Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 3/2020

23.05.2019 | Research Article - Electrical Engineering

Deep Neural Networks with Extreme Learning Machine for Seismic Data Compression

verfasst von: Hilal H. Nuha, Adil Balghonaim, Bo Liu, Mohamed Mohandes, Mohamed Deriche, Faramarz Fekri

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Advances on seismic survey techniques require a large number of geophones. This leads to an exponential growth in the size of data and prohibitive demands on storage and network communication resources. Therefore, it is desirable to compress the seismic data to the minimum possible, without losing important information. In this paper, a stacked auto-encoder extreme learning machine (AE-ELM) for seismic data compression is proposed. First, a deep asymmetric auto-encoder is constructed, in which nonlinear activation functions are used in the encoder hidden layers and linear activation functions are utilized in the decoder layers. Second, the encoder hidden layers are connected in a cascade way, so that outputs of a hidden layer are considered as the inputs to the succeeding hidden layer. Third, the optimal weights of connections between the layers of the decoder are solved analytically. Lastly, the AE-ELMs are stacked to create the complete encoder/decoder. The extreme learning machine (ELM) is selected due to its analytical calculation of weights efficient training that is suitable for practical implementation. In this neural network, data compression is achieved by transforming the original data through the encoder layers where the size of outputs from the last encoder hidden layer is smaller than the original data size. The proposed method exhibits a comparable reconstruction quality on a real dataset but with a much shorter training duration than other deep neural networks methods. This neural network with more than 8000 hidden units achieved \( 1.28 \times 10^{ - 3} \) of normalized mean-squared error for 10:1 of compression ratio with only 8.23 s of training time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, Y. Large-scale seismic data compression: application to full waveform inversion and extended image volume, Doctoral dissertation, University of British Columbia, April, 2018 Zhang, Y. Large-scale seismic data compression: application to full waveform inversion and extended image volume, Doctoral dissertation, University of British Columbia, April, 2018
2.
Zurück zum Zitat Roberts, L.: Beyond Moore’s law: internet growth trends. Computer 33(1), 117–119 (2000)CrossRef Roberts, L.: Beyond Moore’s law: internet growth trends. Computer 33(1), 117–119 (2000)CrossRef
3.
Zurück zum Zitat Kuhn, M.; Kunkel, J.; Ludwig, T.: Data compression for climate data. Supercomput. Front. Innov. 3(1), 75–94 (2016) Kuhn, M.; Kunkel, J.; Ludwig, T.: Data compression for climate data. Supercomput. Front. Innov. 3(1), 75–94 (2016)
4.
Zurück zum Zitat Rosten, T.; Marthinussen, V. A.; Ramstad,T. A.; Perkis, A.: Filter bank optimization for high-dimensional compression of pre-stack seismic data. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, March 1999, 1999 Rosten, T.; Marthinussen, V. A.; Ramstad,T. A.; Perkis, A.: Filter bank optimization for high-dimensional compression of pre-stack seismic data. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, March 1999, 1999
5.
Zurück zum Zitat Wood, L.C.: Seismic data compression methods. Geophysics 39, 499–525 (1974)CrossRef Wood, L.C.: Seismic data compression methods. Geophysics 39, 499–525 (1974)CrossRef
6.
Zurück zum Zitat Spanias, A.S.; Jonsson, S.B.; Stearns, S.D.: Transform methods for seismic data compression. IEEE Trans. Geosci. Remote Sens. 29, 407–416 (1991)CrossRef Spanias, A.S.; Jonsson, S.B.; Stearns, S.D.: Transform methods for seismic data compression. IEEE Trans. Geosci. Remote Sens. 29, 407–416 (1991)CrossRef
7.
Zurück zum Zitat Duval, L. C.; Nguyen, T. Q.: Seismic data compression: a comparative study between GenLOT and wavelet compression. In: Proceedings of SPIE- the international society for optical engineering, October 1999, 1999 Duval, L. C.; Nguyen, T. Q.: Seismic data compression: a comparative study between GenLOT and wavelet compression. In: Proceedings of SPIE- the international society for optical engineering, October 1999, 1999
8.
Zurück zum Zitat Wang, Y.; Wu, R.-S.: Seismic data compression by an adaptive local cosine/sine transform and its effects on migration. Geophys. Prospect. 48, 1009–1031 (2000)CrossRef Wang, Y.; Wu, R.-S.: Seismic data compression by an adaptive local cosine/sine transform and its effects on migration. Geophys. Prospect. 48, 1009–1031 (2000)CrossRef
9.
Zurück zum Zitat Geng, Y.; Wu R. S.; Gao, J.: Dreamlet transform applied to seismic data compression and its effects on migration. In: SEG Annual Meeting January, Houston, 2009 Geng, Y.; Wu R. S.; Gao, J.: Dreamlet transform applied to seismic data compression and its effects on migration. In: SEG Annual Meeting January, Houston, 2009
10.
Zurück zum Zitat Wang, S.; Li, J.; Chiu, S.; Anno, P.: Seismic data compression and regularization via wave packets. In In SEG technical program expanded abstracts October, 2010 Wang, S.; Li, J.; Chiu, S.; Anno, P.: Seismic data compression and regularization via wave packets. In In SEG technical program expanded abstracts October, 2010
11.
Zurück zum Zitat Liu, B.; Mohandes, M.; Nuha, H.; Mohamed, D.; Faramarz, F.: A distributed principal component analysis compression for smart seismic acquisition networks. IEEE Trans. Geosci. Remote Sens. 56(6), 3020–3029 (2018)CrossRef Liu, B.; Mohandes, M.; Nuha, H.; Mohamed, D.; Faramarz, F.: A distributed principal component analysis compression for smart seismic acquisition networks. IEEE Trans. Geosci. Remote Sens. 56(6), 3020–3029 (2018)CrossRef
12.
Zurück zum Zitat Liu, B.; Nuha, H.; Mohandes, M.; Deriche, M.; Fekri, F.: Disributed principal component analysis for data compression of sequential seismic sensor arrays. In: SEG technical program expanded abstracts October 2016, 2016 Liu, B.; Nuha, H.; Mohandes, M.; Deriche, M.; Fekri, F.: Disributed principal component analysis for data compression of sequential seismic sensor arrays. In: SEG technical program expanded abstracts October 2016, 2016
13.
Zurück zum Zitat Said, A.; Mohamed, A.; Elfouly, T.; Harras, K.; Wang, Z.: Multimodal deep learning approach for joint EEG-EMG data compression and classification. In: Wireless Communications and Networking Conference (WCNC) May, 2017 Said, A.; Mohamed, A.; Elfouly, T.; Harras, K.; Wang, Z.: Multimodal deep learning approach for joint EEG-EMG data compression and classification. In: Wireless Communications and Networking Conference (WCNC) May, 2017
14.
Zurück zum Zitat Al-Said, M.T.M.; Abdellatif, A.; Mohamed, A.; Elfouly, T.; Harras, K.; O’Connor, M.: A deep learning approach for vital signs compression and energy efficient delivery in mHealth systems. IEEE Access 6, 33727–33739 (2018)CrossRef Al-Said, M.T.M.; Abdellatif, A.; Mohamed, A.; Elfouly, T.; Harras, K.; O’Connor, M.: A deep learning approach for vital signs compression and energy efficient delivery in mHealth systems. IEEE Access 6, 33727–33739 (2018)CrossRef
15.
Zurück zum Zitat Sriraam, N.; Eswaran, C.: Performance evaluation of neural network and linear predictors for near-lossless compression of EEG signals. IEEE Trans. Inf. Technol. Biomed. 12(1), 87–93 (2008)CrossRef Sriraam, N.; Eswaran, C.: Performance evaluation of neural network and linear predictors for near-lossless compression of EEG signals. IEEE Trans. Inf. Technol. Biomed. 12(1), 87–93 (2008)CrossRef
16.
Zurück zum Zitat Tan, C.; Eswaran, C.: Using autoencoders for mammogram compression. J. Med. Syst. 35(1), 49–58 (2011)CrossRef Tan, C.; Eswaran, C.: Using autoencoders for mammogram compression. J. Med. Syst. 35(1), 49–58 (2011)CrossRef
17.
Zurück zum Zitat Srivastava, N.; Salakhutdinov, R. R.: Multimodal learning with deep boltzmann machine. In: Advances in Neural Information Processing Systems December, 2012 Srivastava, N.; Salakhutdinov, R. R.: Multimodal learning with deep boltzmann machine. In: Advances in Neural Information Processing Systems December, 2012
19.
Zurück zum Zitat Del Testa, D.; Rossi, M.: Lightweight lossy compression of biometric patterns via denoising autoencoders. IEEE Signal Process. Lett. 22(12), 2304–2308 (2015)CrossRef Del Testa, D.; Rossi, M.: Lightweight lossy compression of biometric patterns via denoising autoencoders. IEEE Signal Process. Lett. 22(12), 2304–2308 (2015)CrossRef
20.
Zurück zum Zitat Huang, K.-Y.: Neural networks for seismic principal components analysis. IEEE Trans. Geosci. Remote Sensing 37, 297–311 (1999)CrossRef Huang, K.-Y.: Neural networks for seismic principal components analysis. IEEE Trans. Geosci. Remote Sensing 37, 297–311 (1999)CrossRef
21.
Zurück zum Zitat Nuha, H.; Mohandes, M.; Liu, B.: Seismic data compression using auto-associative neural network and restricted Boltzmann machine. In: SEG Technical Program Expanded Abstracts October, Anaheim, 2018 Nuha, H.; Mohandes, M.; Liu, B.: Seismic data compression using auto-associative neural network and restricted Boltzmann machine. In: SEG Technical Program Expanded Abstracts October, Anaheim, 2018
22.
Zurück zum Zitat Akbarizadeh, G.; Rangzan, K.; Kabolizadeh, M.: Effective supervised multiple-feature learning for fused radar and optical data classification. IET Radar Sonar Navig. 11(5), 768–777 (2016) Akbarizadeh, G.; Rangzan, K.; Kabolizadeh, M.: Effective supervised multiple-feature learning for fused radar and optical data classification. IET Radar Sonar Navig. 11(5), 768–777 (2016)
23.
Zurück zum Zitat Sharifzadeh, F.; Akbarizadeh, G.; Kavian, Y.: Ship classification in SAR images using a new hybrid CNN–MLP classifier. J. Indian Soc. Remote Sens. 47, 1–12 (2018) Sharifzadeh, F.; Akbarizadeh, G.; Kavian, Y.: Ship classification in SAR images using a new hybrid CNN–MLP classifier. J. Indian Soc. Remote Sens. 47, 1–12 (2018)
24.
Zurück zum Zitat Kasun, L.L.C.; Zhou, H.; Huang, G.-B.; Vong, C.M.: Representational learning with extreme learning machine for big data. IEEE Intell. Syst. 28(6), 31–34 (2013) Kasun, L.L.C.; Zhou, H.; Huang, G.-B.; Vong, C.M.: Representational learning with extreme learning machine for big data. IEEE Intell. Syst. 28(6), 31–34 (2013)
25.
Zurück zum Zitat Akbarizadeh, G.: A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images. IEEE Trans. Geosci. Remote Sens. 50(11), 4358–4368 (2012)CrossRef Akbarizadeh, G.: A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images. IEEE Trans. Geosci. Remote Sens. 50(11), 4358–4368 (2012)CrossRef
26.
Zurück zum Zitat Raeisi, A.; Akbarizadeh, G.; Mahmoudi, A.: Combined method of an efficient cuckoo search algorithm and nonnegative matrix factorization of different zernike moment features for discrimination between oil spills and lookalikes in SAR Images. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 99, 1–13 (2018) Raeisi, A.; Akbarizadeh, G.; Mahmoudi, A.: Combined method of an efficient cuckoo search algorithm and nonnegative matrix factorization of different zernike moment features for discrimination between oil spills and lookalikes in SAR Images. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 99, 1–13 (2018)
27.
Zurück zum Zitat Modava, M.; Akbarizadeh, G.; Soroosh, M.: Integration of spectral histogram and level set for coastline detection in SAR images. IEEE Trans. Aerosp. Electron. Syst. 55(2), 810–819 (2019)CrossRef Modava, M.; Akbarizadeh, G.; Soroosh, M.: Integration of spectral histogram and level set for coastline detection in SAR images. IEEE Trans. Aerosp. Electron. Syst. 55(2), 810–819 (2019)CrossRef
28.
Zurück zum Zitat Farbod, M.; Akbarizadeh, G.; Kosarian, A.; Rangzan, K.: Optimized fuzzy cellular automata for synthetic aperture radar image edge detection. J. Electron. Imaging 27(1), 13–30 (2018)CrossRef Farbod, M.; Akbarizadeh, G.; Kosarian, A.; Rangzan, K.: Optimized fuzzy cellular automata for synthetic aperture radar image edge detection. J. Electron. Imaging 27(1), 13–30 (2018)CrossRef
29.
Zurück zum Zitat Hinton, G.E.; Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRef Hinton, G.E.; Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRef
30.
Zurück zum Zitat Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.-R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97 (2012)CrossRef Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.-R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97 (2012)CrossRef
31.
Zurück zum Zitat Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)CrossRef Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)CrossRef
32.
Zurück zum Zitat Salakhutdinov, R.; Larochelle, H.: Efficient learning of deep Boltzmann machines. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics May, 2010. Salakhutdinov, R.; Larochelle, H.: Efficient learning of deep Boltzmann machines. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics May, 2010.
33.
Zurück zum Zitat LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
34.
Zurück zum Zitat Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)MathSciNetMATH Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)MathSciNetMATH
35.
Zurück zum Zitat Tee, Y.W.; Hinton, G.E.: Rate-coded restricted Boltzmann machines for face recognition. Neural Inf. Process. Syst. 13, 908–914 (2000) Tee, Y.W.; Hinton, G.E.: Rate-coded restricted Boltzmann machines for face recognition. Neural Inf. Process. Syst. 13, 908–914 (2000)
36.
Zurück zum Zitat Huang, G.; Zhou, H.; Ding, X.; Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2012)CrossRef Huang, G.; Zhou, H.; Ding, X.; Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2012)CrossRef
37.
Zurück zum Zitat Akbarizadeh, G.; Moghaddam, A.: Detection of lung nodules in CT scans based on unsupervised feature learning and fuzzy inference. J. Med. Imaging Health Inf. 6(2), 477–483 (2016)CrossRef Akbarizadeh, G.; Moghaddam, A.: Detection of lung nodules in CT scans based on unsupervised feature learning and fuzzy inference. J. Med. Imaging Health Inf. 6(2), 477–483 (2016)CrossRef
38.
Zurück zum Zitat Huang, G.; Chen, L.; Siew, C.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)CrossRef Huang, G.; Chen, L.; Siew, C.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)CrossRef
39.
Zurück zum Zitat Johnson, W.; Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26(1), 189–206 (1984)MathSciNetCrossRef Johnson, W.; Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26(1), 189–206 (1984)MathSciNetCrossRef
40.
Zurück zum Zitat Mousa, W.A.; Al-Shuhail, A.A.: Processing of seismic reflection data using MATLAB™. Synth. Lect. Signal Process. 5, 1–97 (2011)CrossRef Mousa, W.A.; Al-Shuhail, A.A.: Processing of seismic reflection data using MATLAB™. Synth. Lect. Signal Process. 5, 1–97 (2011)CrossRef
41.
Zurück zum Zitat Rubin, M.J.; Wakin, M.B.; Camp, T.: Lossy compression for wireless seismic data acquisition. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9, 236–252 (2016)CrossRef Rubin, M.J.; Wakin, M.B.; Camp, T.: Lossy compression for wireless seismic data acquisition. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9, 236–252 (2016)CrossRef
Metadaten
Titel
Deep Neural Networks with Extreme Learning Machine for Seismic Data Compression
verfasst von
Hilal H. Nuha
Adil Balghonaim
Bo Liu
Mohamed Mohandes
Mohamed Deriche
Faramarz Fekri
Publikationsdatum
23.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 3/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-03942-3

Weitere Artikel der Ausgabe 3/2020

Arabian Journal for Science and Engineering 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.