sci. 2019;469:933.CrossRef Li L, She XJ, Yi JJ, Pan L, Xia KX, Wei W, Zhu XW, Chen ZG, Xu H, Li HM. Integrating CoOx cocatalyst on hexagonal α-Fe2O3 for effective photocatalytic oxygen evolution. Appl Surf Sci. 2019;469:933.CrossRef
[55]
Zurück zum Zitat Qiu P, Li F, Zhang HD, Wang SY, Jiang ZY, Chen YX. Photoelectrochemical performance of α-Fe2O3@NiOOH fabricated with facile photo-assisted electrodeposition method. Electrochim Acta. 2020;358:136847.CrossRef Qiu P, Li F, Zhang HD, Wang SY, Jiang ZY, Chen YX. Photoelectrochemical performance of α-Fe2O3@NiOOH fabricated with facile photo-assisted electrodeposition method. Electrochim Acta. 2020;358:136847.CrossRef
[56]
Zurück zum Zitat Wang ZZ, Rong JY, Lv JQ, Chong RF, Zhang L, Wang L, Chang ZX, Wang X. Chelation-mediated in-situ formation of ultrathin cobalt (oxy)hydroxides on hematite photoanode towards enhanced photoelectrochemical water oxidation. J Energy Chem. 2021;56:152.CrossRef Wang ZZ, Rong JY, Lv JQ, Chong RF, Zhang L, Wang L, Chang ZX, Wang X. Chelation-mediated in-situ formation of ultrathin cobalt (oxy)hydroxides on hematite photoanode towards enhanced photoelectrochemical water oxidation. J Energy Chem. 2021;56:152.CrossRef
[57]
Zurück zum Zitat Liao AZ, He HC, Fan ZW, Xu GZ, Li L, Chen JN, Han QT, Chen XY, Zhou Y, Zou ZG. Facile room-temperature surface modification of unprecedented FeB co-catalysts on Fe2O3 nanorod photoanodes for high photoelectrochemical performance. J Catal. 2017;352:113.CrossRef Liao AZ, He HC, Fan ZW, Xu GZ, Li L, Chen JN, Han QT, Chen XY, Zhou Y, Zou ZG. Facile room-temperature surface modification of unprecedented FeB co-catalysts on Fe2O3 nanorod photoanodes for high photoelectrochemical performance. J Catal. 2017;352:113.CrossRef
[58]
Zurück zum Zitat Yoon KY, Park J, Jung M, Ji SG, Lee H, Seo JH, Kwak MJ, Seok S, Lee JH, Jang JH. NiFeOx decorated Ge-hematite/perovskite for an efficient water splitting system. Nat Commun. 2021;12:4309.CrossRef Yoon KY, Park J, Jung M, Ji SG, Lee H, Seo JH, Kwak MJ, Seok S, Lee JH, Jang JH. NiFeOx decorated Ge-hematite/perovskite for an efficient water splitting system. Nat Commun. 2021;12:4309.CrossRef
[59]
Zurück zum Zitat Li CL, He JF, Xiao YQ, Li YB, Delaunay JJ. Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energ Environ Sci. 2020;13(10):3269.CrossRef Li CL, He JF, Xiao YQ, Li YB, Delaunay JJ. Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energ Environ Sci. 2020;13(10):3269.CrossRef
[60]
Zurück zum Zitat Li XT, Liu B, Chen Y, Fan XB, Li Y, Zhang FB, Zhang GL, Peng WC. Decoration of Cu2O photocathode with protective TiO2 and active WS2 layers for enhanced photoelectrochemical hydrogen evolution. Nanotechnology. 2018;29(50):505603.CrossRef Li XT, Liu B, Chen Y, Fan XB, Li Y, Zhang FB, Zhang GL, Peng WC. Decoration of Cu2O photocathode with protective TiO2 and active WS2 layers for enhanced photoelectrochemical hydrogen evolution. Nanotechnology. 2018;29(50):505603.CrossRef
[61]
Zurück zum Zitat Lee HH, Kim DS, Choi JH, Kim YB, Jung SH, Sarker S, Deshpande NG, Suh HW, Cho HK. Optimal n-type Al-doped ZnO overlayers for charge transport enhancement in p-type Cu2O photocathodes. Micromach Basel. 2021;12(3):338.CrossRef Lee HH, Kim DS, Choi JH, Kim YB, Jung SH, Sarker S, Deshpande NG, Suh HW, Cho HK. Optimal n-type Al-doped ZnO overlayers for charge transport enhancement in p-type Cu2O photocathodes. Micromach Basel. 2021;12(3):338.CrossRef
[62]
Zurück zum Zitat Tilley SD, Schreier M, Azevedo J, Stefik M, Graetzel M. Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. Adv Funct Mater. 2014;24(3):303.CrossRef Tilley SD, Schreier M, Azevedo J, Stefik M, Graetzel M. Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. Adv Funct Mater. 2014;24(3):303.CrossRef
[63]
Zurück zum Zitat Azevedo J, Tilley SD, Schreier M, Stefik M, Sousa C, Araújo JP, Mendes A, Grätzel M, Mayer MT. Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes. Nano Energy. 2016;24:10.CrossRef Azevedo J, Tilley SD, Schreier M, Stefik M, Sousa C, Araújo JP, Mendes A, Grätzel M, Mayer MT. Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes. Nano Energy. 2016;24:10.CrossRef
[64]
Zurück zum Zitat Li CL, Takashi H, Osamu W, Mamiko N, Naoya S, Kazunari D, Delaunay JJ. Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energ Environ Sci. 2015;8(5):1493.CrossRef Li CL, Takashi H, Osamu W, Mamiko N, Naoya S, Kazunari D, Delaunay JJ. Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energ Environ Sci. 2015;8(5):1493.CrossRef
[65]
Zurück zum Zitat Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater. 2011;10(6):456.CrossRef Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater. 2011;10(6):456.CrossRef
[66]
Zurück zum Zitat Pan LF, Liu YH, Yao L, Ren D, Kevin S, Michael G, Anders H. Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. Nat Commun. 2020;11(1):318.CrossRef Pan LF, Liu YH, Yao L, Ren D, Kevin S, Michael G, Anders H. Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. Nat Commun. 2020;11(1):318.CrossRef
[67]
Zurück zum Zitat Jia Q, Iwashina K, Kudo A. Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. Proc Natl Acad Sci USA. 2012;109(29):11564.CrossRef Jia Q, Iwashina K, Kudo A. Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. Proc Natl Acad Sci USA. 2012;109(29):11564.CrossRef
[68]
Zurück zum Zitat Soumya KB, Jin-Ook B. Enhanced photoactivity of visible light responsive W incorporated FeVO4 photoanode for solar water splitting. Int J Hydrogen energ. 2013;38(34):14451.CrossRef Soumya KB, Jin-Ook B. Enhanced photoactivity of visible light responsive W incorporated FeVO4 photoanode for solar water splitting. Int J Hydrogen energ. 2013;38(34):14451.CrossRef
[69]
Zurück zum Zitat Tang D, Rettie AJE, Mabayoje O, Wygant BR, Lai YQ, Liu YX, Mullins CB. Facile growth of porous Fe2V4O13 films for photoelectrochemical water oxidation. J Mater Chem A. 2016;4(8):3034.CrossRef Tang D, Rettie AJE, Mabayoje O, Wygant BR, Lai YQ, Liu YX, Mullins CB. Facile growth of porous Fe2V4O13 films for photoelectrochemical water oxidation. J Mater Chem A. 2016;4(8):3034.CrossRef
[70]
Zurück zum Zitat Guo WL, William DC, Oluwaniyi M, Xiao P, Zhang YH, Mullins CB. Synthesis and characterization of CuV2O6 and Cu2V2O7: two photoanode candidates for photoelectrochemical water oxidation. J Phys Chem C. 2015;119(49):27220.CrossRef Guo WL, William DC, Oluwaniyi M, Xiao P, Zhang YH, Mullins CB. Synthesis and characterization of CuV2O6 and Cu2V2O7: two photoanode candidates for photoelectrochemical water oxidation. J Phys Chem C. 2015;119(49):27220.CrossRef
[71]
Zurück zum Zitat Zhou L, Yan QM, Shinde A, Guevarra D, Newhouse PF, Becerra-Stasiewicz N, Chatman SM, Haber JA, Neaton JB, Gregoire JM. High throughput discovery of solar fuels photoanodes in the CuO–V2O5 system. Adv Energy Mater. 2015;5(22):1500968.CrossRef Zhou L, Yan QM, Shinde A, Guevarra D, Newhouse PF, Becerra-Stasiewicz N, Chatman SM, Haber JA, Neaton JB, Gregoire JM. High throughput discovery of solar fuels photoanodes in the CuO–V2O5 system. Adv Energy Mater. 2015;5(22):1500968.CrossRef
[72]
Zurück zum Zitat Seabold JA, Neale NR. All first row transition metal oxide photoanode for water splitting based on Cu3V2O8. Chem Mater. 2015;27(3):1005.CrossRef Seabold JA, Neale NR. All first row transition metal oxide photoanode for water splitting based on Cu3V2O8. Chem Mater. 2015;27(3):1005.CrossRef
[73]
Zurück zum Zitat Jiang CM, Segev G, Hess LH, Liu G, Zaborski G, Toma FM, Cooper JK, Sharp ID. Composition-dependent functionality of copper vanadate photoanodes. ACS Appl Mater Inter. 2018;10(13):10627.CrossRef Jiang CM, Segev G, Hess LH, Liu G, Zaborski G, Toma FM, Cooper JK, Sharp ID. Composition-dependent functionality of copper vanadate photoanodes. ACS Appl Mater Inter. 2018;10(13):10627.CrossRef
[74]
Zurück zum Zitat Lumley MA, Choi K. Investigation of pristine and (Mo, W)-doped Cu11V6O26 for use as photoanodes for solar water splitting. Chem Mater. 2017;29(21):9472.CrossRef Lumley MA, Choi K. Investigation of pristine and (Mo, W)-doped Cu11V6O26 for use as photoanodes for solar water splitting. Chem Mater. 2017;29(21):9472.CrossRef
[75]
Zurück zum Zitat Sameie H, Sabbagh AA, Naseric N, Dud S, Roseie F. First-principles study on ZnV2O6 and Zn2V2O7: two new photoanode candidates for photoelectrochemical water oxidation. Ceram Int. 2018;44(6):6607.CrossRef Sameie H, Sabbagh AA, Naseric N, Dud S, Roseie F. First-principles study on ZnV2O6 and Zn2V2O7: two new photoanode candidates for photoelectrochemical water oxidation. Ceram Int. 2018;44(6):6607.CrossRef
[76]
Zurück zum Zitat Krol R, Segalini J, Enache CS. Influence of point defects on the performance of InVO4 photoanodes. J Photon Energy. 2011;1(1):16001.CrossRef Krol R, Segalini J, Enache CS. Influence of point defects on the performance of InVO4 photoanodes. J Photon Energy. 2011;1(1):16001.CrossRef
[77]
Zurück zum Zitat Dang HX, Alexander JE, Rettie AGE, Mullins CB. Visible light-active NiV2O6 films for photoelectrochemical water oxidation. J Phys Chem C. 2015;119(26):14524.CrossRef Dang HX, Alexander JE, Rettie AGE, Mullins CB. Visible light-active NiV2O6 films for photoelectrochemical water oxidation. J Phys Chem C. 2015;119(26):14524.CrossRef
[78]
Zurück zum Zitat Chemelewski WD, Mabayoje O, Mullins CB. SILAR growth of Ag3VO4 and characterization for photoelectrochemical water oxidation. J Phys Chem C. 2015;119(48):26803.CrossRef Chemelewski WD, Mabayoje O, Mullins CB. SILAR growth of Ag3VO4 and characterization for photoelectrochemical water oxidation. J Phys Chem C. 2015;119(48):26803.CrossRef
[79]
Zurück zum Zitat Yoshimatsu K, Mashiko H, Umezawa N, Horiba K, Kumigashira H, Ohtomo A. Electronic structures and photoanodic properties of ilmenite-type MTiO3 epitaxial films (M = Mn, Fe Co, Ni). J Phys Chem C. 2017;121(34):18717.CrossRef Yoshimatsu K, Mashiko H, Umezawa N, Horiba K, Kumigashira H, Ohtomo A. Electronic structures and photoanodic properties of ilmenite-type MTiO3 epitaxial films (M = Mn, Fe Co, Ni). J Phys Chem C. 2017;121(34):18717.CrossRef
[80]
Zurück zum Zitat Kim JH, Jang YJ, Choi SH, Lee BJ, Kim JH, Park YB, Nam CM, Kim HG, Lee JS. A multitude of modifications strategy of ZnFe2O4 nanorod photoanodes for enhanced photoelectrochemical water splitting activity. J Mater Chem A. 2018;6(26):12693.CrossRef Kim JH, Jang YJ, Choi SH, Lee BJ, Kim JH, Park YB, Nam CM, Kim HG, Lee JS. A multitude of modifications strategy of ZnFe2O4 nanorod photoanodes for enhanced photoelectrochemical water splitting activity. J Mater Chem A. 2018;6(26):12693.CrossRef
[81]
Zurück zum Zitat Song J, Kim TL, Lee J, Cho SY, Cha J, Jeong SY, An H, Kim W, Jung Y, Park J, Jung GY, Kim D, Jo JY, Bu SD, Jang HW, Lee S. Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting. Nano Res. 2018;11(2):642.CrossRef Song J, Kim TL, Lee J, Cho SY, Cha J, Jeong SY, An H, Kim W, Jung Y, Park J, Jung GY, Kim D, Jo JY, Bu SD, Jang HW, Lee S. Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting. Nano Res. 2018;11(2):642.CrossRef
[82]
Zurück zum Zitat Wu K, Liu CT, Wei SM, Zhu QQ, Li FD. Photoelectrochemical properties of α-Fe2O3: Sn/CuFe2O4 composite nanorod arrays as photoanodes. ECS Trans. 2013;53(22):49.CrossRef Wu K, Liu CT, Wei SM, Zhu QQ, Li FD. Photoelectrochemical properties of α-Fe2O3: Sn/CuFe2O4 composite nanorod arrays as photoanodes. ECS Trans. 2013;53(22):49.CrossRef
[83]
Zurück zum Zitat Gao Y, Hamann TW. Elucidation of CuWO4 surface states during photoelectrochemical water oxidation. J Phys Chem Lett. 2017;8(12):2700.CrossRef Gao Y, Hamann TW. Elucidation of CuWO4 surface states during photoelectrochemical water oxidation. J Phys Chem Lett. 2017;8(12):2700.CrossRef
[84]
Zurück zum Zitat Yourey JE, Pyper KJ, Kurtz JB, Bartlett BM. Chemical stability of CuWO4 for photoelectrochemical water oxidation. J Phys Chem C. 2013;117(17):8708.CrossRef Yourey JE, Pyper KJ, Kurtz JB, Bartlett BM. Chemical stability of CuWO4 for photoelectrochemical water oxidation. J Phys Chem C. 2013;117(17):8708.CrossRef
[85]
Zurück zum Zitat Hill JC, Choi KS. Synthesis and characterization of high surface area CuWO4 and Bi2WO6 electrodes for use as photoanodes for solar water oxidation. J Mater Chem A. 2013;1(16):5006.CrossRef Hill JC, Choi KS. Synthesis and characterization of high surface area CuWO4 and Bi2WO6 electrodes for use as photoanodes for solar water oxidation. J Mater Chem A. 2013;1(16):5006.CrossRef
[86]
Zurück zum Zitat Abdi FF, Chemseddine A, Berglund SP, Krol R. Assessing the suitability of iron tungstate (Fe2WO6) as a photoelectrode material for water oxidation. J Phys Chem C. 2016;121(1):153.CrossRef Abdi FF, Chemseddine A, Berglund SP, Krol R. Assessing the suitability of iron tungstate (Fe2WO6) as a photoelectrode material for water oxidation. J Phys Chem C. 2016;121(1):153.CrossRef
[87]
Zurück zum Zitat Leonard KC, Nam KM, Lee HC, Kang SH, Park HS, Bard AJ. ZnWO4/WO3 composite for improving photoelectrochemical water oxidation. J Phys Chem C. 2013;117(31):15901.CrossRef Leonard KC, Nam KM, Lee HC, Kang SH, Park HS, Bard AJ. ZnWO4/WO3 composite for improving photoelectrochemical water oxidation. J Phys Chem C. 2013;117(31):15901.CrossRef
[88]
Zurück zum Zitat Zhu J, Li WZ, Li J, Li YM, Hua HS, Yang YH. Photoelectrochemical activity of NiWO4/WO3 heterojunction photoanode under visible light irradiation. Electrochim Acta. 2013;112:191.CrossRef Zhu J, Li WZ, Li J, Li YM, Hua HS, Yang YH. Photoelectrochemical activity of NiWO4/WO3 heterojunction photoanode under visible light irradiation. Electrochim Acta. 2013;112:191.CrossRef
[89]
Zurück zum Zitat Zhu ZH, Sarker P, Zhao CQ, Zhou L, Grimm RL, Huda MN, Rao PM. Photoelectrochemical properties and behavior of α SnWO4 photoanodes synthesized by hydrothermal conversion of WO3 films. ACS Appl Mater Inter. 2017;9(2):1459.CrossRef Zhu ZH, Sarker P, Zhao CQ, Zhou L, Grimm RL, Huda MN, Rao PM. Photoelectrochemical properties and behavior of α SnWO4 photoanodes synthesized by hydrothermal conversion of WO3 films. ACS Appl Mater Inter. 2017;9(2):1459.CrossRef
[90]
Zurück zum Zitat Kim BN, Seo G, Huang SW, Yu H, Ahn B, Seo H, Cho IS. Photophysical properties and photoelectrochemical performances of sol-gel derived copper stannate (CuSnO3) amorphous semiconductor for solar sater splitting application. Ceram Int. 2018;44(2):1843.CrossRef Kim BN, Seo G, Huang SW, Yu H, Ahn B, Seo H, Cho IS. Photophysical properties and photoelectrochemical performances of sol-gel derived copper stannate (CuSnO3) amorphous semiconductor for solar sater splitting application. Ceram Int. 2018;44(2):1843.CrossRef
[91]
Zurück zum Zitat Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem. 2002;106(19):5029.CrossRef Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem. 2002;106(19):5029.CrossRef
[92]
Zurück zum Zitat Shi X, Yang H, Liang Z, Tian A, Xue X. Synthesis of vertically aligned CaTiO3 nanotubes with simple hydrothermal method and its photoelectrochemical property. Nanotechnology. 2018;29(38):385605.CrossRef Shi X, Yang H, Liang Z, Tian A, Xue X. Synthesis of vertically aligned CaTiO3 nanotubes with simple hydrothermal method and its photoelectrochemical property. Nanotechnology. 2018;29(38):385605.CrossRef
[93]
Zurück zum Zitat Boltersdorf J, Sullivan I, Shelton TL, Wu Z, Gray M, Zoellner B, Osterloh FE, Maggard PA. Flux synthesis, optical and photocatalytic properties of n-type Sn2TiO4: hydrogen and oxygen evolution under visible light. Chem Mater. 2016;28(24):8876.CrossRef Boltersdorf J, Sullivan I, Shelton TL, Wu Z, Gray M, Zoellner B, Osterloh FE, Maggard PA. Flux synthesis, optical and photocatalytic properties of n-type Sn2TiO4: hydrogen and oxygen evolution under visible light. Chem Mater. 2016;28(24):8876.CrossRef
[94]
Zurück zum Zitat Tang D, Mabayoje O, Lai YQ, Liu YX, Mullins CB. Enhanced photoelectrochemical performance of porous Bi2MoO6 photoanode by an electrochemical treatment. J Electrochem Soc. 2017;164(6):H299.CrossRef Tang D, Mabayoje O, Lai YQ, Liu YX, Mullins CB. Enhanced photoelectrochemical performance of porous Bi2MoO6 photoanode by an electrochemical treatment. J Electrochem Soc. 2017;164(6):H299.CrossRef
[95]
Zurück zum Zitat Xiong YL, Yang L, He HC, Wan J, Xiao P, Guo WL. Enhanced charge separation and transfer by Bi2MoO6@Bi2Mo2O9 compound using SILAR for photoelectrochemical water oxidation. Electrochim Acta. 2018;264:26.CrossRef Xiong YL, Yang L, He HC, Wan J, Xiao P, Guo WL. Enhanced charge separation and transfer by Bi2MoO6@Bi2Mo2O9 compound using SILAR for photoelectrochemical water oxidation. Electrochim Acta. 2018;264:26.CrossRef
[96]
Zurück zum Zitat Kang D, Park Y, Hill JC, Choi KS. Preparation of Bi-based ternary oxide photoanodes BiVO4, Bi2WO6, and Bi2Mo3O12 using dendritic Bi metal electrodes. J Phys Chem Lett. 2014;5(17):2994.CrossRef Kang D, Park Y, Hill JC, Choi KS. Preparation of Bi-based ternary oxide photoanodes BiVO4, Bi2WO6, and Bi2Mo3O12 using dendritic Bi metal electrodes. J Phys Chem Lett. 2014;5(17):2994.CrossRef
[97]
Zurück zum Zitat Kudo A, Ueda K, Kato H, Mikami I. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal Lett. 1998;53(3–4):229.CrossRef Kudo A, Ueda K, Kato H, Mikami I. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal Lett. 1998;53(3–4):229.CrossRef
[98]
Zurück zum Zitat Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc. 1999;121(49):11459.CrossRef Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc. 1999;121(49):11459.CrossRef
[99]
Zurück zum Zitat Park Y, McDonald KJ, Choi KS. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev. 2013;42(6):2321.CrossRef Park Y, McDonald KJ, Choi KS. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev. 2013;42(6):2321.CrossRef
[100]
Zurück zum Zitat Tan HL, Amal R, Ng YH. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. J Mater Chem A. 2017;5(32):16498.CrossRef Tan HL, Amal R, Ng YH. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. J Mater Chem A. 2017;5(32):16498.CrossRef
[101]
Zurück zum Zitat Kohtani S, Makino S, Kudo A, Tokumura K, Ishigaki Y, Matsunaga T, Nikaido O, Hayakawa K, Nakagaki R. Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator: comparison between BiVO4 and TiO2 photocatalysts. Chem Lett. 2002;7(31):660.CrossRef Kohtani S, Makino S, Kudo A, Tokumura K, Ishigaki Y, Matsunaga T, Nikaido O, Hayakawa K, Nakagaki R. Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator: comparison between BiVO4 and TiO2 photocatalysts. Chem Lett. 2002;7(31):660.CrossRef
[102]
Zurück zum Zitat Galembeck A, Alves O. BiVO4 thin film preparation by metalorganic decomposition. Thin Solid Films. 2000;365(1):90.CrossRef Galembeck A, Alves O. BiVO4 thin film preparation by metalorganic decomposition. Thin Solid Films. 2000;365(1):90.CrossRef
[103]
Zurück zum Zitat Abdi FF, Savenije TJ, May MM, Dam B, van de Krol R. The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J Phys Chem Lett. 2013;4(16):2752.CrossRef Abdi FF, Savenije TJ, May MM, Dam B, van de Krol R. The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J Phys Chem Lett. 2013;4(16):2752.CrossRef
[104]
Zurück zum Zitat Park HS, Kweon KE, Ye H, Paek E, Hwang GS, Bard AJ. Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. J Phys Chem C. 2011;115(36):17870.CrossRef Park HS, Kweon KE, Ye H, Paek E, Hwang GS, Bard AJ. Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. J Phys Chem C. 2011;115(36):17870.CrossRef
[105]
Zurück zum Zitat Chen F, Feng HF, Luo W, Wang P, Yu HG, Fan JJ. Simultaneous realization of direct photodeposition and high H2-production activity of amorphous cobalt sulfide nanodot-modified rGO/TiO2 photocatalyst. Rare Met. 2021;40(10):3125.CrossRef Chen F, Feng HF, Luo W, Wang P, Yu HG, Fan JJ. Simultaneous realization of direct photodeposition and high H2-production activity of amorphous cobalt sulfide nanodot-modified rGO/TiO2 photocatalyst. Rare Met. 2021;40(10):3125.CrossRef
[106]
Zurück zum Zitat Zhang Y, Zhao SM, Su QW, Xu JL. Visible light response ZnO–C3N4 thin film photocatalyst. Rare Met. 2021;40(6):96.CrossRef Zhang Y, Zhao SM, Su QW, Xu JL. Visible light response ZnO–C3N4 thin film photocatalyst. Rare Met. 2021;40(6):96.CrossRef
[107]
Zurück zum Zitat Berglund SP, Flaherty DW, Hahn NT, Bard AJ, Mullins CB. Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J Phys Chem C. 2011;115(9):3794.CrossRef Berglund SP, Flaherty DW, Hahn NT, Bard AJ, Mullins CB. Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J Phys Chem C. 2011;115(9):3794.CrossRef
[108]
Zurück zum Zitat He HC, Berglund SP, Rettie AJE, Chemelewski WD, Xiao P, Zhang YH, Mullins CB. Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation. J Mater Chem A. 2014;2(24):9371.CrossRef He HC, Berglund SP, Rettie AJE, Chemelewski WD, Xiao P, Zhang YH, Mullins CB. Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation. J Mater Chem A. 2014;2(24):9371.CrossRef
[109]
Zurück zum Zitat Wang SC, Chen P, Bai Y, Yun JH, Liu G, Wang LZ. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv Mater. 2018;30(20):1800486.CrossRef Wang SC, Chen P, Bai Y, Yun JH, Liu G, Wang LZ. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv Mater. 2018;30(20):1800486.CrossRef
[110]
Zurück zum Zitat Wu JM, Chen Y, Pan L, Wang PH, Cui Y, Kong DC, Wang L, Zhang XW, Zou JJ. Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications. Appl Catal B-Environ. 2018;221:187.CrossRef Wu JM, Chen Y, Pan L, Wang PH, Cui Y, Kong DC, Wang L, Zhang XW, Zou JJ. Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications. Appl Catal B-Environ. 2018;221:187.CrossRef
[111]
Zurück zum Zitat Jian J, Xu YX, Yang XK, Liu W, Fu MS, Yu HW, Xu F, Feng F, Jia LC, Friedrich D, van de Krol R, Wang HQ. Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting. Nat Commun. 2019;10(1):2609.CrossRef Jian J, Xu YX, Yang XK, Liu W, Fu MS, Yu HW, Xu F, Feng F, Jia LC, Friedrich D, van de Krol R, Wang HQ. Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting. Nat Commun. 2019;10(1):2609.CrossRef
[112]
Zurück zum Zitat Song J, Seo MJ, Lee TH, Jo YR, Lee J, Kim TL, Kim SY, Kim SM, Jeong SY, An H, Kim S, Lee BH, Lee D, Jang HW, Kim BJ, Lee S. Tailoring crystallographic orientations to substantially enhance charge separation efficiency in anisotropic BiVO4 photoanodes. ACS Catal. 2018;8(7):5952.CrossRef Song J, Seo MJ, Lee TH, Jo YR, Lee J, Kim TL, Kim SY, Kim SM, Jeong SY, An H, Kim S, Lee BH, Lee D, Jang HW, Kim BJ, Lee S. Tailoring crystallographic orientations to substantially enhance charge separation efficiency in anisotropic BiVO4 photoanodes. ACS Catal. 2018;8(7):5952.CrossRef
[113]
Zurück zum Zitat Han HS, Shin S, Kim DH, Park IJ, Kim JS, Huang PS, Lee JK, Cho IS, Zheng XL. Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energ Environ Sci. 2018;11(5):1299.CrossRef Han HS, Shin S, Kim DH, Park IJ, Kim JS, Huang PS, Lee JK, Cho IS, Zheng XL. Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energ Environ Sci. 2018;11(5):1299.CrossRef
[114]
Zurück zum Zitat Yang MJ, He HC, Liao AZ, Huang J, Tang Y, Wang J, Ke GL, Dong FQ, Yang L, Bian L, Zhou Y. Boosted water oxidation activity and kinetics on BiVO4 photoanodes with multihigh-index crystal facets. Inorg Chem. 2018;57(24):15280.CrossRef Yang MJ, He HC, Liao AZ, Huang J, Tang Y, Wang J, Ke GL, Dong FQ, Yang L, Bian L, Zhou Y. Boosted water oxidation activity and kinetics on BiVO4 photoanodes with multihigh-index crystal facets. Inorg Chem. 2018;57(24):15280.CrossRef
[115]
Zurück zum Zitat Luo W, Yang Z, Li Z, Zhang J, Liu J, Zhao Z, Wang Z, Yan S, Yu T, Zou Z. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energ Environ Sci. 2011;4(10):4046.CrossRef Luo W, Yang Z, Li Z, Zhang J, Liu J, Zhao Z, Wang Z, Yan S, Yu T, Zou Z. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energ Environ Sci. 2011;4(10):4046.CrossRef
[116]
Zurück zum Zitat Abdi FF, van de Krol R. Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J Phys Chem C. 2012;116(17):9398.CrossRef Abdi FF, van de Krol R. Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J Phys Chem C. 2012;116(17):9398.CrossRef
[117]
Zurück zum Zitat Kumar S, Satpati AK. Investigation of interfacial charge transfer kinetics of photocharged Co-Bi modified BiVO4 using scanning electrochemical microscopy (SECM). Electrochim Acta. 2021;368:137565.CrossRef Kumar S, Satpati AK. Investigation of interfacial charge transfer kinetics of photocharged Co-Bi modified BiVO4 using scanning electrochemical microscopy (SECM). Electrochim Acta. 2021;368:137565.CrossRef
[118]
Zurück zum Zitat Wang L, Zhang T, Su JZ, Guo LJ. Room-temperature photodeposition of conformal transition metal based cocatalysts on BiVO4 for enhanced photoelectrochemical water splitting. Nano Res. 2020;13(1):231.CrossRef Wang L, Zhang T, Su JZ, Guo LJ. Room-temperature photodeposition of conformal transition metal based cocatalysts on BiVO4 for enhanced photoelectrochemical water splitting. Nano Res. 2020;13(1):231.CrossRef
[119]
Zurück zum Zitat Lu XY, Ye KH, Zhang SQ, Zhang JN, Yang JD, Huang YC, Ji HB. Amorphous type FeOOH modified defective BiVO4 photoanodes for photoelectrochemical water oxidation. Chem Eng J. 2022;428(17):131027.CrossRef Lu XY, Ye KH, Zhang SQ, Zhang JN, Yang JD, Huang YC, Ji HB. Amorphous type FeOOH modified defective BiVO4 photoanodes for photoelectrochemical water oxidation. Chem Eng J. 2022;428(17):131027.CrossRef
[120]
Zurück zum Zitat Luo H, Liu CH, Xu Y, Zhang C, Wang WC, Chen ZD. An ultra-thin NiOOH layer loading on BiVO4 photoanode for highly efficient photoelectrochemical water oxidation. Int J Hydrogen Energ. 2019;44(57):30160.CrossRef Luo H, Liu CH, Xu Y, Zhang C, Wang WC, Chen ZD. An ultra-thin NiOOH layer loading on BiVO4 photoanode for highly efficient photoelectrochemical water oxidation. Int J Hydrogen Energ. 2019;44(57):30160.CrossRef
[121]
Zurück zum Zitat Kim TW, Choi KS. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science. 2014;343(6174):990.CrossRef Kim TW, Choi KS. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science. 2014;343(6174):990.CrossRef
[122]
Zurück zum Zitat Zhang K, Jin BJ, Park C, Cho Y, Song XF, Shi XJ, Zhang SL, Kim W, Zeng HB, Park JH. Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nat Commun. 2019;10(3):2001.CrossRef Zhang K, Jin BJ, Park C, Cho Y, Song XF, Shi XJ, Zhang SL, Kim W, Zeng HB, Park JH. Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nat Commun. 2019;10(3):2001.CrossRef
[123]
Zurück zum Zitat Pan JB, Wang BH, Wang JB, Ding HZ, Zhou W, Liu X, Zhang JR, Shen S, Guo JK, Chen L, Chak TA, Jiang L, Yin SF. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe–MOFs thin layer for water oxidation. Angew Chem Int Ed. 2021;60(3):1433.CrossRef Pan JB, Wang BH, Wang JB, Ding HZ, Zhou W, Liu X, Zhang JR, Shen S, Guo JK, Chen L, Chak TA, Jiang L, Yin SF. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe–MOFs thin layer for water oxidation. Angew Chem Int Ed. 2021;60(3):1433.CrossRef
[124]
Zurück zum Zitat Oropeza FE, Dzade N, Pons-Martí A, Yang ZN, Zhang KHL, Leeuw NH, Hensen EJM, Hofmann JP. Electronic structure and interface energetics of CuBi2O4 photoelectrodes. J Phys Chen C. 2020;124(41):22416.CrossRef Oropeza FE, Dzade N, Pons-Martí A, Yang ZN, Zhang KHL, Leeuw NH, Hensen EJM, Hofmann JP. Electronic structure and interface energetics of CuBi2O4 photoelectrodes. J Phys Chen C. 2020;124(41):22416.CrossRef
[125]
Zurück zum Zitat Berglund SP, Abdi FF, Bogdanoff P, Chemseddine A, Friedrich D, Krol R. Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chen Mater. 2016;28(12):4231.CrossRef Berglund SP, Abdi FF, Bogdanoff P, Chemseddine A, Friedrich D, Krol R. Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chen Mater. 2016;28(12):4231.CrossRef
[126]
Zurück zum Zitat Hahn NT, Holmberg VC, Korgel BA, Mullins CB. Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes. J Phys Chem C. 2012;116(10):6459.CrossRef Hahn NT, Holmberg VC, Korgel BA, Mullins CB. Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes. J Phys Chem C. 2012;116(10):6459.CrossRef
[127]
Zurück zum Zitat Berglund SP, Lee HC, Nńñez PD, Bard AJ, Mullins CB. Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution. Phys Chem Chem Phys. 2013;15(13):4554.CrossRef Berglund SP, Lee HC, Nńñez PD, Bard AJ, Mullins CB. Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution. Phys Chem Chem Phys. 2013;15(13):4554.CrossRef
[128]
Zurück zum Zitat Kang D, Hill JC, Park Y, Choi KS. Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-doped CuBi2O4 photocathodes. Chem Mater. 2016;28(12):4331.CrossRef Kang D, Hill JC, Park Y, Choi KS. Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-doped CuBi2O4 photocathodes. Chem Mater. 2016;28(12):4331.CrossRef
[129]
Zurück zum Zitat Wei SQ, Xu N, Li F, Long XF, Hu YP, Gao LL, Wang CL, Li SW, Ma JT, Jin J. Rationally designed heterojunction on a CuBi2O4 photocathode for improved activity and stability during photoelectrochemical water reduction. ChemCatChem. 2019;6(13):3367. Wei SQ, Xu N, Li F, Long XF, Hu YP, Gao LL, Wang CL, Li SW, Ma JT, Jin J. Rationally designed heterojunction on a CuBi2O4 photocathode for improved activity and stability during photoelectrochemical water reduction. ChemCatChem. 2019;6(13):3367.
[130]
Zurück zum Zitat Wang FX, Wilman S, Abdelkrim C, Fatwa FA, Dennis F, Peter B, Roel K, David T, Berglund SP. Gradient self-doped CuBi2O4 with highly improved charge separation efficiency. J Am Chem Soc. 2017;139(42):15094.CrossRef Wang FX, Wilman S, Abdelkrim C, Fatwa FA, Dennis F, Peter B, Roel K, David T, Berglund SP. Gradient self-doped CuBi2O4 with highly improved charge separation efficiency. J Am Chem Soc. 2017;139(42):15094.CrossRef
[131]
Zurück zum Zitat Mathieu SP, Nrévot G, Kevin S. Enhancing the performance of a robust sol-gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction. Chemsuschem. 2015;8(8):1359.CrossRef Mathieu SP, Nrévot G, Kevin S. Enhancing the performance of a robust sol-gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction. Chemsuschem. 2015;8(8):1359.CrossRef
[132]
Zurück zum Zitat Shintaro I, Keisuke Y, Takuya M, Hidehisa H, Yasumichi M, Tatsumi I. Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. J Am Chem Soc. 2010;132(49):17343.CrossRef Shintaro I, Keisuke Y, Takuya M, Hidehisa H, Yasumichi M, Tatsumi I. Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. J Am Chem Soc. 2010;132(49):17343.CrossRef
[133]
Zurück zum Zitat Rekhila G, Bessekhouad Y, Trari M. Visible light hydrogen production on the novel ferrite NiFe2O4. Int J Hydrogen Energ. 2013;38(15):6335.CrossRef Rekhila G, Bessekhouad Y, Trari M. Visible light hydrogen production on the novel ferrite NiFe2O4. Int J Hydrogen Energ. 2013;38(15):6335.CrossRef
[134]
Zurück zum Zitat Trari M, Bouguelia A, Bessekhouad Y. p-type CuYO2 as hydrogen photocathode. Sol Energ Mat Sol C. 2006;90(2):190.CrossRef Trari M, Bouguelia A, Bessekhouad Y. p-type CuYO2 as hydrogen photocathode. Sol Energ Mat Sol C. 2006;90(2):190.CrossRef
[135]
Zurück zum Zitat Saadi S, Bouguelia A, Trari M. Photocatalytic hydrogen evolution over CuCrO2. Sol Energy. 2006;80(3):272.CrossRef Saadi S, Bouguelia A, Trari M. Photocatalytic hydrogen evolution over CuCrO2. Sol Energy. 2006;80(3):272.CrossRef
[136]
Zurück zum Zitat Koriche N, Bouguelia A, Aider A, Trari M. Photocatalytic hydrogen evolution over delafossite CuAlO2. Int J Hydrogen Energ. 2015;8(8):1359. Koriche N, Bouguelia A, Aider A, Trari M. Photocatalytic hydrogen evolution over delafossite CuAlO2. Int J Hydrogen Energ. 2015;8(8):1359.
[137]
Zurück zum Zitat Isaac HC, Francisco FS, Adèle R, Beatriz JL, Fabrice O, Laurent C, Stéphane J, Sixto G. Hole conductivity and acceptor density of p-type CuGaO2 nanoparticles determined by impedance spectroscopy: the effect of Mg doping. Electrochim Acta. 2013;113:570.CrossRef Isaac HC, Francisco FS, Adèle R, Beatriz JL, Fabrice O, Laurent C, Stéphane J, Sixto G. Hole conductivity and acceptor density of p-type CuGaO2 nanoparticles determined by impedance spectroscopy: the effect of Mg doping. Electrochim Acta. 2013;113:570.CrossRef
[138]
Zurück zum Zitat Gu J, Yan Y, Jason WK, Quinn DG, Zachary MD, Robert JC, Andrew BB. p-type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. J Am Chem Soc. 2014;136(3):830.CrossRef Gu J, Yan Y, Jason WK, Quinn DG, Zachary MD, Robert JC, Andrew BB. p-type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. J Am Chem Soc. 2014;136(3):830.CrossRef
[139]
Zurück zum Zitat Joshi UA, Palasyuk A, Maggard PA. Photoelectrochemical investigation and electronic structure of a p-type CuNbO3 photocathode. J Phys Chem C. 2011;115(27):13534.CrossRef Joshi UA, Palasyuk A, Maggard PA. Photoelectrochemical investigation and electronic structure of a p-type CuNbO3 photocathode. J Phys Chem C. 2011;115(27):13534.CrossRef
[140]
Zurück zum Zitat Bellal B, Hadjarab B, Benreguia N, Bessekhouad Y, Trari M. Photoelectrochemical characterization of the synthetic crednerite CuMnO2. J Appl Electrochem. 2011;41(7):867.CrossRef Bellal B, Hadjarab B, Benreguia N, Bessekhouad Y, Trari M. Photoelectrochemical characterization of the synthetic crednerite CuMnO2. J Appl Electrochem. 2011;41(7):867.CrossRef
[141]
Zurück zum Zitat Park JE, Hu Y, Krizan JW, Gibson QD, Tayvah UT, Selloni A, Cava RJ, Bocarsly AB. Stable hydrogen evolution from an AgRhO2 photocathode under visible light. Chem Mater. 2018;30(8):2574.CrossRef Park JE, Hu Y, Krizan JW, Gibson QD, Tayvah UT, Selloni A, Cava RJ, Bocarsly AB. Stable hydrogen evolution from an AgRhO2 photocathode under visible light. Chem Mater. 2018;30(8):2574.CrossRef
[142]
Zurück zum Zitat Nam KM, Park HS, Lee HC, Meekins BH, Leonard KC, Bard AJ. Compositional screening of the Pb–Bi–Mo–O system. Spontaneous formation of a composite of p-PbMoO4 and n-Bi2O3 with improved photoelectrochemical efficiency and stability. J Phys Chem Lett. 2013;4(16):2707.CrossRef Nam KM, Park HS, Lee HC, Meekins BH, Leonard KC, Bard AJ. Compositional screening of the Pb–Bi–Mo–O system. Spontaneous formation of a composite of p-PbMoO4 and n-Bi2O3 with improved photoelectrochemical efficiency and stability. J Phys Chem Lett. 2013;4(16):2707.CrossRef
[143]
Zurück zum Zitat Gottesman R, Song A, Levine I, Krause M, Islam ATMN, Daniel AR, Dittrich T, Krol R, Chemseddine A. Pure CuBi2O4 photoelectrodes with increased stability by rapid thermal processing of Bi2O3/CuO grown by pulsed laser deposition. Adv Funct Mater. 2020;21(30):1910832.CrossRef Gottesman R, Song A, Levine I, Krause M, Islam ATMN, Daniel AR, Dittrich T, Krol R, Chemseddine A. Pure CuBi2O4 photoelectrodes with increased stability by rapid thermal processing of Bi2O3/CuO grown by pulsed laser deposition. Adv Funct Mater. 2020;21(30):1910832.CrossRef
[144]
Zurück zum Zitat Zhua XL, Guan ZH, Wang P, Zhang QQ, Dai Y, Huang BB. Amorphous TiO2-modified CuBi2O4 photocathode with enhanced photoelectrochemical hydrogen production activity. Chin J Catal. 2018;39(10):1704.CrossRef Zhua XL, Guan ZH, Wang P, Zhang QQ, Dai Y, Huang BB. Amorphous TiO2-modified CuBi2O4 photocathode with enhanced photoelectrochemical hydrogen production activity. Chin J Catal. 2018;39(10):1704.CrossRef
[145]
Zurück zum Zitat Zhang Q, Zhai BW, Lin Z, Zhao XQ, Diao P. Dendritic CuBi2O4 array photocathode coated with conformal TiO2 protection layer for efficient and stable photoelectrochemical hydrogen evolution reaction. J Phys Chem C. 2021;125(3):1890.CrossRef Zhang Q, Zhai BW, Lin Z, Zhao XQ, Diao P. Dendritic CuBi2O4 array photocathode coated with conformal TiO2 protection layer for efficient and stable photoelectrochemical hydrogen evolution reaction. J Phys Chem C. 2021;125(3):1890.CrossRef
[146]
Zurück zum Zitat Lee J, Yoon H, Kim S, Seo S, Song J, Choi BU, Choi SY, Park H, Ryu S, Jihun O, Lee S. Long-term stabilized high-density CuBi2O4/NiO heterostructure thin film photocathode grown by pulsed laser deposition. Chem Commun. 2019;55(83):12447.CrossRef Lee J, Yoon H, Kim S, Seo S, Song J, Choi BU, Choi SY, Park H, Ryu S, Jihun O, Lee S. Long-term stabilized high-density CuBi2O4/NiO heterostructure thin film photocathode grown by pulsed laser deposition. Chem Commun. 2019;55(83):12447.CrossRef
[147]
Zurück zum Zitat Supriya P, Nikhila B, Govind U, Praveen M. CuO/CuBi2O4 heterojunction photocathode: high stability and current densities for solar water splitting. J Catal. 2020;387:17.CrossRef Supriya P, Nikhila B, Govind U, Praveen M. CuO/CuBi2O4 heterojunction photocathode: high stability and current densities for solar water splitting. J Catal. 2020;387:17.CrossRef
[148]
Zurück zum Zitat Cha HG, Choi KS. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat Chem. 2015;7(4):328.CrossRef Cha HG, Choi KS. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat Chem. 2015;7(4):328.CrossRef
[149]
Zurück zum Zitat He HC, Du JY, Wu B, Duan XH, Zhou Y, Ke GL, Huo TT, Ren Q, Bian L, Dong FQ. Photoelectrochemical driving and clean synthesis of energetic salts of 5,5′-azotetrazolate at room temperature. Green Chem. 2018;20(16):3722.CrossRef He HC, Du JY, Wu B, Duan XH, Zhou Y, Ke GL, Huo TT, Ren Q, Bian L, Dong FQ. Photoelectrochemical driving and clean synthesis of energetic salts of 5,5′-azotetrazolate at room temperature. Green Chem. 2018;20(16):3722.CrossRef
[150]
Zurück zum Zitat Tang Y, Wu B, He HC, Fu C, Wang J, Liu K, Ke GL, Zhou Y. Photoelectrochemical driving and simultaneous synthesis of 3-pyridinecarboxylic acid and hydrogen in WO3 photoanode-based cell. J Electrochem Soc. 2019;166(13):H662.CrossRef Tang Y, Wu B, He HC, Fu C, Wang J, Liu K, Ke GL, Zhou Y. Photoelectrochemical driving and simultaneous synthesis of 3-pyridinecarboxylic acid and hydrogen in WO3 photoanode-based cell. J Electrochem Soc. 2019;166(13):H662.CrossRef
[151]
Zurück zum Zitat Huang J, Liao AZ, Yang DM, Wang J, Wu B, Ke GL, Yao WQ, Zhou Y, He HC. Magnetic field improved photoelectrochemical synthesis of 5,5′-azotetrazolate energetic salts and hydrogen in a hematite photoanode-based cell. Electrochim Acta. 2020;330:135217.CrossRef Huang J, Liao AZ, Yang DM, Wang J, Wu B, Ke GL, Yao WQ, Zhou Y, He HC. Magnetic field improved photoelectrochemical synthesis of 5,5′-azotetrazolate energetic salts and hydrogen in a hematite photoanode-based cell. Electrochim Acta. 2020;330:135217.CrossRef
[152]
Zurück zum Zitat Yang Q, Du JY, Nie XQ, Yang DM, Bian L, Yang L, Dong FQ, He HC, Zhou Y, Yang HM. Magnetic field-assisted photoelectrochemical water splitting: the photoelectrodes have weaker nonradiative recombination of carrier. ACS Catal. 2021;11(3):1242.CrossRef Yang Q, Du JY, Nie XQ, Yang DM, Bian L, Yang L, Dong FQ, He HC, Zhou Y, Yang HM. Magnetic field-assisted photoelectrochemical water splitting: the photoelectrodes have weaker nonradiative recombination of carrier. ACS Catal. 2021;11(3):1242.CrossRef
[153]
Zurück zum Zitat He B, Jia SR, Zhao MY, Wang Y, Chen T, Zhao SQ, Li Zhen, Lin ZQ, Zhao YL, Liu XQ. General and robust photothermal heating enabled high efficiency photoelectrochemical water splitting. Adv Mater. 2021;33(16):2004406.CrossRef He B, Jia SR, Zhao MY, Wang Y, Chen T, Zhao SQ, Li Zhen, Lin ZQ, Zhao YL, Liu XQ. General and robust photothermal heating enabled high efficiency photoelectrochemical water splitting. Adv Mater. 2021;33(16):2004406.CrossRef
[154]
Zurück zum Zitat Miyase Y, Takasugi S, Iguchi S, Miseki Y, Gunji T, Sasaki K, Fujita E, Sayama K. Modification of BiVO4/WO3 composite photoelectrodes with Al2O3 via chemical vapor deposition for highly efficient oxidative H2O2 production from H2O. Sustain Energ Fuels. 2018;2(7):1621.CrossRef Miyase Y, Takasugi S, Iguchi S, Miseki Y, Gunji T, Sasaki K, Fujita E, Sayama K. Modification of BiVO4/WO3 composite photoelectrodes with Al2O3 via chemical vapor deposition for highly efficient oxidative H2O2 production from H2O. Sustain Energ Fuels. 2018;2(7):1621.CrossRef
[155]
Zurück zum Zitat Zhang K, Lu Y, Zou QQ, Jin J, Cho Y, Wang YQ, Zhang Y, Park JH. Tuning selectivity of photoelectrochemical water oxidation via facet-engineered interfacial energetics. ACS Energy Lett. 2021;6(11):4071.CrossRef Zhang K, Lu Y, Zou QQ, Jin J, Cho Y, Wang YQ, Zhang Y, Park JH. Tuning selectivity of photoelectrochemical water oxidation via facet-engineered interfacial energetics. ACS Energy Lett. 2021;6(11):4071.CrossRef
Metadaten
Titel
State-of-the-art advancements of transition metal oxides as photoelectrode materials for solar water splitting
verfasst von
Gai-Li Ke
Bi Jia
Hui-Chao He
Yong Zhou
Ming Zhou
Publikationsdatum
06.04.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 7/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-022-01968-5

Weitere Artikel der Ausgabe 7/2022

Rare Metals 7/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.