Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 2/2023

05.11.2020 | Review Article

A review on lignin utilization in petroleum exploration, petroleum products formulation, bio-fuel production, and oil spill clean-up

verfasst von: Himani Negi, Raj Kumar Singh

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

After cellulose, lignin is considered to be the most abundant, renewable, economical natural biopolymer existing on earth. Out of the natural biosynthesized carbon in biosphere, lignin accounts for 30%. Lignin is a complex aromatic polymer and a vital cell wall structural component. This highly complex phenolic macromolecule is obtained as a low-value by-product of cellulose production and by the paper pulp industry. It is an underutilized material, so the use of lignocellulosic feedstock is increasing as a renewable and sustainable alternative to petroleum resource. Several efforts have also been made to use lignin in the petroleum field. Here, we summarize the current knowledge regarding lignin utilization for the petroleum exploration, petroleum products formulation, bio-fuel production, and oil spill clean-up. This review covers the direct use of lignin (as such) and also the chemical modifications of lignin. The future perspective and trend towards lignin-based material utility for the petroleum industry are then addressed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Amidon TE, Liu S (2009) Water-based woody biorefinery. Biotechnol Adv 27:542–550CrossRef Amidon TE, Liu S (2009) Water-based woody biorefinery. Biotechnol Adv 27:542–550CrossRef
2.
Zurück zum Zitat Mu R, Hong X, Ni Y, Li Y, Pang J, Wang Q, Xiao J, Zheng Y (2019) Recent trends and applications of cellulose nanocrystals in food industry. Trends Food Sci Technol 93:136–144CrossRef Mu R, Hong X, Ni Y, Li Y, Pang J, Wang Q, Xiao J, Zheng Y (2019) Recent trends and applications of cellulose nanocrystals in food industry. Trends Food Sci Technol 93:136–144CrossRef
3.
Zurück zum Zitat Kafashi S, Rasaei M, Karimi G (2017) Effects of sugarcane and polyanionic cellulose on rheological properties of drilling mud: an experimental approach. Egypt J Pet 26:371–374CrossRef Kafashi S, Rasaei M, Karimi G (2017) Effects of sugarcane and polyanionic cellulose on rheological properties of drilling mud: an experimental approach. Egypt J Pet 26:371–374CrossRef
4.
Zurück zum Zitat Hasan AMA, Abdel-Raouf ME (2018) Applications of guar gum and its derivatives in petroleum industry: a review. Egypt J Pet 27:1043–1050CrossRef Hasan AMA, Abdel-Raouf ME (2018) Applications of guar gum and its derivatives in petroleum industry: a review. Egypt J Pet 27:1043–1050CrossRef
5.
Zurück zum Zitat Pu WF, Liu R, Peng Q, Du DJ, Zhao QN (2016) Amphiphilically modified chitosan copolymer for enhanced oil recovery in harsh reservoir condition. J Ind Eng Chem 37:216–223CrossRef Pu WF, Liu R, Peng Q, Du DJ, Zhao QN (2016) Amphiphilically modified chitosan copolymer for enhanced oil recovery in harsh reservoir condition. J Ind Eng Chem 37:216–223CrossRef
6.
Zurück zum Zitat Rezvani H, Riazi M, Tabaei M, Kazemzadeh Y, Sharifi M (2018) Experimental investigation of interfacial properties in the EOR mechanisms by the novel synthesized Fe3O4@chitosan nanocomposites. Colloids Surf A Physicochem Eng Asp 544:15–27CrossRef Rezvani H, Riazi M, Tabaei M, Kazemzadeh Y, Sharifi M (2018) Experimental investigation of interfacial properties in the EOR mechanisms by the novel synthesized Fe3O4@chitosan nanocomposites. Colloids Surf A Physicochem Eng Asp 544:15–27CrossRef
7.
Zurück zum Zitat Negi H, Faujdar E, Saleheen R, Singh RK (2020) Viscosity modification of heavy crude oil by using a chitosan-based cationic surfactant. Energy Fuel 34:4474–4483CrossRef Negi H, Faujdar E, Saleheen R, Singh RK (2020) Viscosity modification of heavy crude oil by using a chitosan-based cationic surfactant. Energy Fuel 34:4474–4483CrossRef
8.
Zurück zum Zitat Wang S, Xu X, Yang J, Gao J (2011) Effect of the carboxymethyl chitosan on removal of nickel and vanadium from crude oil in the presence of microwave irradiation. Fuel Process Technol 92:486–492CrossRef Wang S, Xu X, Yang J, Gao J (2011) Effect of the carboxymethyl chitosan on removal of nickel and vanadium from crude oil in the presence of microwave irradiation. Fuel Process Technol 92:486–492CrossRef
9.
Zurück zum Zitat Chen G, Liu J, Qi Y, Yao J, Yan B (2016) Biodiesel production using magnetic whole-cell biocatalysts by immobilization of Pseudomonas mendocina on Fe3O4-chitosan microspheres. Biochem Eng J 113:86–92CrossRef Chen G, Liu J, Qi Y, Yao J, Yan B (2016) Biodiesel production using magnetic whole-cell biocatalysts by immobilization of Pseudomonas mendocina on Fe3O4-chitosan microspheres. Biochem Eng J 113:86–92CrossRef
10.
Zurück zum Zitat Crisafully R, Milhome MAL, Cavalcante RM, Silveira ER, De Keukeleire D, Nascimento RF (2008) Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresour Technol 99:4515–4519CrossRef Crisafully R, Milhome MAL, Cavalcante RM, Silveira ER, De Keukeleire D, Nascimento RF (2008) Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresour Technol 99:4515–4519CrossRef
11.
Zurück zum Zitat Bashir Wani O, Shoaib M, Al Sumaiti A, Bobicki ER, Alhassan SM (2020) Application of green additives for enhanced oil recovery: cellulosic nanocrystals as fluid diversion agents in carbonate reservoirs. Colloids Surf A Physicochem Eng Asp 589:124422CrossRef Bashir Wani O, Shoaib M, Al Sumaiti A, Bobicki ER, Alhassan SM (2020) Application of green additives for enhanced oil recovery: cellulosic nanocrystals as fluid diversion agents in carbonate reservoirs. Colloids Surf A Physicochem Eng Asp 589:124422CrossRef
12.
Zurück zum Zitat Jakobsen TD, Simon S, Heggset EB, Syverud K, Paso K (2018) Interactions between surfactants and cellulose nanofibrils for enhanced oil recovery. Ind Eng Chem Res 57:15749–15758CrossRef Jakobsen TD, Simon S, Heggset EB, Syverud K, Paso K (2018) Interactions between surfactants and cellulose nanofibrils for enhanced oil recovery. Ind Eng Chem Res 57:15749–15758CrossRef
13.
Zurück zum Zitat Saboori R, Sabbaghi S, Kalantariasl A, Mowla D (2018) Improvement in filtration properties of water-based drilling fluid by nanocarboxymethyl cellulose/polystyrene core–shell nanocomposite. J Pet Explor Prod Technol 8:445–454CrossRef Saboori R, Sabbaghi S, Kalantariasl A, Mowla D (2018) Improvement in filtration properties of water-based drilling fluid by nanocarboxymethyl cellulose/polystyrene core–shell nanocomposite. J Pet Explor Prod Technol 8:445–454CrossRef
14.
Zurück zum Zitat Singh R, Kukrety A, Chouhan A, Atray N, Ray S (2017) Recent progress in the preparation of eco-friendly lubricant and fuel additives through organic transformations of biomaterials. Mini-Rev Organic Chem 14:44–55CrossRef Singh R, Kukrety A, Chouhan A, Atray N, Ray S (2017) Recent progress in the preparation of eco-friendly lubricant and fuel additives through organic transformations of biomaterials. Mini-Rev Organic Chem 14:44–55CrossRef
15.
Zurück zum Zitat Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290CrossRef Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290CrossRef
16.
Zurück zum Zitat Yanhua J, Weihong Q, Zongshi LI, Lubai C (2004) A study on the modified lignosulfonate from lignin. Taylor Francis 26:409–414 Yanhua J, Weihong Q, Zongshi LI, Lubai C (2004) A study on the modified lignosulfonate from lignin. Taylor Francis 26:409–414
17.
Zurück zum Zitat Wang T, Liu X, Han D, Ma C, Wei M, Huo P, Yan Y (2020) Biomass derived the V-doped carbon/Bi2O3 composite for efficient photocatalysts. Environ Res 182:108998CrossRef Wang T, Liu X, Han D, Ma C, Wei M, Huo P, Yan Y (2020) Biomass derived the V-doped carbon/Bi2O3 composite for efficient photocatalysts. Environ Res 182:108998CrossRef
18.
Zurück zum Zitat Zhao T, Zhang K, Chen J, Shi X, Li X, Ma Y, Fang G, Xu S (2019) Changes in heavy metal mobility and availability in contaminated wet-land soil remediated using lignin-based poly(acrylic acid). J Hazard Mater 368:459–467CrossRef Zhao T, Zhang K, Chen J, Shi X, Li X, Ma Y, Fang G, Xu S (2019) Changes in heavy metal mobility and availability in contaminated wet-land soil remediated using lignin-based poly(acrylic acid). J Hazard Mater 368:459–467CrossRef
19.
Zurück zum Zitat Roy K, Debnath SC, Potiyaraj P (2020) A review on recent trends and future prospects of lignin based green rubber composites. J Polym Environ 28:367–387CrossRef Roy K, Debnath SC, Potiyaraj P (2020) A review on recent trends and future prospects of lignin based green rubber composites. J Polym Environ 28:367–387CrossRef
20.
Zurück zum Zitat Xue Y, Qiu X, Ouyang X (2020) Insights into the effect of aggregation on lignin fluorescence and its application for microstructure analysis. Int J Biol Macromol 154:981–988CrossRef Xue Y, Qiu X, Ouyang X (2020) Insights into the effect of aggregation on lignin fluorescence and its application for microstructure analysis. Int J Biol Macromol 154:981–988CrossRef
21.
Zurück zum Zitat Pandian B, Arunachalam R, Easwaramoorthi S, Rao JR (2020) Tuning of renewable biomass lignin into high value-added product: development of light resistant azo-lignin colorant for coating application. J Clean Prod 256:120455CrossRef Pandian B, Arunachalam R, Easwaramoorthi S, Rao JR (2020) Tuning of renewable biomass lignin into high value-added product: development of light resistant azo-lignin colorant for coating application. J Clean Prod 256:120455CrossRef
22.
Zurück zum Zitat Zhou Y, Han Y, Li G, Yang S, Chu F (2019) Lignin-based hollow nanoparticles for controlled drug delivery: grafting preparation using β-cyclodextrin/enzymatic-hydrolysis lignin. Nanomaterials 9:997CrossRef Zhou Y, Han Y, Li G, Yang S, Chu F (2019) Lignin-based hollow nanoparticles for controlled drug delivery: grafting preparation using β-cyclodextrin/enzymatic-hydrolysis lignin. Nanomaterials 9:997CrossRef
23.
Zurück zum Zitat Lu X, Dai P, Zhu X, Guo H, Que H, Wang D, Liang D, He T, Dong Y, Li L (2020) Thermal behavior and kinetics of enzymatic hydrolysis lignin modified products. Thermochim Acta 688:178593CrossRef Lu X, Dai P, Zhu X, Guo H, Que H, Wang D, Liang D, He T, Dong Y, Li L (2020) Thermal behavior and kinetics of enzymatic hydrolysis lignin modified products. Thermochim Acta 688:178593CrossRef
24.
Zurück zum Zitat Zhang L, Yin D (1999) Novel modified lignosulfonate as drilling mud thinner. J Appl Polym Sci 74:1662–1668CrossRef Zhang L, Yin D (1999) Novel modified lignosulfonate as drilling mud thinner. J Appl Polym Sci 74:1662–1668CrossRef
25.
Zurück zum Zitat Ibrahim MNM, Azreena IN, Nadiah M, Nor Y, Saaid IM (2006) Lignin graft copolymer as a drilling mud thinner for high temperature well. J Appl Sci 6:1808–1813CrossRef Ibrahim MNM, Azreena IN, Nadiah M, Nor Y, Saaid IM (2006) Lignin graft copolymer as a drilling mud thinner for high temperature well. J Appl Sci 6:1808–1813CrossRef
26.
Zurück zum Zitat Ibrahim MNM, Bin Taleb FFS (2015) A method for producing a thermally stable fluid loss reducing agent for water-based drilling fluid Ibrahim MNM, Bin Taleb FFS (2015) A method for producing a thermally stable fluid loss reducing agent for water-based drilling fluid
27.
Zurück zum Zitat Al Adasani A, Bai B (2011) Analysis of EOR projects and updated screening criteria. J Pet Sci Eng 79:10–24CrossRef Al Adasani A, Bai B (2011) Analysis of EOR projects and updated screening criteria. J Pet Sci Eng 79:10–24CrossRef
28.
Zurück zum Zitat Li N, Zhang G, Ge J, Zhang L, Liu X, Wang J (2012) Ultra-low interfacial tension between heavy oil and betaine-type amphoteric surfactants. J Dispers Sci Technol 33:258–264CrossRef Li N, Zhang G, Ge J, Zhang L, Liu X, Wang J (2012) Ultra-low interfacial tension between heavy oil and betaine-type amphoteric surfactants. J Dispers Sci Technol 33:258–264CrossRef
29.
Zurück zum Zitat Chen S, Shen S, Mi J, Zhou Y, Wang G, Yan X (2015) Synthesis of surfactants from alkali lignin for enhanced oil recovery. J Dispers Sci Technol 37:1574–1580CrossRef Chen S, Shen S, Mi J, Zhou Y, Wang G, Yan X (2015) Synthesis of surfactants from alkali lignin for enhanced oil recovery. J Dispers Sci Technol 37:1574–1580CrossRef
30.
Zurück zum Zitat Chen S, Liu H, Sun H, Yan X, Wang G, Zhou Y, Zhang J (2018) Synthesis and physiochemical performance evaluation of novel sulphobetaine zwitterionic surfactants from lignin for enhanced oil recovery. J Mol Liq 249:73–82CrossRef Chen S, Liu H, Sun H, Yan X, Wang G, Zhou Y, Zhang J (2018) Synthesis and physiochemical performance evaluation of novel sulphobetaine zwitterionic surfactants from lignin for enhanced oil recovery. J Mol Liq 249:73–82CrossRef
31.
Zurück zum Zitat Chen S, Zhou Y, Liu H, Yang J, Wei Y, Zhang J (2019) Synthesis and physicochemical investigation of anionic − nonionic surfactants based on lignin for application in enhanced oil recovery. Energy Fuel 33:6247–6257CrossRef Chen S, Zhou Y, Liu H, Yang J, Wei Y, Zhang J (2019) Synthesis and physicochemical investigation of anionic − nonionic surfactants based on lignin for application in enhanced oil recovery. Energy Fuel 33:6247–6257CrossRef
32.
Zurück zum Zitat Ganie K, Manan MA, Ibrahim A, Idris AK (2019) An experimental approach to formulate lignin-based surfactant for enhanced oil recovery. Int J Chem Eng 2019:1–6CrossRef Ganie K, Manan MA, Ibrahim A, Idris AK (2019) An experimental approach to formulate lignin-based surfactant for enhanced oil recovery. Int J Chem Eng 2019:1–6CrossRef
33.
Zurück zum Zitat Farajzadeh R, Andrianov A, Zitha PLJ (2010) Investigation of immiscible and miscible foam for enhancing oil recovery. Ind Eng Chem Res 49:1910–1919CrossRef Farajzadeh R, Andrianov A, Zitha PLJ (2010) Investigation of immiscible and miscible foam for enhancing oil recovery. Ind Eng Chem Res 49:1910–1919CrossRef
34.
Zurück zum Zitat Wei B, Wang Y, Mao R, Xu X, Wood C, Wen Y (2019) Design of nanocellulose fibrils containing lignin segment (L-NCF) for producing stable liquid foams as “green” flooding agents for oil recovery. ACS Sustain Chem Eng 7:11426–11437CrossRef Wei B, Wang Y, Mao R, Xu X, Wood C, Wen Y (2019) Design of nanocellulose fibrils containing lignin segment (L-NCF) for producing stable liquid foams as “green” flooding agents for oil recovery. ACS Sustain Chem Eng 7:11426–11437CrossRef
35.
Zurück zum Zitat Galvan RF, Barranco V, Galvan JC, Batlle Sebastian FeliuFajardo S, García (2016) Pre-treatment of heavy crude oils for refining. In: Processing of heavy crude oils - challenges and opportunities, p 13 Galvan RF, Barranco V, Galvan JC, Batlle Sebastian FeliuFajardo S, García (2016) Pre-treatment of heavy crude oils for refining. In: Processing of heavy crude oils - challenges and opportunities, p 13
36.
Zurück zum Zitat Roostaie T, Farsi M, Rahimpour MR, Biniaz P (2017) Performance of biodegradable cellulose based agents for demulsification of crude oil: dehydration capacity and rate. Sep Purif Technol 179:291–296CrossRef Roostaie T, Farsi M, Rahimpour MR, Biniaz P (2017) Performance of biodegradable cellulose based agents for demulsification of crude oil: dehydration capacity and rate. Sep Purif Technol 179:291–296CrossRef
37.
Zurück zum Zitat Busu TNZTM, Saman N, Mohtar SS, Md Noor AM, Hassan O, Ali N, Mat H (2019) An evaluation of lignocellulosic solutions from OPEFB pulping process as demulsifiers for crude oil emulsion demulsification. Pet Sci Technol 37:1675–1682CrossRef Busu TNZTM, Saman N, Mohtar SS, Md Noor AM, Hassan O, Ali N, Mat H (2019) An evaluation of lignocellulosic solutions from OPEFB pulping process as demulsifiers for crude oil emulsion demulsification. Pet Sci Technol 37:1675–1682CrossRef
38.
Zurück zum Zitat Muñoz JAD, Ancheyta J, Castañeda LC (2016) Required viscosity values to ensure proper transportation of crude oil by pipeline. Energy Fuel 30:8850–8854CrossRef Muñoz JAD, Ancheyta J, Castañeda LC (2016) Required viscosity values to ensure proper transportation of crude oil by pipeline. Energy Fuel 30:8850–8854CrossRef
39.
Zurück zum Zitat Hart A (2014) A review of technologies for transporting heavy crude oil and bitumen via pipelines. J Pet Explor Prod Technol 4:327–336CrossRef Hart A (2014) A review of technologies for transporting heavy crude oil and bitumen via pipelines. J Pet Explor Prod Technol 4:327–336CrossRef
40.
Zurück zum Zitat Wong SF, Lim JS, Dol SS (2015) Crude oil emulsion: a review on formation, classification and stability of water-in-oil emulsions. J Pet Sci Eng 135:498–504CrossRef Wong SF, Lim JS, Dol SS (2015) Crude oil emulsion: a review on formation, classification and stability of water-in-oil emulsions. J Pet Sci Eng 135:498–504CrossRef
41.
Zurück zum Zitat Zaki NN, Ahmed NS, Nassar AM (2000) Sodium lignin sulfonate to stabilize heavy crude oil-in-water emulsions for pipeline transportation. Pet Sci Technol 18:1175–1193CrossRef Zaki NN, Ahmed NS, Nassar AM (2000) Sodium lignin sulfonate to stabilize heavy crude oil-in-water emulsions for pipeline transportation. Pet Sci Technol 18:1175–1193CrossRef
42.
Zurück zum Zitat Rudnick LR (2017) Lubricant additives: chemistry and applications. CRC Press Rudnick LR (2017) Lubricant additives: chemistry and applications. CRC Press
43.
Zurück zum Zitat Erhan SZ, Asadauskas S (2000) Lubricant basestocks from vegetable oils. Ind Crop Prod 11:277–282CrossRef Erhan SZ, Asadauskas S (2000) Lubricant basestocks from vegetable oils. Ind Crop Prod 11:277–282CrossRef
44.
Zurück zum Zitat Spikes H (2004) The history and mechanisms of ZDDP. Tribol Lett 17:469–489CrossRef Spikes H (2004) The history and mechanisms of ZDDP. Tribol Lett 17:469–489CrossRef
45.
Zurück zum Zitat Hewstone RK (1994) Environmental health aspects of lubricant additives. Sci Total Environ 156:243–254CrossRef Hewstone RK (1994) Environmental health aspects of lubricant additives. Sci Total Environ 156:243–254CrossRef
46.
Zurück zum Zitat Willing A (2001) Lubricants based on renewable resources - an environmentally compatible alternative to mineral oil products. Chemosphere 43:89–98CrossRef Willing A (2001) Lubricants based on renewable resources - an environmentally compatible alternative to mineral oil products. Chemosphere 43:89–98CrossRef
47.
Zurück zum Zitat King, Wei L (2013) Novel lignin based composition U.S. Patent Application No 13/095,821, 2013 King, Wei L (2013) Novel lignin based composition U.S. Patent Application No 13/095,821, 2013
48.
Zurück zum Zitat Zhang Y, Jun MBG (2014) Feasibility of lignin as additive in metalworking fluids for micro-milling. J Manuf Process 16:503–510CrossRef Zhang Y, Jun MBG (2014) Feasibility of lignin as additive in metalworking fluids for micro-milling. J Manuf Process 16:503–510CrossRef
49.
Zurück zum Zitat Mu L, Shi Y, Wang H, Zhu J (2016) Lignin in ethylene glycol and poly(ethylene glycol): fortified lubricants with internal hydrogen bonding. ACS Sustain Chem Eng 4:1840–1849CrossRef Mu L, Shi Y, Wang H, Zhu J (2016) Lignin in ethylene glycol and poly(ethylene glycol): fortified lubricants with internal hydrogen bonding. ACS Sustain Chem Eng 4:1840–1849CrossRef
50.
Zurück zum Zitat Mu L, Shi Y, Guo X, Wu J, Ji T, Chen L, Feng X, Lu X, Hua J, Zhu J (2016) Enriching heteroelements in lignin as lubricating additives for bioionic liquids. ACS Sustain Chem Eng 4:3877–3887CrossRef Mu L, Shi Y, Guo X, Wu J, Ji T, Chen L, Feng X, Lu X, Hua J, Zhu J (2016) Enriching heteroelements in lignin as lubricating additives for bioionic liquids. ACS Sustain Chem Eng 4:3877–3887CrossRef
51.
Zurück zum Zitat Mu L, Wu J, Matsakas L, Chen M, Vahidi A, Grahn M, Rova U, Christakopoulos P, Zhu J, Shi Y (2018) Lignin from hardwood and softwood biomass as a lubricating additive to ethylene glycol. Molecules 23:1–10CrossRef Mu L, Wu J, Matsakas L, Chen M, Vahidi A, Grahn M, Rova U, Christakopoulos P, Zhu J, Shi Y (2018) Lignin from hardwood and softwood biomass as a lubricating additive to ethylene glycol. Molecules 23:1–10CrossRef
52.
Zurück zum Zitat Mu L, Wu J, Matsakas L, Chen M, Rova U, Christakopoulos P, Zhu J, Shi Y (2019) Two important factors of selecting lignin as efficient lubricating additives in poly (ethylene glycol): hydrogen bond and molecular weight. Int J Biol Macromol 129:564–570CrossRef Mu L, Wu J, Matsakas L, Chen M, Rova U, Christakopoulos P, Zhu J, Shi Y (2019) Two important factors of selecting lignin as efficient lubricating additives in poly (ethylene glycol): hydrogen bond and molecular weight. Int J Biol Macromol 129:564–570CrossRef
53.
Zurück zum Zitat Lea CW (2002) European development of lubricants derived from renewable resources. Ind Lubr Tribol 54:268–274CrossRef Lea CW (2002) European development of lubricants derived from renewable resources. Ind Lubr Tribol 54:268–274CrossRef
54.
Zurück zum Zitat Sánchez R, Franco JM, Delgado MA, Valencia C, Gallegos C (2011) Thermal and mechanical characterization of cellulosic derivatives-based oleogels potentially applicable as bio-lubricating greases: Influence of ethyl cellulose molecular weight. Carbohydr Polym 83:151–158CrossRef Sánchez R, Franco JM, Delgado MA, Valencia C, Gallegos C (2011) Thermal and mechanical characterization of cellulosic derivatives-based oleogels potentially applicable as bio-lubricating greases: Influence of ethyl cellulose molecular weight. Carbohydr Polym 83:151–158CrossRef
55.
Zurück zum Zitat Gallego R, Arteaga JF, Valencia C, Franco JM (2013) Isocyanate-functionalized chitin and chitosan as gelling agents of castor oil. Molecules 18:6532–6549CrossRef Gallego R, Arteaga JF, Valencia C, Franco JM (2013) Isocyanate-functionalized chitin and chitosan as gelling agents of castor oil. Molecules 18:6532–6549CrossRef
56.
Zurück zum Zitat Sánchez R, Valencia C, Franco JM (2014) Rheological and tribological characterization of a new acylated chitosan-based biodegradable lubricating grease: a comparative study with traditional lithium and calcium greases. Tribol Trans 57:445–454CrossRef Sánchez R, Valencia C, Franco JM (2014) Rheological and tribological characterization of a new acylated chitosan-based biodegradable lubricating grease: a comparative study with traditional lithium and calcium greases. Tribol Trans 57:445–454CrossRef
57.
Zurück zum Zitat Bertella S, Luterbacher JS (2020) Lignin functionalization for the production of novel materials. Trends Chem 2:440–453CrossRef Bertella S, Luterbacher JS (2020) Lignin functionalization for the production of novel materials. Trends Chem 2:440–453CrossRef
58.
Zurück zum Zitat Morway AJ, Kunc JF (1966) lgnosulfonate lubricants Patent No. 3,249,537, 1966 Morway AJ, Kunc JF (1966) lgnosulfonate lubricants Patent No. 3,249,537, 1966 
59.
Zurück zum Zitat Gallego R, Arteaga JF, Valencia C, Franco JM (2013) Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohydr Polym 98:152–160CrossRef Gallego R, Arteaga JF, Valencia C, Franco JM (2013) Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohydr Polym 98:152–160CrossRef
60.
Zurück zum Zitat Borrero-López AM, Santiago-Medina FJ, Valencia C, Eugenio ME, Martin-Sampedro R, Franco JM (2018) Valorization of kraft lignin as thickener in castor oil for lubricant applications. J Renewable Mater 6:347–361CrossRef Borrero-López AM, Santiago-Medina FJ, Valencia C, Eugenio ME, Martin-Sampedro R, Franco JM (2018) Valorization of kraft lignin as thickener in castor oil for lubricant applications. J Renewable Mater 6:347–361CrossRef
61.
Zurück zum Zitat Borrero-López AM, Blánquez A, Valencia C, Hernández M, Arias ME, Eugenio ME, Fillat Ú, Franco JM (2018) Valorization of soda lignin from wheat straw solid-state fermentation: production of oleogels. ACS Sustain Chem Eng 6:5198–5205CrossRef Borrero-López AM, Blánquez A, Valencia C, Hernández M, Arias ME, Eugenio ME, Fillat Ú, Franco JM (2018) Valorization of soda lignin from wheat straw solid-state fermentation: production of oleogels. ACS Sustain Chem Eng 6:5198–5205CrossRef
62.
Zurück zum Zitat Cortés-Triviño E, Valencia C, Delgado MA, Franco JM (2018) Modification of alkali lignin with poly(ethylene glycol) diglycidyl ether to be used as a thickener in bio-lubricant formulations. Polymers 10:670CrossRef Cortés-Triviño E, Valencia C, Delgado MA, Franco JM (2018) Modification of alkali lignin with poly(ethylene glycol) diglycidyl ether to be used as a thickener in bio-lubricant formulations. Polymers 10:670CrossRef
63.
Zurück zum Zitat Litters T, Hahn F, Goerz T, Erkel HJ (2020) US Patent No. 10,604,721, 2020 Litters T, Hahn F, Goerz T, Erkel HJ (2020) US Patent No. 10,604,721, 2020
64.
Zurück zum Zitat Read J, Whiteoak D (2004) The shell bitumen hand book, 5th edn Read J, Whiteoak D (2004) The shell bitumen hand book, 5th edn
65.
Zurück zum Zitat Aziz MMA, Rahman MT, Hainin MR, Bakar WAWA (2015) An overview on alternative binders for flexible pavement. Constr Build Mater 84:315–319CrossRef Aziz MMA, Rahman MT, Hainin MR, Bakar WAWA (2015) An overview on alternative binders for flexible pavement. Constr Build Mater 84:315–319CrossRef
66.
Zurück zum Zitat Ai AH, Yi-Qiu T, Hameed AT (2011) Starch as a modifier for asphalt paving materials. Constr Build Mater 25:14–20CrossRef Ai AH, Yi-Qiu T, Hameed AT (2011) Starch as a modifier for asphalt paving materials. Constr Build Mater 25:14–20CrossRef
67.
Zurück zum Zitat Tu LL, Wu SP, Liu G, Zhou XX, Ma SK (2016) Effect of the welan gum biopolymer on rheological properties and storage stability of bitumens. J Test Eval 44:2211–2218CrossRef Tu LL, Wu SP, Liu G, Zhou XX, Ma SK (2016) Effect of the welan gum biopolymer on rheological properties and storage stability of bitumens. J Test Eval 44:2211–2218CrossRef
68.
Zurück zum Zitat Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRef Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRef
69.
Zurück zum Zitat Van Vliet D, Slaghek T, Giezen C, Haaksman I (2016) Lignin as a green alternative for bitumen. In: In Proceedings of E&E congress Van Vliet D, Slaghek T, Giezen C, Haaksman I (2016) Lignin as a green alternative for bitumen. In: In Proceedings of E&E congress
70.
Zurück zum Zitat Norgbey E, Huang J, Hirsch V, Liu WJ, Wang M, Ripke O, Li Y, Takyi Annan GE, Ewusi-Mensah D, Wang X (2020) Unravelling the efficient use of waste lignin as a bitumen modifier for sustainable roads. Constr Build Mater 230:116957CrossRef Norgbey E, Huang J, Hirsch V, Liu WJ, Wang M, Ripke O, Li Y, Takyi Annan GE, Ewusi-Mensah D, Wang X (2020) Unravelling the efficient use of waste lignin as a bitumen modifier for sustainable roads. Constr Build Mater 230:116957CrossRef
71.
Zurück zum Zitat Xie S, Li Q, Karki P, Zhou F, Yuan JS (2017) Lignin as renewable and superior asphalt binder modifier. ACS Sustain Chem Eng 5:2817–2823CrossRef Xie S, Li Q, Karki P, Zhou F, Yuan JS (2017) Lignin as renewable and superior asphalt binder modifier. ACS Sustain Chem Eng 5:2817–2823CrossRef
72.
Zurück zum Zitat Boomika A, Naveen MA, Richard JD, Mythili A, Vetturayasudharsanan R (2017) Experimental study on partial replacement of bitumen with lignin and plastic. SSRG Int J Civ Eng-Spec Issue:9–14 Boomika A, Naveen MA, Richard JD, Mythili A, Vetturayasudharsanan R (2017) Experimental study on partial replacement of bitumen with lignin and plastic. SSRG Int J Civ Eng-Spec Issue:9–14
73.
Zurück zum Zitat Zhang Y, Liu X, Apostolidis P, Gard W, van de Ven M, Erkens S, Jing R (2019) Chemical and rheological evaluation of aged lignin-modified bitumen. Materials 12:4176CrossRef Zhang Y, Liu X, Apostolidis P, Gard W, van de Ven M, Erkens S, Jing R (2019) Chemical and rheological evaluation of aged lignin-modified bitumen. Materials 12:4176CrossRef
74.
Zurück zum Zitat Pérez IP, Rodríguez Pasandín AM, Pais JC, Alves Pereira PA (2019) Use of lignin biopolymer from industrial waste as bitumen extender for asphalt mixtures. J Clean Prod 220:87–98CrossRef Pérez IP, Rodríguez Pasandín AM, Pais JC, Alves Pereira PA (2019) Use of lignin biopolymer from industrial waste as bitumen extender for asphalt mixtures. J Clean Prod 220:87–98CrossRef
75.
Zurück zum Zitat Batista KB, Padilha RPL, Castro TO, Silva CFSC, Araújo MFAS, Leite LFM, Pasa VMD, Lins VFC (2018) High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders. Ind Crop Prod 111:107–116CrossRef Batista KB, Padilha RPL, Castro TO, Silva CFSC, Araújo MFAS, Leite LFM, Pasa VMD, Lins VFC (2018) High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders. Ind Crop Prod 111:107–116CrossRef
76.
Zurück zum Zitat Xu G, Wang H, Zhu H (2017) Rheological properties and anti-aging performance of asphalt binder modified with wood lignin. Constr Build Mater 151:801–808CrossRef Xu G, Wang H, Zhu H (2017) Rheological properties and anti-aging performance of asphalt binder modified with wood lignin. Constr Build Mater 151:801–808CrossRef
77.
Zurück zum Zitat Slaghek TM, van Vliet D, Giezen C, Haaksman I (2017) U.S. Patent Application No. 15/125, 268 Slaghek TM, van Vliet D, Giezen C, Haaksman I (2017) U.S. Patent Application No. 15/125, 268
78.
Zurück zum Zitat Lin L, Cunshan Z, Vittayapadung S, Xiangqian S, Mingdong D (2011) Opportunities and challenges for biodiesel fuel. Appl Energy 88:1020–1031CrossRef Lin L, Cunshan Z, Vittayapadung S, Xiangqian S, Mingdong D (2011) Opportunities and challenges for biodiesel fuel. Appl Energy 88:1020–1031CrossRef
79.
Zurück zum Zitat Jain S, Sharma MP (2010) Prospects of biodiesel from Jatropha in India: a review. Renew Sust Energ Rev 14:763–771CrossRef Jain S, Sharma MP (2010) Prospects of biodiesel from Jatropha in India: a review. Renew Sust Energ Rev 14:763–771CrossRef
80.
Zurück zum Zitat Aranda DAG, Santos RTP, Tapanes NCO, Ramos ALD, Antunes OAC (2008) Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids. Catal Lett 122:20–25CrossRef Aranda DAG, Santos RTP, Tapanes NCO, Ramos ALD, Antunes OAC (2008) Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids. Catal Lett 122:20–25CrossRef
81.
Zurück zum Zitat Semwal S, Arora AK, Badoni RP, Tuli DK (2011) Biodiesel production using heterogeneous catalysts. Bioresour Technol 102:2151–2161CrossRef Semwal S, Arora AK, Badoni RP, Tuli DK (2011) Biodiesel production using heterogeneous catalysts. Bioresour Technol 102:2151–2161CrossRef
82.
Zurück zum Zitat Kayser H, Pienkoß F, Domínguez De María P (2014) Chitosan-catalyzed biodiesel synthesis: proof-of-concept and limitations. Fuel 116:267–272CrossRef Kayser H, Pienkoß F, Domínguez De María P (2014) Chitosan-catalyzed biodiesel synthesis: proof-of-concept and limitations. Fuel 116:267–272CrossRef
83.
Zurück zum Zitat Pua F, Fang Z, Zakaria S, Guo F, Chia C (2012) Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin. Biotechnol Biofuels 5:66CrossRef Pua F, Fang Z, Zakaria S, Guo F, Chia C (2012) Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin. Biotechnol Biofuels 5:66CrossRef
84.
Zurück zum Zitat Guo F, Xiu ZL, Liang ZX (2012) Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst. Appl Energy 98:47–52CrossRef Guo F, Xiu ZL, Liang ZX (2012) Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst. Appl Energy 98:47–52CrossRef
85.
Zurück zum Zitat Zainol MM, Amin NAS, Asmadi M (2015) Synthesis and characterization of carbon cryogel microspheres from lignin-furfural mixtures for biodiesel production. Bioresour Technol 190:44–50CrossRef Zainol MM, Amin NAS, Asmadi M (2015) Synthesis and characterization of carbon cryogel microspheres from lignin-furfural mixtures for biodiesel production. Bioresour Technol 190:44–50CrossRef
86.
Zurück zum Zitat Huang M, Luo J, Fang Z, Li H (2016) Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol. Appl Catal B Environ 190:103–114CrossRef Huang M, Luo J, Fang Z, Li H (2016) Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol. Appl Catal B Environ 190:103–114CrossRef
87.
Zurück zum Zitat Kumar H, Alén R (2016) Microwave-assisted esterification of tall oil fatty acids with methanol using lignin-based solid catalyst. Energy Fuel 30:9451–9455CrossRef Kumar H, Alén R (2016) Microwave-assisted esterification of tall oil fatty acids with methanol using lignin-based solid catalyst. Energy Fuel 30:9451–9455CrossRef
88.
Zurück zum Zitat Sandouqa A, Al-Hamamre Z, Asfar J (2019) Preparation and performance investigation of a lignin-based solid acid catalyst manufactured from olive cake for biodiesel production. Renew Energy 132:667–682CrossRef Sandouqa A, Al-Hamamre Z, Asfar J (2019) Preparation and performance investigation of a lignin-based solid acid catalyst manufactured from olive cake for biodiesel production. Renew Energy 132:667–682CrossRef
89.
Zurück zum Zitat Li XF, Zuo Y, Zhang Y, Fu Y, Guo QX (2013) In situ preparation of K2CO3 supported kraft lignin activated carbon as solid base catalyst for biodiesel production. Fuel 113:435–442CrossRef Li XF, Zuo Y, Zhang Y, Fu Y, Guo QX (2013) In situ preparation of K2CO3 supported kraft lignin activated carbon as solid base catalyst for biodiesel production. Fuel 113:435–442CrossRef
90.
Zurück zum Zitat Farrington BJW, Mcdowell JE, Scientists S, Hole W (2004) Mixing oil and water. Tracking the sources and impacts of oil pollution in the marine environment. Oceanus 42:1–4 Farrington BJW, Mcdowell JE, Scientists S, Hole W (2004) Mixing oil and water. Tracking the sources and impacts of oil pollution in the marine environment. Oceanus 42:1–4
91.
Zurück zum Zitat Bullock RJ, Perkins RA, Aggarwal S (2019) In-situ burning with chemical herders for Arctic oil spill response: meta-analysis and review. Sci Total Environ 675:705–716CrossRef Bullock RJ, Perkins RA, Aggarwal S (2019) In-situ burning with chemical herders for Arctic oil spill response: meta-analysis and review. Sci Total Environ 675:705–716CrossRef
92.
Zurück zum Zitat Lü X, Cui Z, Wei W, Xie J, Jiang L, Huang J, Liu J (2016) Constructing polyurethane sponge modified with silica/graphene oxide nanohybrids as a ternary sorbent. Chem Eng J 284:478–486CrossRef Lü X, Cui Z, Wei W, Xie J, Jiang L, Huang J, Liu J (2016) Constructing polyurethane sponge modified with silica/graphene oxide nanohybrids as a ternary sorbent. Chem Eng J 284:478–486CrossRef
94.
Zurück zum Zitat Oribayo O, Feng X, Rempel GL, Pan Q (2017) Synthesis of lignin-based polyurethane / graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chem Eng J 323:191–202CrossRef Oribayo O, Feng X, Rempel GL, Pan Q (2017) Synthesis of lignin-based polyurethane / graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chem Eng J 323:191–202CrossRef
95.
Zurück zum Zitat Santos OSH, Coelho da Silva M, Silva VR, Mussel WN, Yoshida MI (2017) Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water. J Hazard Mater 324:406–413CrossRef Santos OSH, Coelho da Silva M, Silva VR, Mussel WN, Yoshida MI (2017) Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water. J Hazard Mater 324:406–413CrossRef
96.
Zurück zum Zitat Rao G, Nabipour H, Zhang P, Wang X, Xing W, Song L (2020) Lightweight, hydrophobic and recyclable carbon foam derived from lignin – resorcinol – glyoxal resin. Integr Med Res 9:4655–4664 Rao G, Nabipour H, Zhang P, Wang X, Xing W, Song L (2020) Lightweight, hydrophobic and recyclable carbon foam derived from lignin – resorcinol – glyoxal resin. Integr Med Res 9:4655–4664
97.
Zurück zum Zitat Neelamegan H, Yang D, Lee G, Anandan S, Wu JJ (2019) Synthesis of magnetite nanoparticles anchored cellulose and lignin-based carbon nanotube composites for rapid oil spill cleanup Haridharan. Mater Today Commun 22:100746CrossRef Neelamegan H, Yang D, Lee G, Anandan S, Wu JJ (2019) Synthesis of magnetite nanoparticles anchored cellulose and lignin-based carbon nanotube composites for rapid oil spill cleanup Haridharan. Mater Today Commun 22:100746CrossRef
98.
Zurück zum Zitat Ahamad T, Naushad M, Alshehri SM (2019) Ultra-fast spill oil recovery using a mesoporous lignin based nanocomposite prepared from date palm pits ( Phoenix dactylifera L.). Int J Biol Macromol 130:139–147CrossRef Ahamad T, Naushad M, Alshehri SM (2019) Ultra-fast spill oil recovery using a mesoporous lignin based nanocomposite prepared from date palm pits ( Phoenix dactylifera L.). Int J Biol Macromol 130:139–147CrossRef
99.
Zurück zum Zitat Jiang J, Zhang Q, Zhan X, Chen F (2017) Renewable, biomass-derived, honeycomblike aerogel as a robust oil absorbent with two-way reusability. ACS Sustain Chem Eng 5:10307–10316CrossRef Jiang J, Zhang Q, Zhan X, Chen F (2017) Renewable, biomass-derived, honeycomblike aerogel as a robust oil absorbent with two-way reusability. ACS Sustain Chem Eng 5:10307–10316CrossRef
100.
Zurück zum Zitat Venkataraman P, Tang J, Frenkel E, McPherson GL, He J, Raghavan SR, Kolesnichenko V, Bose A, John VT (2013) Attachment of a hydrophobically modified biopolymer at the oil-water interface in the treatment of oil spills. ACS Appl Mater Interfaces 5:3572–3580CrossRef Venkataraman P, Tang J, Frenkel E, McPherson GL, He J, Raghavan SR, Kolesnichenko V, Bose A, John VT (2013) Attachment of a hydrophobically modified biopolymer at the oil-water interface in the treatment of oil spills. ACS Appl Mater Interfaces 5:3572–3580CrossRef
101.
Zurück zum Zitat Pelletier É, Siron R (1999) Environmental Chemistry Silicone-based polymers as oil spill treatment agents. Environ Toxicol 18:813–818CrossRef Pelletier É, Siron R (1999) Environmental Chemistry Silicone-based polymers as oil spill treatment agents. Environ Toxicol 18:813–818CrossRef
102.
Zurück zum Zitat Lee JG, Larive LL, Valsaraj KT, Bharti B (2018) An ecofriendly alternative to oil spill recovery binding of lignin nanoparticles at oil-water interfaces : an ecofriendly alternative to oil spill recovery. ACS Appl Mater Interfaces 10:43282–43289CrossRef Lee JG, Larive LL, Valsaraj KT, Bharti B (2018) An ecofriendly alternative to oil spill recovery binding of lignin nanoparticles at oil-water interfaces : an ecofriendly alternative to oil spill recovery. ACS Appl Mater Interfaces 10:43282–43289CrossRef
Metadaten
Titel
A review on lignin utilization in petroleum exploration, petroleum products formulation, bio-fuel production, and oil spill clean-up
verfasst von
Himani Negi
Raj Kumar Singh
Publikationsdatum
05.11.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 2/2023
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-01126-w

Weitere Artikel der Ausgabe 2/2023

Biomass Conversion and Biorefinery 2/2023 Zur Ausgabe