Skip to main content
Erschienen in: International Journal of Steel Structures 5/2020

09.09.2020

Modeling and Dynamic Response of Curved Steel–Concrete–Steel Sandwich Shells Under Blast Loading

verfasst von: Lingzhao Meng, Yonghui Wang, Ximei Zhai

Erschienen in: International Journal of Steel Structures | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The steel–concrete–steel sandwich structures are usually composed of concrete core and face steel plates. This paper presented the dynamic response of the curved steel–concrete–steel (SCS) sandwich shells subjected to blast loading. The bolts were employed to connect the face steel plates and the concrete. Numerical model was established based on LS-DYNA and the accuracy of the modelling method was verified against existing blast test. The displacement histories, damage of concrete and energy absorption capability of the shell were obtained from the numerical calculations and discussed. Different failure modes of the curved SCS sandwich shell under various loads were obtained from numerical results, i.e., local deformation of the shell for the case of close-in detonations and buckling of steel plates for the case of far-field detonations. It was noted that the concrete debris can be restrained by the face steel plates with good ductility. Numerical results showed that the energy absorption from concrete is higher under close-in detonations on the ground. The effects of charge weight, steel plate thickness, concrete thickness and rise height on the dynamic response of curved SCS sandwich shells were also analyzed and discussed in detail. The curved SCS sandwich shell with thicker back steel plate showed better blast resistant performance. Moreover, the damage of curved shell was more serious if the rise height to span ratio (Rr-s) is beyond the range of 0.16–0.25.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat ASCE. (2010). Design of blast-resistant buildings in petrochemical facilities. Virginia: American Society of Civil Engineers. ASCE. (2010). Design of blast-resistant buildings in petrochemical facilities. Virginia: American Society of Civil Engineers.
Zurück zum Zitat ASCE. (2011). Blast protection of buildings. ASCE/SEI59-11. Virginia: American Society of Civil Engineers. ASCE. (2011). Blast protection of buildings. ASCE/SEI59-11. Virginia: American Society of Civil Engineers.
Zurück zum Zitat Biggs, J. M. (1964). Introduction to structural dynamics. New York: McGraw-Hill College. Biggs, J. M. (1964). Introduction to structural dynamics. New York: McGraw-Hill College.
Zurück zum Zitat Bowerman, H., & Pryer, J. (1998). Advantages of British steel Bi-steel in immersed tunnel construction. In Proceedings of the IABSE colloquium held Stockholm (p. 78). Bowerman, H., & Pryer, J. (1998). Advantages of British steel Bi-steel in immersed tunnel construction. In Proceedings of the IABSE colloquium held Stockholm (p. 78).
Zurück zum Zitat Chen, W., & Hao, H. (2012). Numerical study of a new multi-arch double-layered blast-resistance door panel. International Journal of Impact Engineering, 43, 16–28. Chen, W., & Hao, H. (2012). Numerical study of a new multi-arch double-layered blast-resistance door panel. International Journal of Impact Engineering, 43, 16–28.
Zurück zum Zitat Chen, G., Zhang, P., Liu, J., Cheng, Y., & Wang, H. (2019). Experimental and numerical analyses on the dynamic response of aluminum foam core sandwich panels subjected to localized air blast loading. Marine Structures, 65, 343–361. Chen, G., Zhang, P., Liu, J., Cheng, Y., & Wang, H. (2019). Experimental and numerical analyses on the dynamic response of aluminum foam core sandwich panels subjected to localized air blast loading. Marine Structures, 65, 343–361.
Zurück zum Zitat Chiquito, M., López, L. M., Castedo, R., Pérez-Caldentey, A., & Santos, A. P. (2019). Behaviour of retrofitted masonry walls subjected to blast loading: Damage assessment. Engineering Structures, 201, 109805. Chiquito, M., López, L. M., Castedo, R., Pérez-Caldentey, A., & Santos, A. P. (2019). Behaviour of retrofitted masonry walls subjected to blast loading: Damage assessment. Engineering Structures, 201, 109805.
Zurück zum Zitat Choi, E., Chae, S. W., Park, H., Nam, T. H., Mohammadzadeh, B., & Wang, J. H. (2018a). Investigating self-centering capacity of superelastic SMA fibers with different anchorage through pullout tests. Journal of Nanoscience and Nanotechnology, 18, 6228–6232. Choi, E., Chae, S. W., Park, H., Nam, T. H., Mohammadzadeh, B., & Wang, J. H. (2018a). Investigating self-centering capacity of superelastic SMA fibers with different anchorage through pullout tests. Journal of Nanoscience and Nanotechnology, 18, 6228–6232.
Zurück zum Zitat Choi, E., Mohammadzadeh, B., & Kim, H. S. (2018b). SMA bending bars as self-centering and damping devices. Smart Materials and Structures, 28, 025029. Choi, E., Mohammadzadeh, B., & Kim, H. S. (2018b). SMA bending bars as self-centering and damping devices. Smart Materials and Structures, 28, 025029.
Zurück zum Zitat Choi, E., Mohammadzadeh, B., Kim, D., & Joen, J. S. (2018c). A new experimental investigation into the effects of reinforcing mortar beams with superelastic SMA fibers on controlling and closing cracks. Composites Part B Engineering, 137, 140–152. Choi, E., Mohammadzadeh, B., Kim, D., & Joen, J. S. (2018c). A new experimental investigation into the effects of reinforcing mortar beams with superelastic SMA fibers on controlling and closing cracks. Composites Part B Engineering, 137, 140–152.
Zurück zum Zitat Choi, E., Mohammadzadeh, B., Wang, J. H., & Kim, W. J. (2018d). Pullout behavior of superelastic SMA fibers with various end-shapes embedded in cement mortar. Construction and Building Materials, 167, 605–616. Choi, E., Mohammadzadeh, B., Wang, J. H., & Kim, W. J. (2018d). Pullout behavior of superelastic SMA fibers with various end-shapes embedded in cement mortar. Construction and Building Materials, 167, 605–616.
Zurück zum Zitat Davidson, J. S., Fisher, J. W., Hammons, M. I., Porter, J. R., & Dinan, R. J. (2005). Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast. Journal of Structural Engineering, 131(8), 1194–1205. Davidson, J. S., Fisher, J. W., Hammons, M. I., Porter, J. R., & Dinan, R. J. (2005). Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast. Journal of Structural Engineering, 131(8), 1194–1205.
Zurück zum Zitat Davidson, J. S., Porter, J. R., Dinan, R. J., Hammons, M. I., & Connell, J. D. (2004). Explosive testing of polymer retrofit masonry walls. Journal of Performance of Constructed Facilities, 18(2), 100–106. Davidson, J. S., Porter, J. R., Dinan, R. J., Hammons, M. I., & Connell, J. D. (2004). Explosive testing of polymer retrofit masonry walls. Journal of Performance of Constructed Facilities, 18(2), 100–106.
Zurück zum Zitat Dennis, S. T., Baylot, J. T., & Woodson, S. C. (2002). Response of 1/4 scale concrete masonry unit (CMU) walls to blast. Journal of Engineering Mechanics, 128(2), 134–142. Dennis, S. T., Baylot, J. T., & Woodson, S. C. (2002). Response of 1/4 scale concrete masonry unit (CMU) walls to blast. Journal of Engineering Mechanics, 128(2), 134–142.
Zurück zum Zitat Goode, C. D., & Shukry, E. D. (1988). Effect of damage on composite cylinders subjected to external pressure. ACI Structural Journal, 85(4), 405–413. Goode, C. D., & Shukry, E. D. (1988). Effect of damage on composite cylinders subjected to external pressure. ACI Structural Journal, 85(4), 405–413.
Zurück zum Zitat Huang, Z., & Liew, J. Y. R. (2016). Steel–concrete–steel sandwich composite structures subjected to extreme loads. International Journal of Steel Structures, 124, 142–162. Huang, Z., & Liew, J. Y. R. (2016). Steel–concrete–steel sandwich composite structures subjected to extreme loads. International Journal of Steel Structures, 124, 142–162.
Zurück zum Zitat Jones, N. (1988). Structural impact. Cambridge: Cambridge University Press. Jones, N. (1988). Structural impact. Cambridge: Cambridge University Press.
Zurück zum Zitat Kang, K. W. (2012). Blast resistance of steel–concrete composite structures. Ph.D. thesis, Department of Civil & Environmental Engineering, National University of Singapore, Singapore. Kang, K. W. (2012). Blast resistance of steel–concrete composite structures. Ph.D. thesis, Department of Civil & Environmental Engineering, National University of Singapore, Singapore.
Zurück zum Zitat Kim, S., & Lee, J. (2015). Blast resistant performance of bolt connections in the earth covered steel magazine. International Journal of Steel Structures, 15(2), 507–514. Kim, S., & Lee, J. (2015). Blast resistant performance of bolt connections in the earth covered steel magazine. International Journal of Steel Structures, 15(2), 507–514.
Zurück zum Zitat Krauthammer, T., Assadi-Lamouki, A., & Shanaa, H. M. (1993). Analysis of impulsively loaded reinforced concrete structural elements—I. Theory. Computers & Structures, 48(5), 851–860. Krauthammer, T., Assadi-Lamouki, A., & Shanaa, H. M. (1993). Analysis of impulsively loaded reinforced concrete structural elements—I. Theory. Computers & Structures, 48(5), 851–860.
Zurück zum Zitat Kumar, V., Kartik, K. V., & Iqbal, M. A. (2020). Experimental and numerical investigation of reinforced concrete slabs under blast loading. Engineering Structures, 206, 110125. Kumar, V., Kartik, K. V., & Iqbal, M. A. (2020). Experimental and numerical investigation of reinforced concrete slabs under blast loading. Engineering Structures, 206, 110125.
Zurück zum Zitat Kyei, C., & Braimah, A. (2017). Effects of transverse reinforcement spacing on the response of reinforced concrete columns subjected to blast loading. Engineering Structures, 142, 148–164. Kyei, C., & Braimah, A. (2017). Effects of transverse reinforcement spacing on the response of reinforced concrete columns subjected to blast loading. Engineering Structures, 142, 148–164.
Zurück zum Zitat Langdon, G. S., Karagiozova, D., von Klemperer, C. J., Nurick, G. N., Ozinsky, A., & Pickering, E. G. (2013). The air-blast response of sandwich panels with composite face sheets and polymer foam cores: Experiments and predictions. International Journal of Impact Engineering, 54, 64–82. Langdon, G. S., Karagiozova, D., von Klemperer, C. J., Nurick, G. N., Ozinsky, A., & Pickering, E. G. (2013). The air-blast response of sandwich panels with composite face sheets and polymer foam cores: Experiments and predictions. International Journal of Impact Engineering, 54, 64–82.
Zurück zum Zitat Langdon, G. S., & Schleyer, G. K. (2005). Inelastic deformation and failure of profiled stainless steel blast wall panels. Part I: Experimental investigations. International Journal of Impact Engineering, 31(4), 341–369. Langdon, G. S., & Schleyer, G. K. (2005). Inelastic deformation and failure of profiled stainless steel blast wall panels. Part I: Experimental investigations. International Journal of Impact Engineering, 31(4), 341–369.
Zurück zum Zitat Langdon, G. S., & Schleyer, G. K. (2006). Deformation and failure of profiled stainless steel blast wall panels. Part III: Finite element simulations and overall summary. International Journal of Impact Engineering, 32, 988–1012. Langdon, G. S., & Schleyer, G. K. (2006). Deformation and failure of profiled stainless steel blast wall panels. Part III: Finite element simulations and overall summary. International Journal of Impact Engineering, 32, 988–1012.
Zurück zum Zitat Liew, J. Y. R., & Sohel, K. M. A. (2009). Lightweight steel–concrete–steel sandwich system with J-hook connectors. Engineering Structures, 31(5), 1166–1178. Liew, J. Y. R., & Sohel, K. M. A. (2009). Lightweight steel–concrete–steel sandwich system with J-hook connectors. Engineering Structures, 31(5), 1166–1178.
Zurück zum Zitat Liew, J. Y. R., Sohel, K. M. A., & Koh, C. G. (2009). Impact tests on steel–concrete–steel sandwich beams with lightweight concrete core. Engineering Structures, 31(9), 2045–2059. Liew, J. Y. R., Sohel, K. M. A., & Koh, C. G. (2009). Impact tests on steel–concrete–steel sandwich beams with lightweight concrete core. Engineering Structures, 31(9), 2045–2059.
Zurück zum Zitat Liew, J. Y. R., & Wang, T. Y. (2011). Novel steel–concrete–steel sandwich composite plates subject to impact and blast load. Advances in Structural Engineering, 14(4), 673–688. Liew, J. Y. R., & Wang, T. Y. (2011). Novel steel–concrete–steel sandwich composite plates subject to impact and blast load. Advances in Structural Engineering, 14(4), 673–688.
Zurück zum Zitat Louca, L. A., Boh, J. W., & Choo, Y. S. (2004). Design and analysis of stainless steel profiled blast barriers. Journal of Constructional Steel Research, 60, 1699–1723. Louca, L. A., Boh, J. W., & Choo, Y. S. (2004). Design and analysis of stainless steel profiled blast barriers. Journal of Constructional Steel Research, 60, 1699–1723.
Zurück zum Zitat LSTC. (2013). LSDYNA keyword user’s manual. Livermore: Livermore Software Technology Corporation. LSTC. (2013). LSDYNA keyword user’s manual. Livermore: Livermore Software Technology Corporation.
Zurück zum Zitat Malek, N., Machida, A., Mutsuyoshi, H., & Makabe, T. (1993). steel–concrete sandwich members without shear reinforcement. Transactions of Japan Concrete Institute, 15(2), 1279–1284. Malek, N., Machida, A., Mutsuyoshi, H., & Makabe, T. (1993). steel–concrete sandwich members without shear reinforcement. Transactions of Japan Concrete Institute, 15(2), 1279–1284.
Zurück zum Zitat Mohammadzadeh, B., Bina, M., & Hasounizadeh, H. (2012). Application and comparison of mathematical and physical models on inspecting slab of stilling basin floor under static and dynamic forces. Applied Mechanics and Materials, 147, 283–287. Mohammadzadeh, B., Bina, M., & Hasounizadeh, H. (2012). Application and comparison of mathematical and physical models on inspecting slab of stilling basin floor under static and dynamic forces. Applied Mechanics and Materials, 147, 283–287.
Zurück zum Zitat Mohammadzadeh, B., Choi, E., & Kim, W. J. (2018). Comprehensive investigation of buckling behavior of plates considering effects of holes. Structural Engineering and Mechanics, 68(2), 261–275. Mohammadzadeh, B., Choi, E., & Kim, W. J. (2018). Comprehensive investigation of buckling behavior of plates considering effects of holes. Structural Engineering and Mechanics, 68(2), 261–275.
Zurück zum Zitat Mohammadzadeh, B., Choi, E., & Kim, D. (2019). Vibration of sandwich plates considering elastic foundation temperature change and FGM faces. Structural Engineering and Mechanics, 70(4), 601–621. Mohammadzadeh, B., Choi, E., & Kim, D. (2019). Vibration of sandwich plates considering elastic foundation temperature change and FGM faces. Structural Engineering and Mechanics, 70(4), 601–621.
Zurück zum Zitat Mohammadzadeh, B., & Noh, H. C. (2014a). Investigation into central-difference and Newmark’s beta methods in measuring dynamic responses. Advanced Materials Research, 831, 95–99. Mohammadzadeh, B., & Noh, H. C. (2014a). Investigation into central-difference and Newmark’s beta methods in measuring dynamic responses. Advanced Materials Research, 831, 95–99.
Zurück zum Zitat Mohammadzadeh, B., & Noh, H. C. (2014b). Use of buckling coefficient in predicting buckling load of plates with and without holes. Journal of Korean Society for Advanced Composite Structures, 5(3), 1–7. Mohammadzadeh, B., & Noh, H. C. (2014b). Use of buckling coefficient in predicting buckling load of plates with and without holes. Journal of Korean Society for Advanced Composite Structures, 5(3), 1–7.
Zurück zum Zitat Mohammadzadeh, B., & Noh, H. C. (2015). Numerical analysis of dynamic responses of the plate subjected to impulsive loads. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 9(9), 1194–1197. Mohammadzadeh, B., & Noh, H. C. (2015). Numerical analysis of dynamic responses of the plate subjected to impulsive loads. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 9(9), 1194–1197.
Zurück zum Zitat Mohammadzadeh, B., & Noh, H. C. (2016). Investigation into buckling coefficients of plates with holes considering variation of hole size and plate thickness. Mechanika, 22(3), 167–175. Mohammadzadeh, B., & Noh, H. C. (2016). Investigation into buckling coefficients of plates with holes considering variation of hole size and plate thickness. Mechanika, 22(3), 167–175.
Zurück zum Zitat Mohammadzadeh, B., & Noh, H. C. (2017). Analytical method to investigate nonlinear dynamic responses of sandwich plates with FGM faces resting on elastic foundation considering blast loads. Composite Structures, 174, 142–157. Mohammadzadeh, B., & Noh, H. C. (2017). Analytical method to investigate nonlinear dynamic responses of sandwich plates with FGM faces resting on elastic foundation considering blast loads. Composite Structures, 174, 142–157.
Zurück zum Zitat Mohammadzadeh, B., & Noh, H. C. (2018). An analytical and numerical investigation on the dynamic responses of steel plates considering the blast loads. International Journal of Steel Structures, 19, 603–617. Mohammadzadeh, B., & Noh, H. C. (2018). An analytical and numerical investigation on the dynamic responses of steel plates considering the blast loads. International Journal of Steel Structures, 19, 603–617.
Zurück zum Zitat Murray, Y. (2007). Users manual for LS-DYNA concrete material model 159. Virginia: Federal Highway Administration. Murray, Y. (2007). Users manual for LS-DYNA concrete material model 159. Virginia: Federal Highway Administration.
Zurück zum Zitat Muszynski, L. C., & Purcell, M. R. (2003a). Composite reinforcement to strengthen existing concrete structures against air blast. Journal of Composites for Construction, 7(2), 93–97. Muszynski, L. C., & Purcell, M. R. (2003a). Composite reinforcement to strengthen existing concrete structures against air blast. Journal of Composites for Construction, 7(2), 93–97.
Zurück zum Zitat Muszynski, L. C., & Purcell, M. R. (2003b). Use of composite reinforcement to strengthen concrete and air-entrained concrete masonry walls against air blast. Journal of Composites for Construction, 7(2), 98–108. Muszynski, L. C., & Purcell, M. R. (2003b). Use of composite reinforcement to strengthen concrete and air-entrained concrete masonry walls against air blast. Journal of Composites for Construction, 7(2), 98–108.
Zurück zum Zitat Nam, J. W., Kim, H. J., Kim, S. B., Yi, N. H., & Kim, J. H. (2010). Numerical evaluation of the retrofit effectiveness for GFRP retrofitted concrete slab subjected to blast pressure. Composite Structures, 19(5), 1212–1222. Nam, J. W., Kim, H. J., Kim, S. B., Yi, N. H., & Kim, J. H. (2010). Numerical evaluation of the retrofit effectiveness for GFRP retrofitted concrete slab subjected to blast pressure. Composite Structures, 19(5), 1212–1222.
Zurück zum Zitat Oduyemi, T. O. S., & Wright, H. D. (1989). An experimental investigation into the behavior of double skin sandwich beams. Journal of Constructional Steel Research, 14(3), 197–220. Oduyemi, T. O. S., & Wright, H. D. (1989). An experimental investigation into the behavior of double skin sandwich beams. Journal of Constructional Steel Research, 14(3), 197–220.
Zurück zum Zitat Pandey, A. K., Kumar, R., Paul, D. K., & Trikha, D. N. (2006). Non-linear response of reinforced concrete containment structure under blast loading. Nuclear Engineering and Design, 236, 993–1002. Pandey, A. K., Kumar, R., Paul, D. K., & Trikha, D. N. (2006). Non-linear response of reinforced concrete containment structure under blast loading. Nuclear Engineering and Design, 236, 993–1002.
Zurück zum Zitat Shi, Y., Xiong, W., Li, Z.-X., & Xu, Q. (2015). Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions. International Journal of Impact Engineering, 90, 122–131. Shi, Y., Xiong, W., Li, Z.-X., & Xu, Q. (2015). Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions. International Journal of Impact Engineering, 90, 122–131.
Zurück zum Zitat Silva, P. F., & Lu, B. (2007). Improving the blast resistance capacity of RC slabs with innovative composite materials. Composites Part B-Engineering, 38, 523–534. Silva, P. F., & Lu, B. (2007). Improving the blast resistance capacity of RC slabs with innovative composite materials. Composites Part B-Engineering, 38, 523–534.
Zurück zum Zitat Sohel, K. M. A., & Liew, J. Y. R. (2011). Steel–concrete–steel sandwich slabs with lightweight core: Static performance. Engineering Structures, 33(3), 981–992. Sohel, K. M. A., & Liew, J. Y. R. (2011). Steel–concrete–steel sandwich slabs with lightweight core: Static performance. Engineering Structures, 33(3), 981–992.
Zurück zum Zitat Sohel, K. M. A., & Liew, J. Y. R. (2014). Behavior of steel–concrete–steel sandwich slabs subject to impact load. Journal of Constructional Steel Research, 100(100), 163–175. Sohel, K. M. A., & Liew, J. Y. R. (2014). Behavior of steel–concrete–steel sandwich slabs subject to impact load. Journal of Constructional Steel Research, 100(100), 163–175.
Zurück zum Zitat Thiagarajan, G., Kadambi, A. V., Robert, S., & Johnson, C. F. (2014). Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads. International Journal of Impact Engineering, 75, 162–173. Thiagarajan, G., Kadambi, A. V., Robert, S., & Johnson, C. F. (2014). Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads. International Journal of Impact Engineering, 75, 162–173.
Zurück zum Zitat Vasudevan, A. K. (2013). Finite element analysis and experimental comparison of doubly reinforced concrete slab subjected to blast loads. M.Sc. thesis, Department of Civil Engineering, University of Missouri-Kansas City, Kansas City. Vasudevan, A. K. (2013). Finite element analysis and experimental comparison of doubly reinforced concrete slab subjected to blast loads. M.Sc. thesis, Department of Civil Engineering, University of Missouri-Kansas City, Kansas City.
Zurück zum Zitat Wang, Y., Zhai, X., Lee, S. C., & Wang, W. (2016). Responses of curved steel–concrete–steel sandwich shells subjected to blast loading. Thin-Walled Structures, 108, 185–192. Wang, Y., Zhai, X., Lee, S. C., & Wang, W. (2016). Responses of curved steel–concrete–steel sandwich shells subjected to blast loading. Thin-Walled Structures, 108, 185–192.
Zurück zum Zitat Wei, X., & Hao, H. (2009). Numerical derivation of homogenized dynamic masonry material properties with strain rate effects. International Journal of Impact Engineering, 36(3), 522–536. Wei, X., & Hao, H. (2009). Numerical derivation of homogenized dynamic masonry material properties with strain rate effects. International Journal of Impact Engineering, 36(3), 522–536.
Zurück zum Zitat Yan, C., Wang, Y., & Zhai, X. (2020a). Low velocity impact performance of curved steel–concrete–steel sandwich shells with bolt connectors. Thin-Walled Structures, 150, 106672. Yan, C., Wang, Y., & Zhai, X. (2020a). Low velocity impact performance of curved steel–concrete–steel sandwich shells with bolt connectors. Thin-Walled Structures, 150, 106672.
Zurück zum Zitat Yan, C., Wang, Y., Zhai, X., & Meng, L. (2020b). Strength assessment of curved steel–concrete–steel sandwich shells with bolt connectors under concentrated load. Engineering Structures, 212, 110465. Yan, C., Wang, Y., Zhai, X., & Meng, L. (2020b). Strength assessment of curved steel–concrete–steel sandwich shells with bolt connectors under concentrated load. Engineering Structures, 212, 110465.
Zurück zum Zitat Yan, C., Wang, Y., Zhai, X., Meng, L., & Zhou, H. (2019). Experimental study on curved steel–concrete–steel sandwich shells under concentrated load by a hemi-spherical head. Thin-Walled Structures, 137, 117–128. Yan, C., Wang, Y., Zhai, X., Meng, L., & Zhou, H. (2019). Experimental study on curved steel–concrete–steel sandwich shells under concentrated load by a hemi-spherical head. Thin-Walled Structures, 137, 117–128.
Zurück zum Zitat Yan, J. B., & Zhang, W. (2017). Numerical analysis on steel–concrete–steel sandwich plates by damage plasticity model: from materials to structures. Construction and Building Materials, 149, 801–815. Yan, J. B., & Zhang, W. (2017). Numerical analysis on steel–concrete–steel sandwich plates by damage plasticity model: from materials to structures. Construction and Building Materials, 149, 801–815.
Zurück zum Zitat Zhai, X., & Wang, Y. (2013). Modelling and dynamic response of steel reticulated shell under blast loading. Shock and Vibration, 20, 19–28. Zhai, X., & Wang, Y. (2013). Modelling and dynamic response of steel reticulated shell under blast loading. Shock and Vibration, 20, 19–28.
Zurück zum Zitat Zhao, C. F., Chen, J. Y., Wang, Y., & Lu, S. J. (2012). Damage mechanism and response of reinforced concrete containment structure under internal blast loading. Theoretical and Applied Fracture Mechanics, 61, 12–20. Zhao, C. F., Chen, J. Y., Wang, Y., & Lu, S. J. (2012). Damage mechanism and response of reinforced concrete containment structure under internal blast loading. Theoretical and Applied Fracture Mechanics, 61, 12–20.
Metadaten
Titel
Modeling and Dynamic Response of Curved Steel–Concrete–Steel Sandwich Shells Under Blast Loading
verfasst von
Lingzhao Meng
Yonghui Wang
Ximei Zhai
Publikationsdatum
09.09.2020
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 5/2020
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-020-00403-8

Weitere Artikel der Ausgabe 5/2020

International Journal of Steel Structures 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.