Skip to main content
Erschienen in: Integrating Materials and Manufacturing Innovation 3/2022

14.09.2022 | Technical Article

Application of a Chained-ANN for Learning the Process–Structure Mapping in Mg2SixSn1−x Spinodal Decomposition

verfasst von: Grayson H. Harrington, Conlain Kelly, Vahid Attari, Raymundo Arroyave, Surya R. Kalidindi

Erschienen in: Integrating Materials and Manufacturing Innovation | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work establishes a reliable and accurate materials process–structure (PS) surrogate model that maps an 18-dimensional process parameter input domain to a high-dimensional space of single- and dual-phase microstructures. This was accomplished by employing the Materials Knowledge Systems (MKS) framework (includes microstructure quantification via two-point statistics and dimensionality reduction using principal components analysis) for the feature engineering of the microstructures, and subsequently constructing a chained-artificial neural network (ANN) to learn the complex nonlinear mappings between the high-dimensional input domain and the MKS-derived low-dimensional representation of the corresponding microstructure space (includes both homogeneous and heterogeneous microstructures). The benefits of this workflow are demonstrated on a collection of ~ 10,000 final microstructures obtained from chemo-mechanical spinodal decomposition phase-field simulations in the Mg2SixSn1-x material system. Specifically, it is shown that the complex phase-field process–structure relationships for the selected case study can be captured in a robust model with only 742 fittable parameters.
Fußnoten
1
This usually incurs a one-time high computational cost.
 
2
Surrogates can also be formulated to predict microstructure evolution (i.e., predict the microstructure at the next time step based on known microstructures at previous time steps and known processing conditions) [8, 11, 17, 30, 31].
 
3
The 15,000th time step corresponded to fully decomposed microstructures for most of the simulations. However, the phase separation was sluggish in a few cases and produced three-phase microstructures. As noted later, a small number of three-phase microstructures found in the extracted dataset were excluded from the study. Therefore, the microstructures obtained at the 15,000th time step served as the final microstructures for our study.
 
Literatur
1.
Zurück zum Zitat Voorhees P, Spanos G (2015) Modeling across scales: a roadmapping study for connecting materials models and simulations across length and time scales. TMS, Warrendale, PA, p 14 Voorhees P, Spanos G (2015) Modeling across scales: a roadmapping study for connecting materials models and simulations across length and time scales. TMS, Warrendale, PA, p 14
4.
Zurück zum Zitat Glotzer S, Kim S, Cummings P, Deshmukh A, Head M, Karniadakis G, Petzold L, Sagui C, Shinozuka M, (2009) WTEC Panel report on international assessment of research and development in simulation-based engineering and science. World Technology Evaluation Center, Inc., Baltimore, MD Glotzer S, Kim S, Cummings P, Deshmukh A, Head M, Karniadakis G, Petzold L, Sagui C, Shinozuka M, (2009) WTEC Panel report on international assessment of research and development in simulation-based engineering and science. World Technology Evaluation Center, Inc., Baltimore, MD
5.
Zurück zum Zitat National Research Council (2008) Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. National Academies Press, Washington, DC National Research Council (2008) Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. National Academies Press, Washington, DC
6.
Zurück zum Zitat Kalidindi SR (2015) Hierarchical materials informatics: novel analytics for materials data, Elsevier Kalidindi SR (2015) Hierarchical materials informatics: novel analytics for materials data, Elsevier
9.
Zurück zum Zitat Sarkar D, Reddy BS, Basu B (2018) Implementing statistical modeling approach towards development of ultrafine grained bioceramics: case of ZrO2-toughened Al2O3. J Am Ceram Soc 101:1333–1343CrossRef Sarkar D, Reddy BS, Basu B (2018) Implementing statistical modeling approach towards development of ultrafine grained bioceramics: case of ZrO2-toughened Al2O3. J Am Ceram Soc 101:1333–1343CrossRef
10.
Zurück zum Zitat Tapia G, Johnson L, Franco B, Karayagiz K, Ma J, Arroyave R, Karaman I, Elwany A (2017) Bayesian calibration and uncertainty quantification for a physics-based precipitation model of nickel–titanium shape-memory alloys. J Manufact Sci Eng 139:071002CrossRef Tapia G, Johnson L, Franco B, Karayagiz K, Ma J, Arroyave R, Karaman I, Elwany A (2017) Bayesian calibration and uncertainty quantification for a physics-based precipitation model of nickel–titanium shape-memory alloys. J Manufact Sci Eng 139:071002CrossRef
12.
Zurück zum Zitat Cecen A, Dai H, Yabansu YC, Kalidindi SR, Song L (2018) Material structure-property linkages using three-dimensional convolutional neural networks. Acta Mater 146:76–84CrossRef Cecen A, Dai H, Yabansu YC, Kalidindi SR, Song L (2018) Material structure-property linkages using three-dimensional convolutional neural networks. Acta Mater 146:76–84CrossRef
14.
16.
Zurück zum Zitat Brough DB, Wheeler D, Kalidindi SR (2017) Materials knowledge systems in python—a data science framework for accelerated development of hierarchical materials. Integr Mater Manuf Innov 6:36–53CrossRef Brough DB, Wheeler D, Kalidindi SR (2017) Materials knowledge systems in python—a data science framework for accelerated development of hierarchical materials. Integr Mater Manuf Innov 6:36–53CrossRef
18.
Zurück zum Zitat Hashemi S, Ganapathysubramanian B, Casey S, Su J, Kalidindi SR (2021) Feature engineering for microstructure-property mapping in organic photovoltaics. arXiv Preprint arXiv:2111.01897 Hashemi S, Ganapathysubramanian B, Casey S, Su J, Kalidindi SR (2021) Feature engineering for microstructure-property mapping in organic photovoltaics. arXiv Preprint arXiv:​2111.​01897
19.
Zurück zum Zitat Kaundinya PR, Choudhary K, Kalidindi SR (2022) Prediction of the electron density of states for crystalline compounds with Atomistic Line Graph Neural Networks (ALIGNN), arXiv Preprint arXiv:2201.08348 Kaundinya PR, Choudhary K, Kalidindi SR (2022) Prediction of the electron density of states for crystalline compounds with Atomistic Line Graph Neural Networks (ALIGNN), arXiv Preprint arXiv:​2201.​08348
20.
Zurück zum Zitat Pfeifer S, Wodo O, Ganapathysubramanian B (2018) An optimization approach to identify processing pathways for achieving tailored thin film morphologies. Comput Mater Sci 143:486–496CrossRef Pfeifer S, Wodo O, Ganapathysubramanian B (2018) An optimization approach to identify processing pathways for achieving tailored thin film morphologies. Comput Mater Sci 143:486–496CrossRef
21.
Zurück zum Zitat Timmermann S, Starostin V, Girelli A, Ragulskaya A, Rahmann H, Reiser M, Begam N, Randolph L, Sprung M, Westermeier F (2022) Automated matching of two-time X-ray photon correlation maps from phase-separating proteins with Cahn–Hilliard-type simulations using auto-encoder networks. J Appl Crystallogr. 55:751–757CrossRef Timmermann S, Starostin V, Girelli A, Ragulskaya A, Rahmann H, Reiser M, Begam N, Randolph L, Sprung M, Westermeier F (2022) Automated matching of two-time X-ray photon correlation maps from phase-separating proteins with Cahn–Hilliard-type simulations using auto-encoder networks. J Appl Crystallogr. 55:751–757CrossRef
22.
Zurück zum Zitat Teichert GH, Natarajan AR, der Ven A, Garikipati K (2019) Machine learning materials physics: Integrable deep neural networks enable scale bridging by learning free energy functions. Comput Methods Appl Mech Eng 353:201–216CrossRef Teichert GH, Natarajan AR, der Ven A, Garikipati K (2019) Machine learning materials physics: Integrable deep neural networks enable scale bridging by learning free energy functions. Comput Methods Appl Mech Eng 353:201–216CrossRef
23.
Zurück zum Zitat Teichert GH, Garikipati K (2019) Machine learning materials physics: Surrogate optimization and multi-fidelity algorithms predict precipitate morphology in an alternative to phase field dynamics. Comput Methods Appl Mech Eng 344:666–693CrossRef Teichert GH, Garikipati K (2019) Machine learning materials physics: Surrogate optimization and multi-fidelity algorithms predict precipitate morphology in an alternative to phase field dynamics. Comput Methods Appl Mech Eng 344:666–693CrossRef
24.
Zurück zum Zitat Zhang X, Garikipati K (2020) Machine learning materials physics: Multi-resolution neural networks learn the free energy and nonlinear elastic response of evolving microstructures. Comput Methods Appl Mech Eng 372:113362CrossRef Zhang X, Garikipati K (2020) Machine learning materials physics: Multi-resolution neural networks learn the free energy and nonlinear elastic response of evolving microstructures. Comput Methods Appl Mech Eng 372:113362CrossRef
25.
Zurück zum Zitat Badawy MF, Msekh MA, Hamdia KM, Steiner MK, Lahmer T, Rabczuk T (2017) Hybrid nonlinear surrogate models for fracture behavior of polymeric nanocomposites. Probab Eng Mech 50:64–75CrossRef Badawy MF, Msekh MA, Hamdia KM, Steiner MK, Lahmer T, Rabczuk T (2017) Hybrid nonlinear surrogate models for fracture behavior of polymeric nanocomposites. Probab Eng Mech 50:64–75CrossRef
26.
Zurück zum Zitat Kunselman C, Attari V, McClenny L, Braga-Neto U, Arroyave R (2020) Semi-supervised learning approaches to class assignment in ambiguous microstructures. Acta Mater 188:49–62CrossRef Kunselman C, Attari V, McClenny L, Braga-Neto U, Arroyave R (2020) Semi-supervised learning approaches to class assignment in ambiguous microstructures. Acta Mater 188:49–62CrossRef
27.
Zurück zum Zitat Kunselman C, Sheikh S, Mikkelsen M, Attari V, Arróyave R (2022) Microstructure classification in the unsupervised context. Acta Mater 223:117434CrossRef Kunselman C, Sheikh S, Mikkelsen M, Attari V, Arróyave R (2022) Microstructure classification in the unsupervised context. Acta Mater 223:117434CrossRef
30.
Zurück zum Zitat Hu C, Martin S, Dingreville R (2022) Accelerating phase-field predictions via recurrent neural networks learning the microstructure evolution in latent space. Comput Methods Appl Mech Eng 397:115128CrossRef Hu C, Martin S, Dingreville R (2022) Accelerating phase-field predictions via recurrent neural networks learning the microstructure evolution in latent space. Comput Methods Appl Mech Eng 397:115128CrossRef
34.
Zurück zum Zitat McClenny L, Haile M, Attari V, Sadler B, Braga-Neto U, Arroyave R (2020) Deep multimodal transfer-learned regression in data-poor domains, arXiv Preprint arXiv:2006.09310 McClenny L, Haile M, Attari V, Sadler B, Braga-Neto U, Arroyave R (2020) Deep multimodal transfer-learned regression in data-poor domains, arXiv Preprint arXiv:​2006.​09310
38.
Zurück zum Zitat Generale AP, Kalidindi SR (2021) Reduced-order models for microstructure-sensitive effective thermal conductivity of woven ceramic matrix composites with residual porosity. Compos Struct 274:114399CrossRef Generale AP, Kalidindi SR (2021) Reduced-order models for microstructure-sensitive effective thermal conductivity of woven ceramic matrix composites with residual porosity. Compos Struct 274:114399CrossRef
40.
Zurück zum Zitat Robertson AE, Kalidindi SR (2022) Efficient generation of anisotropic N-field microstructures from 2-point statistics using multi-output Gaussian random fields. Acta Materialia. 232:117927CrossRef Robertson AE, Kalidindi SR (2022) Efficient generation of anisotropic N-field microstructures from 2-point statistics using multi-output Gaussian random fields. Acta Materialia. 232:117927CrossRef
41.
Zurück zum Zitat Izadi H, Baniassadi M, Hasanabadi A, Mehrgini B, Memarian H, Soltanian-Zadeh H, Abrinia K (2017) Application of full set of two point correlation functions from a pair of 2D cut sections for 3D porous media reconstruction. J Petrol Sci Eng 149:789–800CrossRef Izadi H, Baniassadi M, Hasanabadi A, Mehrgini B, Memarian H, Soltanian-Zadeh H, Abrinia K (2017) Application of full set of two point correlation functions from a pair of 2D cut sections for 3D porous media reconstruction. J Petrol Sci Eng 149:789–800CrossRef
43.
Zurück zum Zitat Dubey SR, Singh SK, Chaudhuri BB (2021) A comprehensive survey and performance analysis of activation functions in deep learning, arXiv Preprint arXiv:2109.14545 Dubey SR, Singh SK, Chaudhuri BB (2021) A comprehensive survey and performance analysis of activation functions in deep learning, arXiv Preprint arXiv:​2109.​14545
44.
Zurück zum Zitat Hecht-Nielsen, R. (1992) Theory of the backpropagation neural network, In: Neural networks for perception, Elsevier, pp. 65–93. Hecht-Nielsen, R. (1992) Theory of the backpropagation neural network, In: Neural networks for perception, Elsevier, pp. 65–93.
45.
Zurück zum Zitat Yi S, Attari V, Jeong M, Jian J, Xue S, Wang H, Arroyave R, Yu C (2018) Strain-induced suppression of the miscibility gap in nanostructured Mg 2 Si–Mg 2 Sn solid solutions. J Mater Chem A 6:17559–17570CrossRef Yi S, Attari V, Jeong M, Jian J, Xue S, Wang H, Arroyave R, Yu C (2018) Strain-induced suppression of the miscibility gap in nanostructured Mg 2 Si–Mg 2 Sn solid solutions. J Mater Chem A 6:17559–17570CrossRef
48.
Zurück zum Zitat Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRef Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRef
49.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830
50.
Zurück zum Zitat Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, (2019) Pytorch: An imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 32 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, (2019) Pytorch: An imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 32
51.
Zurück zum Zitat LeCun YA, Bottou L, Orr GB, Müller K-R (2012) Efficient backprop. Neural networks: tricks of the trade. Springer, USA, pp 9–48CrossRef LeCun YA, Bottou L, Orr GB, Müller K-R (2012) Efficient backprop. Neural networks: tricks of the trade. Springer, USA, pp 9–48CrossRef
52.
Zurück zum Zitat Wang Q, Ma Y, Zhao K, Tian Y (2022) A comprehensive survey of loss functions in machine learning, Annals of Data. Science 9:187–212 Wang Q, Ma Y, Zhao K, Tian Y (2022) A comprehensive survey of loss functions in machine learning, Annals of Data. Science 9:187–212
53.
Zurück zum Zitat Loshchilov I, Hutter F (2018) Fixing weight decay regularization in adam Loshchilov I, Hutter F (2018) Fixing weight decay regularization in adam
54.
Zurück zum Zitat Smith LN, Topin N. (2019) Super-convergence: very fast training of neural networks using large learning rates, In: Artificial intelligence and machine learning for multi-domain operations applications, pp. 369–386. Smith LN, Topin N. (2019) Super-convergence: very fast training of neural networks using large learning rates, In: Artificial intelligence and machine learning for multi-domain operations applications, pp. 369–386.
55.
Zurück zum Zitat Ioffe S, Szegedy C, (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift, In: International conference on machine learning, pp. 448–456 Ioffe S, Szegedy C, (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift, In: International conference on machine learning, pp. 448–456
56.
Zurück zum Zitat Robertson AE, Kalidindi SR (2021) Digital representation and quantification of discrete dislocation structures. JOM 73:2143–2158CrossRef Robertson AE, Kalidindi SR (2021) Digital representation and quantification of discrete dislocation structures. JOM 73:2143–2158CrossRef
Metadaten
Titel
Application of a Chained-ANN for Learning the Process–Structure Mapping in Mg2SixSn1−x Spinodal Decomposition
verfasst von
Grayson H. Harrington
Conlain Kelly
Vahid Attari
Raymundo Arroyave
Surya R. Kalidindi
Publikationsdatum
14.09.2022
Verlag
Springer International Publishing
Erschienen in
Integrating Materials and Manufacturing Innovation / Ausgabe 3/2022
Print ISSN: 2193-9764
Elektronische ISSN: 2193-9772
DOI
https://doi.org/10.1007/s40192-022-00274-3

Weitere Artikel der Ausgabe 3/2022

Integrating Materials and Manufacturing Innovation 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.