Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 1/2018

22.07.2017 | Original Article

Characteristics of hydrochar and hydrothermal liquid products from hydrothermal carbonization of corncob

verfasst von: Kamonwat Nakason, Bunyarit Panyapinyopol, Vorapot Kanokkantapong, Nawin Viriya-empikul, Wasawat Kraithong, Prasert Pavasant

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Corncob (CC) was converted to renewable fuel resource by hydrothermal carbonization (HTC). HTC was performed by varying process temperature (160–200 °C), residence time (1–3 h), and biomass to water ratio (BTW) (1:5 to 1:15). The properties of hydrochar were significantly enhanced where the fixed carbon and carbon content of hydrochar increased at about 24.9 and 83.7% from original contents in CC, respectively. The calorific values and yield of hydrochar were between 19.3–23.5 MJ/kg and 50.1–58.6%. The optimal condition for the production of hydrochar as solid fuel was determined at 200 °C, 3 h residence time, and BTW of 1:5 with maximum energy yield of 68.74%. In addition, hydrothermal liquid was characterized where volatile fatty acid, furfural, furfuryl alcohol, and hydroxymethylfurfural were the most abundant compositions with their highest yields of 17.3, 11.5, 7.9, and 5.1%, respectively. Process temperature was the most influencing variable on product properties and characteristics. The results suggested that corncob has high potential as a source for solid fuel and valuable platform chemicals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Benavente V, Calabuig E, Fullana A (2015) Upgrading of moist agro-industrial wastes by hydrothermal carbonization. J Anal Appl Pyrolysis 113:89–98CrossRef Benavente V, Calabuig E, Fullana A (2015) Upgrading of moist agro-industrial wastes by hydrothermal carbonization. J Anal Appl Pyrolysis 113:89–98CrossRef
2.
Zurück zum Zitat Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378CrossRef Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378CrossRef
3.
Zurück zum Zitat Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Emmerich K-H (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1):71–106. doi:10.4155/bfs.10.81 CrossRef Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Emmerich K-H (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1):71–106. doi:10.​4155/​bfs.​10.​81 CrossRef
4.
Zurück zum Zitat Acharya B, Dutta A, Minaret J (2015) Review on comparative study of dry and wet torrefaction. Sustain Energy Technol Assess 12:26–37 Acharya B, Dutta A, Minaret J (2015) Review on comparative study of dry and wet torrefaction. Sustain Energy Technol Assess 12:26–37
5.
Zurück zum Zitat Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160–177CrossRef Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160–177CrossRef
6.
Zurück zum Zitat Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310CrossRef Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310CrossRef
7.
Zurück zum Zitat Kang S, Ye J, Zhang Y et al (2013) Preparation of biomass hydrochar derived sulfonated catalysts and their catalytic effects for 5-hydroxymethylfurfural production. RSC Adv 3:7360–7366CrossRef Kang S, Ye J, Zhang Y et al (2013) Preparation of biomass hydrochar derived sulfonated catalysts and their catalytic effects for 5-hydroxymethylfurfural production. RSC Adv 3:7360–7366CrossRef
8.
Zurück zum Zitat Hu B, Wang K, Wu L et al (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828CrossRef Hu B, Wang K, Wu L et al (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828CrossRef
9.
Zurück zum Zitat Kruse A, Funke A, Titirici M-M (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17:515–521CrossRef Kruse A, Funke A, Titirici M-M (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17:515–521CrossRef
10.
Zurück zum Zitat Basso D, Patuzzi F, Castello D et al (2016) Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manag 47(Part A):114–121CrossRef Basso D, Patuzzi F, Castello D et al (2016) Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manag 47(Part A):114–121CrossRef
11.
Zurück zum Zitat Guo S, Dong X, Wu T et al (2015) Characteristic evolution of hydrochar from hydrothermal carbonization of corn stalk. J Anal Appl Pyrolysis 116:1–9CrossRef Guo S, Dong X, Wu T et al (2015) Characteristic evolution of hydrochar from hydrothermal carbonization of corn stalk. J Anal Appl Pyrolysis 116:1–9CrossRef
12.
Zurück zum Zitat Álvarez-Murillo A, Román S, Ledesma B et al (2015) Study of variables in energy densification of olive stone by hydrothermal carbonization. J Anal Appl Pyrolysis 113:307–314CrossRef Álvarez-Murillo A, Román S, Ledesma B et al (2015) Study of variables in energy densification of olive stone by hydrothermal carbonization. J Anal Appl Pyrolysis 113:307–314CrossRef
13.
Zurück zum Zitat Gao P, Zhou Y, Meng F et al (2016) Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy 97:238–245CrossRef Gao P, Zhou Y, Meng F et al (2016) Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy 97:238–245CrossRef
14.
Zurück zum Zitat Kongpanya J, Hussaro K, Teekasap S (2014) Influence of reaction temperature and reaction time on product from hydrothermal treatment of biomass residue. Am J Environ Sci 10:324–335CrossRef Kongpanya J, Hussaro K, Teekasap S (2014) Influence of reaction temperature and reaction time on product from hydrothermal treatment of biomass residue. Am J Environ Sci 10:324–335CrossRef
15.
Zurück zum Zitat Gao Y, Wang X, Wang J et al (2013) Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 58:376–383CrossRef Gao Y, Wang X, Wang J et al (2013) Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 58:376–383CrossRef
16.
Zurück zum Zitat Ghanim BM, Pandey DS, Kwapinski W et al (2016) Hydrothermal carbonisation of poultry litter: effects of treatment temperature and residence time on yields and chemical properties of hydrochars. Bioresour Technol 216:373–380CrossRef Ghanim BM, Pandey DS, Kwapinski W et al (2016) Hydrothermal carbonisation of poultry litter: effects of treatment temperature and residence time on yields and chemical properties of hydrochars. Bioresour Technol 216:373–380CrossRef
17.
Zurück zum Zitat Sabio E, Álvarez-Murillo A, Román S et al (2016) Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: influence of the processing variables. Waste Manag 47(Part A):122–132CrossRef Sabio E, Álvarez-Murillo A, Román S et al (2016) Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: influence of the processing variables. Waste Manag 47(Part A):122–132CrossRef
18.
Zurück zum Zitat Tekin K, Akalin MK, Karagöz S (2016) The effects of water tolerant Lewis acids on the hydrothermal liquefaction of lignocellulosic biomass. J Energy Inst 89:627–635CrossRef Tekin K, Akalin MK, Karagöz S (2016) The effects of water tolerant Lewis acids on the hydrothermal liquefaction of lignocellulosic biomass. J Energy Inst 89:627–635CrossRef
19.
Zurück zum Zitat Kim D, Yoshikawa K, Park K (2015) Characteristics of biochar obtained by hydrothermal carbonization of cellulose for renewable energy. Energies 8:12412 Kim D, Yoshikawa K, Park K (2015) Characteristics of biochar obtained by hydrothermal carbonization of cellulose for renewable energy. Energies 8:12412
20.
Zurück zum Zitat Erlach B, Harder B, Tsatsaronis G (2012) Combined hydrothermal carbonization and gasification of biomass with carbon capture. Energy 45:329–338CrossRef Erlach B, Harder B, Tsatsaronis G (2012) Combined hydrothermal carbonization and gasification of biomass with carbon capture. Energy 45:329–338CrossRef
21.
Zurück zum Zitat Heilmann SM, Davis HT, Jader LR et al (2010) Hydrothermal carbonization of microalgae. Biomass Bioenergy 34:875–882CrossRef Heilmann SM, Davis HT, Jader LR et al (2010) Hydrothermal carbonization of microalgae. Biomass Bioenergy 34:875–882CrossRef
22.
Zurück zum Zitat Román S, Nabais JMV, Laginhas C et al (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103:78–83CrossRef Román S, Nabais JMV, Laginhas C et al (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103:78–83CrossRef
25.
Zurück zum Zitat Mukherjee A, Dumont M-J, Raghavan V (2015) Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy 72:143–183CrossRef Mukherjee A, Dumont M-J, Raghavan V (2015) Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy 72:143–183CrossRef
26.
Zurück zum Zitat Worasuwannarak N, Potisri P, Tanthapanichakoon W (2006) Upgrading of biomass by carbonization in hot compressed water. Songklanakarin J Sci Technol 28:1049–1057 Worasuwannarak N, Potisri P, Tanthapanichakoon W (2006) Upgrading of biomass by carbonization in hot compressed water. Songklanakarin J Sci Technol 28:1049–1057
27.
Zurück zum Zitat Zhang L, Wang Q, Wang B et al (2015) Hydrothermal carbonization of corncob residues for hydrochar production. Energy Fuel 29:872–876CrossRef Zhang L, Wang Q, Wang B et al (2015) Hydrothermal carbonization of corncob residues for hydrochar production. Energy Fuel 29:872–876CrossRef
28.
Zurück zum Zitat Gan J, Yuan W (2013) Operating condition optimization of corncob hydrothermal conversion for bio-oil production. Appl Energy 103:350–357CrossRef Gan J, Yuan W (2013) Operating condition optimization of corncob hydrothermal conversion for bio-oil production. Appl Energy 103:350–357CrossRef
29.
Zurück zum Zitat Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. (2005) Determination of ash in biomass (NREL/TP-510-42622). The US National Renewable Energy Laboratory technical report Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. (2005) Determination of ash in biomass (NREL/TP-510-42622). The US National Renewable Energy Laboratory technical report
30.
Zurück zum Zitat ASTM (2010) Standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis. Method D7582-10. ASTM International, Pennsylvania ASTM (2010) Standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis. Method D7582-10. ASTM International, Pennsylvania
31.
Zurück zum Zitat Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2008) Determination of structural carbohydrates and lignin in biomass (NREL/TP-510-42618). The US National Renewable Energy Laboratory technical report Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2008) Determination of structural carbohydrates and lignin in biomass (NREL/TP-510-42618). The US National Renewable Energy Laboratory technical report
32.
Zurück zum Zitat Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063CrossRef Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063CrossRef
33.
Zurück zum Zitat Xiao L-P, Shi Z-J, Xu F et al (2012) Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 118:619–623CrossRef Xiao L-P, Shi Z-J, Xu F et al (2012) Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 118:619–623CrossRef
35.
Zurück zum Zitat Sermyagina E, Saari J, Kaikko J et al (2015) Hydrothermal carbonization of coniferous biomass: effect of process parameters on mass and energy yields. J Anal Appl Pyrolysis 113:551–556CrossRef Sermyagina E, Saari J, Kaikko J et al (2015) Hydrothermal carbonization of coniferous biomass: effect of process parameters on mass and energy yields. J Anal Appl Pyrolysis 113:551–556CrossRef
36.
Zurück zum Zitat Knežević D, Van Swaaij W, Kersten S (2010) Hydrothermal conversion of biomass. II. Conversion of wood, pyrolysis oil, and glucose in hot compressed water. Ind Eng Chem Res 49:104–112CrossRef Knežević D, Van Swaaij W, Kersten S (2010) Hydrothermal conversion of biomass. II. Conversion of wood, pyrolysis oil, and glucose in hot compressed water. Ind Eng Chem Res 49:104–112CrossRef
37.
Zurück zum Zitat Reza MT, Lynam JG, Uddin MH et al (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenergy 49:86–94CrossRef Reza MT, Lynam JG, Uddin MH et al (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenergy 49:86–94CrossRef
38.
Zurück zum Zitat Petrović J, Perišić N, Maksimović JD et al (2016) Hydrothermal conversion of grape pomace: detailed characterization of obtained hydrochar and liquid phase. J Anal Appl Pyrolysis 118:267–277CrossRef Petrović J, Perišić N, Maksimović JD et al (2016) Hydrothermal conversion of grape pomace: detailed characterization of obtained hydrochar and liquid phase. J Anal Appl Pyrolysis 118:267–277CrossRef
39.
Zurück zum Zitat Kambo HS, Dutta A (2014) Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl Energy 135:182–191CrossRef Kambo HS, Dutta A (2014) Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl Energy 135:182–191CrossRef
40.
Zurück zum Zitat Reza MT et al (2015) Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide. Bioresour Technol 182:336–344CrossRef Reza MT et al (2015) Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide. Bioresour Technol 182:336–344CrossRef
41.
Zurück zum Zitat Reza MT et al (2014) Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass. Bioresour Technol 169:352–361CrossRef Reza MT et al (2014) Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass. Bioresour Technol 169:352–361CrossRef
43.
Zurück zum Zitat Liu Z, Quek A, Kent Hoekman S et al (2012) Thermogravimetric investigation of hydrochar-lignite co-combustion. Bioresour Technol 123:646–652CrossRef Liu Z, Quek A, Kent Hoekman S et al (2012) Thermogravimetric investigation of hydrochar-lignite co-combustion. Bioresour Technol 123:646–652CrossRef
44.
Zurück zum Zitat Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef
45.
Zurück zum Zitat Zhu Z, Liu Z, Zhang Y et al (2016) Recovery of reducing sugars and volatile fatty acids from cornstalk at different hydrothermal treatment severity. Bioresour Technol 199:220–227CrossRef Zhu Z, Liu Z, Zhang Y et al (2016) Recovery of reducing sugars and volatile fatty acids from cornstalk at different hydrothermal treatment severity. Bioresour Technol 199:220–227CrossRef
46.
Zurück zum Zitat Machmudah S, Wahyudiono W, Kanda H et al. (2015) Hot compressed water extraction of lignin by using a flow-through reactor. Engineering Journal; vol 19, No 4 (2015): regular issue. doi: 10.4186/ej.2015.19.4.25 Machmudah S, Wahyudiono W, Kanda H et al. (2015) Hot compressed water extraction of lignin by using a flow-through reactor. Engineering Journal; vol 19, No 4 (2015): regular issue. doi: 10.​4186/​ej.​2015.​19.​4.​25
47.
Zurück zum Zitat Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12CrossRef Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12CrossRef
48.
Zurück zum Zitat Lu X et al (2013) Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose. Bioresour Technol 138:180–190CrossRef Lu X et al (2013) Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose. Bioresour Technol 138:180–190CrossRef
49.
Zurück zum Zitat Kim D, Lee K, Park KY (2016) Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization. J Ind Eng Chem 42:95–100CrossRef Kim D, Lee K, Park KY (2016) Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization. J Ind Eng Chem 42:95–100CrossRef
50.
Zurück zum Zitat Liu Z et al (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949CrossRef Liu Z et al (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949CrossRef
51.
Zurück zum Zitat Pavlovic I, Knez Z, Skerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61:8003–8025CrossRef Pavlovic I, Knez Z, Skerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61:8003–8025CrossRef
52.
Zurück zum Zitat Antal MJ Jr, Mok WSL, Richards GN (1990) Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr Res 199:91–109CrossRef Antal MJ Jr, Mok WSL, Richards GN (1990) Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr Res 199:91–109CrossRef
53.
Zurück zum Zitat Hu L, Zhao G, Hao W et al (2012) Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Adv 2:11184–11206CrossRef Hu L, Zhao G, Hao W et al (2012) Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Adv 2:11184–11206CrossRef
54.
Zurück zum Zitat Li K, Bai L, Amaniampong PN et al (2014) One-pot transformation of cellobiose to formic acid and levulinic acid over ionic-liquid-based polyoxometalate hybrids. ChemSusChem 7:2670–2677CrossRef Li K, Bai L, Amaniampong PN et al (2014) One-pot transformation of cellobiose to formic acid and levulinic acid over ionic-liquid-based polyoxometalate hybrids. ChemSusChem 7:2670–2677CrossRef
55.
Zurück zum Zitat Aida TM, Ikarashi A, Saito Y et al (2009) Dehydration of lactic acid to acrylic acid in high temperature water at high pressures. J Supercrit Fluids 50:257–264CrossRef Aida TM, Ikarashi A, Saito Y et al (2009) Dehydration of lactic acid to acrylic acid in high temperature water at high pressures. J Supercrit Fluids 50:257–264CrossRef
56.
Zurück zum Zitat Hisaya T, Pilasinee L, Tsuyoshi H et al (2014) Recovery of furfural produced by hydrothermal treatment with biomass charcoal. Int J Environ 4:11–17 Hisaya T, Pilasinee L, Tsuyoshi H et al (2014) Recovery of furfural produced by hydrothermal treatment with biomass charcoal. Int J Environ 4:11–17
57.
Zurück zum Zitat Ju M, Zeng C, Wang C et al (2014) Preparation of ultrafine carbon spheres by controlled polymerization of furfuryl alcohol in microdroplets. Ind Eng Chem Res 53:3084–3090CrossRef Ju M, Zeng C, Wang C et al (2014) Preparation of ultrafine carbon spheres by controlled polymerization of furfuryl alcohol in microdroplets. Ind Eng Chem Res 53:3084–3090CrossRef
59.
Zurück zum Zitat Xin K et al (2016) Liquid–liquid equilibria for the extraction of furfural from aqueous solution using different solvents. Fluid Phase Equilib 425:393–401CrossRef Xin K et al (2016) Liquid–liquid equilibria for the extraction of furfural from aqueous solution using different solvents. Fluid Phase Equilib 425:393–401CrossRef
60.
Zurück zum Zitat Chan X et al (2016) Separation and purification of furfuryl alcohol monomer and oligomers using a two-phase extracting process. ACS Sustain Chem Eng 4(8):4084–4088CrossRef Chan X et al (2016) Separation and purification of furfuryl alcohol monomer and oligomers using a two-phase extracting process. ACS Sustain Chem Eng 4(8):4084–4088CrossRef
61.
Zurück zum Zitat Sindermann EC et al (2016) Single stage and countercurrent extraction of 5-hydroxymethylfurfural from aqueous phase systems. Chem Eng J 283:251–259CrossRef Sindermann EC et al (2016) Single stage and countercurrent extraction of 5-hydroxymethylfurfural from aqueous phase systems. Chem Eng J 283:251–259CrossRef
62.
Zurück zum Zitat Reyhanitash E et al (2016) Extraction of volatile fatty acids from fermented wastewater. Sep Purif Technol 161:61–68CrossRef Reyhanitash E et al (2016) Extraction of volatile fatty acids from fermented wastewater. Sep Purif Technol 161:61–68CrossRef
63.
Zurück zum Zitat Yano T et al (1989) Extraction of volatile fatty acids from spent medium with a supported liquid membrane. In: Fiechter A, Okada H, Tanner RD (eds) Bioproducts and bioprocesses: second conference to promote Japan/U.S. Joint Projects and Cooperation in Biotechnology, Lake Biwa, Japan, September 27–30, 1986. Springer, Berlin, pp 281–293CrossRef Yano T et al (1989) Extraction of volatile fatty acids from spent medium with a supported liquid membrane. In: Fiechter A, Okada H, Tanner RD (eds) Bioproducts and bioprocesses: second conference to promote Japan/U.S. Joint Projects and Cooperation in Biotechnology, Lake Biwa, Japan, September 27–30, 1986. Springer, Berlin, pp 281–293CrossRef
64.
Zurück zum Zitat Cabezas JL et al (1988) Extraction of furfural from aqueous solutions using alcohols. J Chem Eng Data 33(4):435–437CrossRef Cabezas JL et al (1988) Extraction of furfural from aqueous solutions using alcohols. J Chem Eng Data 33(4):435–437CrossRef
Metadaten
Titel
Characteristics of hydrochar and hydrothermal liquid products from hydrothermal carbonization of corncob
verfasst von
Kamonwat Nakason
Bunyarit Panyapinyopol
Vorapot Kanokkantapong
Nawin Viriya-empikul
Wasawat Kraithong
Prasert Pavasant
Publikationsdatum
22.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 1/2018
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-017-0279-1

Weitere Artikel der Ausgabe 1/2018

Biomass Conversion and Biorefinery 1/2018 Zur Ausgabe