Skip to main content
Erschienen in: Environmental Earth Sciences 11/2015

01.06.2015 | Thematic Issue

An improved Maxwell creep model for rock based on variable-order fractional derivatives

verfasst von: Fei Wu, Jian Feng Liu, Jun Wang

Erschienen in: Environmental Earth Sciences | Ausgabe 11/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For describing the time-dependent mechanical property of rock during the creep, a new method of building creep model based on variable-order fractional derivatives is proposed. The order of the fractional derivative is allowed to be a function of the independent variable (time), rather than a constant of arbitrary order. Through the segmentation treatment, according to different creep stages of the experimental results, it is found that the improved creep model based on variable-order fractional derivatives agrees well with the experimental data. In addition, the fact is verified that variable order of fractional derivatives can be regarded as a step function, which is reasonable and reliable. In addition, through further piecewise fitting, the parameters in the model are determined on the basis of existing experimental results. All estimated results show that the theoretical model proposed in the paper properly depicts the creep properties, providing an excellent agreement with the experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27:201–210CrossRef Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27:201–210CrossRef
Zurück zum Zitat Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30:133–155CrossRef Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30:133–155CrossRef
Zurück zum Zitat Chan KS, Bodner SR, Fossum AF, Munson DE (1997) A damage mechanics treatment of creep failure in rock salt. Int J Damage Mech 6:121–152CrossRef Chan KS, Bodner SR, Fossum AF, Munson DE (1997) A damage mechanics treatment of creep failure in rock salt. Int J Damage Mech 6:121–152CrossRef
Zurück zum Zitat Chen BR, Zhao XJ, Feng XT, Zhao HB, Wang SY (2014) Time-dependent damage constitutive model for the marble in the Jinping II hydropower station in China. Bull Eng Geol Environ 73:499–515CrossRef Chen BR, Zhao XJ, Feng XT, Zhao HB, Wang SY (2014) Time-dependent damage constitutive model for the marble in the Jinping II hydropower station in China. Bull Eng Geol Environ 73:499–515CrossRef
Zurück zum Zitat Fabre G, Pellet F (2006) Creep and time-dependent damage in argillaceous rocks. Int J Rock Mech Min Sci 43:950–960CrossRef Fabre G, Pellet F (2006) Creep and time-dependent damage in argillaceous rocks. Int J Rock Mech Min Sci 43:950–960CrossRef
Zurück zum Zitat Hou Z, Wundram L, Meyer R, Schmidt M, Schmitz S, Were P (2012) Development of a long-term wellbore sealing concept based on numerical simulations and in situ-testing in the Altmark natural gas field. Environ Earth Sci 67:395–409CrossRef Hou Z, Wundram L, Meyer R, Schmidt M, Schmitz S, Were P (2012) Development of a long-term wellbore sealing concept based on numerical simulations and in situ-testing in the Altmark natural gas field. Environ Earth Sci 67:395–409CrossRef
Zurück zum Zitat Koeller RC (1984) Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech 51:299–307CrossRef Koeller RC (1984) Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech 51:299–307CrossRef
Zurück zum Zitat Munson DE (1997) Constitutive model of creep in rock salt applied to underground room closure. Int J Rock Mech Min Sci 34:233–247CrossRef Munson DE (1997) Constitutive model of creep in rock salt applied to underground room closure. Int J Rock Mech Min Sci 34:233–247CrossRef
Zurück zum Zitat Podlubny I (1999) Fractional Differential Equations. Academic Press, London E2 Podlubny I (1999) Fractional Differential Equations. Academic Press, London E2
Zurück zum Zitat Ramirez LES, Coimbra CFM (2007) A variable order constitutive relation for viscoelasticity. Ann Phys 16:543–552CrossRef Ramirez LES, Coimbra CFM (2007) A variable order constitutive relation for viscoelasticity. Ann Phys 16:543–552CrossRef
Zurück zum Zitat Smit W, De Vries H (1970) Rheological models containing fractional derivatives. Rheol Acta 9:525–534CrossRef Smit W, De Vries H (1970) Rheological models containing fractional derivatives. Rheol Acta 9:525–534CrossRef
Zurück zum Zitat Wang G (2004) A new constitutive creep-damage model for salt rock and its characteristics. Int J Rock Mech Min Sci 41:61–67CrossRef Wang G (2004) A new constitutive creep-damage model for salt rock and its characteristics. Int J Rock Mech Min Sci 41:61–67CrossRef
Zurück zum Zitat Wang J, Zou B, Liu Y, Tang Y, Zhang X, Yang P (2014) Erosion-creep-collapse mechanism of underground soil loss for the karst rocky desertification in Chenqi village, Puding county, Guizhou, China. Environ Earth Sci 72:2751–2764CrossRef Wang J, Zou B, Liu Y, Tang Y, Zhang X, Yang P (2014) Erosion-creep-collapse mechanism of underground soil loss for the karst rocky desertification in Chenqi village, Puding county, Guizhou, China. Environ Earth Sci 72:2751–2764CrossRef
Zurück zum Zitat Welch SWJ, Rorrer RAL, Duren JRG (1999) Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech Time Depend Mater 3:279–303CrossRef Welch SWJ, Rorrer RAL, Duren JRG (1999) Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech Time Depend Mater 3:279–303CrossRef
Zurück zum Zitat Wu X, Jiang XW, Chen YF, Tian H, Xu NX (2009) The influences of mining subsidence on the ecological environment and public infrastructure: a case study at the Haolaigou iron ore mine in Baotou, China. Environ Earth Sci 59:803–810CrossRef Wu X, Jiang XW, Chen YF, Tian H, Xu NX (2009) The influences of mining subsidence on the ecological environment and public infrastructure: a case study at the Haolaigou iron ore mine in Baotou, China. Environ Earth Sci 59:803–810CrossRef
Zurück zum Zitat Wu Q, Niu F, Ma W, Liu Y (2014) The effect of permafrost changes on embankment stability along the Qinghai-Xizang Railway. Environ Earth Sci 71:3321–3328CrossRef Wu Q, Niu F, Ma W, Liu Y (2014) The effect of permafrost changes on embankment stability along the Qinghai-Xizang Railway. Environ Earth Sci 71:3321–3328CrossRef
Zurück zum Zitat Xu B, Yan C, Lu Q, He D (2014a) Stability assessment of Jinlong village landslide, Sichuan. Environ Earth Sci 71:3049–3061CrossRef Xu B, Yan C, Lu Q, He D (2014a) Stability assessment of Jinlong village landslide, Sichuan. Environ Earth Sci 71:3049–3061CrossRef
Zurück zum Zitat Xu T, Xu Q, Deng M, Ma T, Yang T, Tang CA (2014b) A numerical analysis of rock creep-induced slide: a case study from Jiweishan Mountain, China. Environ Earth Sci 72:2111–2128CrossRef Xu T, Xu Q, Deng M, Ma T, Yang T, Tang CA (2014b) A numerical analysis of rock creep-induced slide: a case study from Jiweishan Mountain, China. Environ Earth Sci 72:2111–2128CrossRef
Zurück zum Zitat Yang CH, Daemen JJK, Yin JH (1999) Experimental investigation of creep behavior of salt rock. Int J Rock Mech Min Sci 36:233–242CrossRef Yang CH, Daemen JJK, Yin JH (1999) Experimental investigation of creep behavior of salt rock. Int J Rock Mech Min Sci 36:233–242CrossRef
Zurück zum Zitat Yin D, Zhang W, Cheng C, Li Y (2012) Fractional time-dependent Bingham model for muddy clay. J Non Newton Fluid Mech 187:32–35CrossRef Yin D, Zhang W, Cheng C, Li Y (2012) Fractional time-dependent Bingham model for muddy clay. J Non Newton Fluid Mech 187:32–35CrossRef
Zurück zum Zitat Zhou H, Jia Y, Shao JF (2008) A unified elastic–plastic and viscoplastic damage model for quasi-brittle rocks. Int J Rock Mech Min Sci 45:1237–1251CrossRef Zhou H, Jia Y, Shao JF (2008) A unified elastic–plastic and viscoplastic damage model for quasi-brittle rocks. Int J Rock Mech Min Sci 45:1237–1251CrossRef
Zurück zum Zitat Zhou HW, Wang CP, Han BB, Duan ZQ (2011) A creep constitutive model for salt rock based on fractional derivatives. Int J Rock Mech Min Sci 48:116–121CrossRef Zhou HW, Wang CP, Han BB, Duan ZQ (2011) A creep constitutive model for salt rock based on fractional derivatives. Int J Rock Mech Min Sci 48:116–121CrossRef
Zurück zum Zitat Zhou HW, Wang CP, Mishnaevsky L Jr, Duan ZQ, Ding JY (2013) A fractional derivative approach to full creep regions in salt rock. Mech Time Depend Mater 17:413–425CrossRef Zhou HW, Wang CP, Mishnaevsky L Jr, Duan ZQ, Ding JY (2013) A fractional derivative approach to full creep regions in salt rock. Mech Time Depend Mater 17:413–425CrossRef
Metadaten
Titel
An improved Maxwell creep model for rock based on variable-order fractional derivatives
verfasst von
Fei Wu
Jian Feng Liu
Jun Wang
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 11/2015
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-015-4137-9

Weitere Artikel der Ausgabe 11/2015

Environmental Earth Sciences 11/2015 Zur Ausgabe