Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 3/2019

05.03.2019 | Original Article

Thermal and compositional properties of treated Tectona grandis

verfasst von: Jamiu Kolawole Odusote, Adekunle Akanni Adeleke, Olumuyiwa Ajani Lasode, Madhurai Malathi, Dayanand Paswan

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A torrefaction parametric study was conducted on Tectona grandis at varying torrefaction temperatures (240–300 °C), residence times (30–60 min), and particle sizes (2–6 mm) using a full factorial design (FFD). Optimum parameters were obtained through numerical optimization using the response optimizer in Minitab 17. These parameters were used to produce fuel with maximum mass yield (MY), higher heating value (HHV), and energy yield (EY). Proximate, ultimate, and HHV analyses were carried out on the raw and torrefied Tectona grandis samples based on ASTM standards, while Fourier transform infrared (FTIR) spectroscopy was used to determine the various functional groups present in the samples. The optimum parameters obtained were temperature (260 °C), residence time (60 min), and particle size (< 2 mm), while the maximum MY, HHV, and EY of the fuel are 70.20%, 23.10 MJ/kg, and 88.07%, respectively. The results revealed that torrefaction temperature has the largest effect on the properties of the Tectona grandis compared to other factors based on FFD analyses. There was a reduction in the volatile matter and moisture content of the raw biomass from 79.26 to 54.90% and 7.23 to 2.87%, respectively, while the fixed carbon and HHV increased from 11.73 to 40.43% and 18.73 to 23.10 MJ/kg, respectively, after torrefaction. The FTIR spectra showed a reduction in O–H and C–O bonds and an increase in C–C and C=C bonds in the torrefied samples compared to the raw samples. The thermochemical properties of the torrefied samples are better than those of the raw biomass.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dosunmu OO, Ajayi AB (2002) Problems and management of sawmill waste in Lagos, Proceedings of International Environmental Pollution and waste managent (EPCOWN 2002), pp 271–278 Dosunmu OO, Ajayi AB (2002) Problems and management of sawmill waste in Lagos, Proceedings of International Environmental Pollution and waste managent (EPCOWN 2002), pp 271–278
2.
Zurück zum Zitat Lasode OA, Balogun AO, McDonald AG (2014) Torrefaction of some Nigerian lignocellulosic resources and decomposition kinetics. J Anal Appl Pyrolysis 109:47–55CrossRef Lasode OA, Balogun AO, McDonald AG (2014) Torrefaction of some Nigerian lignocellulosic resources and decomposition kinetics. J Anal Appl Pyrolysis 109:47–55CrossRef
3.
Zurück zum Zitat Lasode OA, Balogun AO (2010) Wood waste generation in Ilorin metropolis: problems, management and prospects. J Solid Waste Technol Manag 36(1):568–593 Lasode OA, Balogun AO (2010) Wood waste generation in Ilorin metropolis: problems, management and prospects. J Solid Waste Technol Manag 36(1):568–593
4.
Zurück zum Zitat Pimchuai A, Dutta A, Basu P (2010) Torrefaction of agriculture residue to enhance combustible properties. Energy Fuel 24(9):4638–4645CrossRef Pimchuai A, Dutta A, Basu P (2010) Torrefaction of agriculture residue to enhance combustible properties. Energy Fuel 24(9):4638–4645CrossRef
5.
Zurück zum Zitat Basu P (2013) Economic issues of biomass energy conversion. Elsevier Inc, BurlingtonCrossRef Basu P (2013) Economic issues of biomass energy conversion. Elsevier Inc, BurlingtonCrossRef
6.
Zurück zum Zitat Pentananunt R, Rahman ANMM, Bhattacharya SC (1990) Upgrading of biomass by means of torrefaction. Energy 15(12):1175–1179CrossRef Pentananunt R, Rahman ANMM, Bhattacharya SC (1990) Upgrading of biomass by means of torrefaction. Energy 15(12):1175–1179CrossRef
7.
Zurück zum Zitat Bergman PC, Kiel JH Torrefaction for biomass upgrading (2005) Proc. 14th European Biomass Conference, Paris, France 2005:17–21 Bergman PC, Kiel JH Torrefaction for biomass upgrading (2005) Proc. 14th European Biomass Conference, Paris, France 2005:17–21
8.
Zurück zum Zitat Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89(2):169–175CrossRef Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89(2):169–175CrossRef
9.
Zurück zum Zitat Chin KL, H’ng PS, Go WZ, Wong WZ, Lim TW, Maminski M, Paridah MT, Luqman AC (2013) Optimization of torrefaction conditions for high energy density solid biofuel from oil palm biomass and fast growing species available in Malaysia. Ind Crop Prod 49:768–774CrossRef Chin KL, H’ng PS, Go WZ, Wong WZ, Lim TW, Maminski M, Paridah MT, Luqman AC (2013) Optimization of torrefaction conditions for high energy density solid biofuel from oil palm biomass and fast growing species available in Malaysia. Ind Crop Prod 49:768–774CrossRef
10.
Zurück zum Zitat Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. BioResourc 4(1):370–404 Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. BioResourc 4(1):370–404
11.
Zurück zum Zitat Liu X, Chen M, Wei Y (2015) Combustion behavior of corncob/bituminous coal and hardwood/bituminous coal. Renew Energy 8:355–365CrossRef Liu X, Chen M, Wei Y (2015) Combustion behavior of corncob/bituminous coal and hardwood/bituminous coal. Renew Energy 8:355–365CrossRef
12.
Zurück zum Zitat Basu P (2010) Biomass gasification and pyrolysis: practical design and theoryasification and pyrolysis: practical design and theory. Elsevier Inc, Burlington Basu P (2010) Biomass gasification and pyrolysis: practical design and theoryasification and pyrolysis: practical design and theory. Elsevier Inc, Burlington
13.
Zurück zum Zitat Balogun AO (2014) Torrefaction of selected Nigerian biomass species and decomposition kinetics of Terminalia ivorensis. Disesertation, Univeristy of Ilorin Balogun AO (2014) Torrefaction of selected Nigerian biomass species and decomposition kinetics of Terminalia ivorensis. Disesertation, Univeristy of Ilorin
14.
Zurück zum Zitat Lu KM, Lee WJ, Chen WH, Liu SH, Lin TC (2012) Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour Technol 123:98–105CrossRef Lu KM, Lee WJ, Chen WH, Liu SH, Lin TC (2012) Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour Technol 123:98–105CrossRef
15.
Zurück zum Zitat ASTM E871-82 (2013) Standard test method for moisture analysis of particulate wood fuels. ASTM International, West Conshohocken http://www.astm.org. Accessed 12 Apr 2017 ASTM E871-82 (2013) Standard test method for moisture analysis of particulate wood fuels. ASTM International, West Conshohocken http://​www.​astm.​org. Accessed 12 Apr 2017
16.
Zurück zum Zitat BS EN 15148 (2009) Solid biofuels: determination of the content of volatile matter. British Standards Institution, London BS EN 15148 (2009) Solid biofuels: determination of the content of volatile matter. British Standards Institution, London
17.
18.
Zurück zum Zitat IS: 1350-1 (1984) Indian standard methods of test for coal and coke, part 1: proximate analysis PCD 7: solid mineral fuels, reaffirmed in 2002, Fourth reprint, July, 2006, Bureau of Indian Standards, New Delhi, 110002 IS: 1350-1 (1984) Indian standard methods of test for coal and coke, part 1: proximate analysis PCD 7: solid mineral fuels, reaffirmed in 2002, Fourth reprint, July, 2006, Bureau of Indian Standards, New Delhi, 110002
19.
Zurück zum Zitat ASTM D5865-04 (2004) Standard test method for gross calorific value of coal and coke. ASTM International, West Conshohocken http://www.astm.org. Accessed 12 Apr 2017 ASTM D5865-04 (2004) Standard test method for gross calorific value of coal and coke. ASTM International, West Conshohocken http://​www.​astm.​org. Accessed 12 Apr 2017
20.
Zurück zum Zitat Almeida G, Brito JO, Perré P (2010) Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator. Bioresour Technol 101(24):9778–9784CrossRef Almeida G, Brito JO, Perré P (2010) Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator. Bioresour Technol 101(24):9778–9784CrossRef
21.
Zurück zum Zitat Lee WJ, Kim YH, Lee SM, Lee HW (2012) Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density. Bioresour Technol 116:471–476CrossRef Lee WJ, Kim YH, Lee SM, Lee HW (2012) Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density. Bioresour Technol 116:471–476CrossRef
22.
Zurück zum Zitat Medic D, Darr M, Shah A, Potter B, Zimmerman J (2012) Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91(1):147–154CrossRef Medic D, Darr M, Shah A, Potter B, Zimmerman J (2012) Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91(1):147–154CrossRef
23.
Zurück zum Zitat Tillman D, Rossi AJ, Kitto WD (1981) Wood combustion: principles, processes and economics. Academic, Orlando 43 Tillman D, Rossi AJ, Kitto WD (1981) Wood combustion: principles, processes and economics. Academic, Orlando 43
24.
Zurück zum Zitat Chen WH, Kuo PC (2010) A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35(6):2580–2586CrossRef Chen WH, Kuo PC (2010) A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35(6):2580–2586CrossRef
25.
Zurück zum Zitat Wei R, Zhang L, Cang D, Li J, Li X, Xu CC (2017) Current status and potential of biomass utilization in ferrous metallurgical industry. Renew Sust Energ Rev 68:511–524CrossRef Wei R, Zhang L, Cang D, Li J, Li X, Xu CC (2017) Current status and potential of biomass utilization in ferrous metallurgical industry. Renew Sust Energ Rev 68:511–524CrossRef
26.
Zurück zum Zitat Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood: part 1-weight loss kinetics. J Anal Appl Pyrolysis 77(1):28–34CrossRef Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood: part 1-weight loss kinetics. J Anal Appl Pyrolysis 77(1):28–34CrossRef
27.
Zurück zum Zitat Balogun AO, Lasode OA, Mcdonald AG (2014) Devolatilisation kinetics and pyrolytic analyses of Tectona grandis (teak). Bioresour Technol 156:57–62CrossRef Balogun AO, Lasode OA, Mcdonald AG (2014) Devolatilisation kinetics and pyrolytic analyses of Tectona grandis (teak). Bioresour Technol 156:57–62CrossRef
28.
Zurück zum Zitat Bergman PC, Boersma AR, Zwart RWR, Kiel JHA (2008) Torrefaction for biomass co-firing in existing coal-fired power stations. Energy Centre of Netherlands, Sint Maartensvlotbrug Bergman PC, Boersma AR, Zwart RWR, Kiel JHA (2008) Torrefaction for biomass co-firing in existing coal-fired power stations. Energy Centre of Netherlands, Sint Maartensvlotbrug
29.
Zurück zum Zitat Greenhalf CE, Nowakowski DJ, Harms AB, Titiloye JO, Bridgwater AA (2013) Comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products. Fuel 108:216–230CrossRef Greenhalf CE, Nowakowski DJ, Harms AB, Titiloye JO, Bridgwater AA (2013) Comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products. Fuel 108:216–230CrossRef
30.
Zurück zum Zitat Isahak WNRW, Hamzah N, Nordin NAM, Hisham MWM, Yarmo MA (2013) Dehydration studies of biomass resources for activated carbon production using BET and XRD techniques. Adv Mater Res 620:491–495CrossRef Isahak WNRW, Hamzah N, Nordin NAM, Hisham MWM, Yarmo MA (2013) Dehydration studies of biomass resources for activated carbon production using BET and XRD techniques. Adv Mater Res 620:491–495CrossRef
31.
Zurück zum Zitat Brown RC (2011) Thermochemical processing of biomass: conversion into fuels, chemicals and power. John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom Brown RC (2011) Thermochemical processing of biomass: conversion into fuels, chemicals and power. John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom
32.
Zurück zum Zitat Sonibare OO, Haeger T, Foley SF (2010) Structural characterization of Nigerian coals by X-ray diffraction , Raman and FTIR spectroscopy. Energy 35(12):5347–5353CrossRef Sonibare OO, Haeger T, Foley SF (2010) Structural characterization of Nigerian coals by X-ray diffraction , Raman and FTIR spectroscopy. Energy 35(12):5347–5353CrossRef
33.
Zurück zum Zitat Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef
34.
Zurück zum Zitat Bilba K, Ouensanga A (1996) Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse. J Anal Appl Pyrolysis 38:61–73CrossRef Bilba K, Ouensanga A (1996) Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse. J Anal Appl Pyrolysis 38:61–73CrossRef
35.
Zurück zum Zitat Demirbas A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41:633–646CrossRef Demirbas A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41:633–646CrossRef
Metadaten
Titel
Thermal and compositional properties of treated Tectona grandis
verfasst von
Jamiu Kolawole Odusote
Adekunle Akanni Adeleke
Olumuyiwa Ajani Lasode
Madhurai Malathi
Dayanand Paswan
Publikationsdatum
05.03.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 3/2019
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-019-00398-1

Weitere Artikel der Ausgabe 3/2019

Biomass Conversion and Biorefinery 3/2019 Zur Ausgabe