Skip to main content
Erschienen in: Integrating Materials and Manufacturing Innovation 4/2022

28.09.2022 | Technical Article

PRISMS-Plasticity TM: An Open-Source Rapid Texture Evolution Analysis Pipeline

verfasst von: Mohammadreza Yaghoobi, John E. Allison, Veera Sundararaghavan

Erschienen in: Integrating Materials and Manufacturing Innovation | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The evolution of texture during different mechanical processes is an integral part of Integrated Computational Materials Engineering (ICME) of metals and alloys. In the present work, PRISMS-Plasticity TM, an open-source rapid texture evolution analysis pipeline, based on the Taylor model is integrated into the open-source crystal plasticity software, PRISMS-Plasticity. However, unlike PRISMS-Plasticity, the pipeline does not involve any finite element solver. The Taylor-type crystal plasticity model is used to capture the evolution of texture. The pipeline aims to significantly minimize the cost of texture evolution simulations, so one can use the framework along with data-driven ICME design methods and generate high-throughput data with low costs for general analysis or machine learning applications. All the rate-independent and rate-dependent crystal plasticity models available in the Materials library of PRISMS-Plasticity can be used in the pipeline. The models can capture extension twinning as an important deformation mechanism in alloys with hexagonal close-packed crystal structures. The PRISMS-Plasticity TM pipeline is efficiently integrated with experimental characterization techniques such as electron backscatter diffraction (EBSD), and these pipelines use other open-source software packages such as DREAM.3D where appropriate. In addition, the PRISMS-Plasticity TM results are integrated with the PRISMS Center Materials Commons information repository. In this investigation, three different examples of texture evolution in a polycrystalline OFHC copper, extruded Mg alloy ZK60A, and an aluminum alloy 7075-T6 are presented to show the capability of PRISMS-Plasticity TM. The pipeline can take advantage of the parallel performance of PRISMS-Plasticity and scales exceptionally well for large problems running on multiple processors. The computational efficiency of this tool can be used to build large databases for use in machine learning applications. Such a large dataset is established containing process–microstructure relationships of 7075-T6 Al. The extracted data is visualized in 2-D latent space using an unsupervised machine learning model called the variational autoencoder (VAE). The trained VAE model is used to identify economical process sequences which lead to desired properties.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Taylor GI (1938) Plastic strain in metals. J Inst Metals 62:307–324 Taylor GI (1938) Plastic strain in metals. J Inst Metals 62:307–324
2.
Zurück zum Zitat H. Honneff, H. Mecking (1981) Analysis of the deformation texture at different rolling conditions, p 347–355 H. Honneff, H. Mecking (1981) Analysis of the deformation texture at different rolling conditions, p 347–355
3.
Zurück zum Zitat Kocks UF, Chandra H (1982) Slip geometry in partially constrained deformation. Acta Metall 30(3):695–709 Kocks UF, Chandra H (1982) Slip geometry in partially constrained deformation. Acta Metall 30(3):695–709
4.
Zurück zum Zitat Van Houtte P (1982) On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystals. Mater Sci Eng 55(1):69–77 Van Houtte P (1982) On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystals. Mater Sci Eng 55(1):69–77
5.
Zurück zum Zitat Van Houtte P, Delannay L, Samajdar I (1999) Quantitative prediction of cold rolling textures in low-carbon steel by means of the LAMEL model. Textures Microstruct 31(3):109–149 Van Houtte P, Delannay L, Samajdar I (1999) Quantitative prediction of cold rolling textures in low-carbon steel by means of the LAMEL model. Textures Microstruct 31(3):109–149
6.
Zurück zum Zitat Van Houtte P, Delannay L, Kalidindi SR (2002) Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction. Int J Plast 18(3):359–377 Van Houtte P, Delannay L, Kalidindi SR (2002) Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction. Int J Plast 18(3):359–377
7.
Zurück zum Zitat Crumbach M, Goerdeler M, Gottstein G, Neumann L, Aretz H, Kopp R (2003) Through-process texture modelling of aluminium alloys. Modell Simul Mater Sci Eng 12(1):S1 Crumbach M, Goerdeler M, Gottstein G, Neumann L, Aretz H, Kopp R (2003) Through-process texture modelling of aluminium alloys. Modell Simul Mater Sci Eng 12(1):S1
8.
Zurück zum Zitat Crumbach M, Goerdeler M, Gottstein G (2006) Modelling of recrystallisation textures in aluminium alloys: I. Model set-up and integration. Acta Mater 54(12):3275–3289 Crumbach M, Goerdeler M, Gottstein G (2006) Modelling of recrystallisation textures in aluminium alloys: I. Model set-up and integration. Acta Mater 54(12):3275–3289
9.
Zurück zum Zitat Tjahjanto DD, Eisenlohr P, Roters F (2009) A novel grain cluster-based homogenization scheme. Modell Simul Mater Sci Eng 18(1):015006 Tjahjanto DD, Eisenlohr P, Roters F (2009) A novel grain cluster-based homogenization scheme. Modell Simul Mater Sci Eng 18(1):015006
10.
Zurück zum Zitat Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41(9):2611–2624 Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41(9):2611–2624
11.
Zurück zum Zitat Turner PA, Tomé CN (1994) A study of residual stresses in Zircaloy-2 with rod texture. Acta Metall Mater 42(12):4143–4153 Turner PA, Tomé CN (1994) A study of residual stresses in Zircaloy-2 with rod texture. Acta Metall Mater 42(12):4143–4153
12.
Zurück zum Zitat Wang H, Wu PD, Tomé CN, Huang Y (2010) A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials. J Mech Phys Solids 58(4):594–612 Wang H, Wu PD, Tomé CN, Huang Y (2010) A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials. J Mech Phys Solids 58(4):594–612
13.
Zurück zum Zitat Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94 Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94
14.
Zurück zum Zitat Lebensohn RA (2001) N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Mater 49(14):2723–2737 Lebensohn RA (2001) N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Mater 49(14):2723–2737
15.
Zurück zum Zitat Yaghoobi M, Ganesan S, Sundar S, Lakshmanan A, Rudraraju S, Allison JE, Sundararaghavan V (2019) PRISMS-Plasticity: an open-source crystal plasticity finite element software. Comput Mater Sci 169:109078 Yaghoobi M, Ganesan S, Sundar S, Lakshmanan A, Rudraraju S, Allison JE, Sundararaghavan V (2019) PRISMS-Plasticity: an open-source crystal plasticity finite element software. Comput Mater Sci 169:109078
16.
Zurück zum Zitat Schmidt J, Marques MRG, Botti S, Marques MAL (2019) Recent advances and applications of machine learning in solid-state materials science. NPJ Comput Mater 5(1):83 Schmidt J, Marques MRG, Botti S, Marques MAL (2019) Recent advances and applications of machine learning in solid-state materials science. NPJ Comput Mater 5(1):83
17.
Zurück zum Zitat Qi X, Chen G, Li Y, Cheng X, Li C (2019) Applying neural-network-based machine learning to additive manufacturing: current applications, challenges, and future perspectives. Engineering 5(4):721–729 Qi X, Chen G, Li Y, Cheng X, Li C (2019) Applying neural-network-based machine learning to additive manufacturing: current applications, challenges, and future perspectives. Engineering 5(4):721–729
18.
Zurück zum Zitat Meng L, McWilliams B, Jarosinski W, Park H-Y, Jung Y-G, Lee J, Zhang J (2020) Machine learning in additive manufacturing: a review. JOM 72(6):2363–2377 Meng L, McWilliams B, Jarosinski W, Park H-Y, Jung Y-G, Lee J, Zhang J (2020) Machine learning in additive manufacturing: a review. JOM 72(6):2363–2377
19.
Zurück zum Zitat Wang C, Tan XP, Tor SB, Lim CS (2020) Machine learning in additive manufacturing: state-of-the-art and perspectives. Addit Manuf 36:101538 Wang C, Tan XP, Tor SB, Lim CS (2020) Machine learning in additive manufacturing: state-of-the-art and perspectives. Addit Manuf 36:101538
20.
Zurück zum Zitat Sundar S, Sundararaghavan V (2020) Database development and exploration of process–microstructure relationships using variational autoencoders. Mater Today Commun 25:101201 Sundar S, Sundararaghavan V (2020) Database development and exploration of process–microstructure relationships using variational autoencoders. Mater Today Commun 25:101201
21.
Zurück zum Zitat Bock FE, Aydin RC, Cyron CJ, Huber N, Kalidindi SR, Klusemann B (2019) A review of the application of machine learning and data mining approaches in continuum materials mechanics. Front Mater 6:110 Bock FE, Aydin RC, Cyron CJ, Huber N, Kalidindi SR, Klusemann B (2019) A review of the application of machine learning and data mining approaches in continuum materials mechanics. Front Mater 6:110
22.
Zurück zum Zitat Jinnouchi R, Karsai F, Kresse G (2020) Making free-energy calculations routine: combining first principles with machine learning. Phys Rev B 101(6):060201 Jinnouchi R, Karsai F, Kresse G (2020) Making free-energy calculations routine: combining first principles with machine learning. Phys Rev B 101(6):060201
23.
Zurück zum Zitat Liu X, Athanasiou CE, Padture NP, Sheldon BW, Gao H (2020) A machine learning approach to fracture mechanics problems. Acta Mater 190:105–112 Liu X, Athanasiou CE, Padture NP, Sheldon BW, Gao H (2020) A machine learning approach to fracture mechanics problems. Acta Mater 190:105–112
24.
Zurück zum Zitat Yaghoobi M, Allison JE, Sundararaghavan V (2020) Multiscale modeling of twinning and detwinning behavior of HCP polycrystals. Int J Plastic 127:102653 Yaghoobi M, Allison JE, Sundararaghavan V (2020) Multiscale modeling of twinning and detwinning behavior of HCP polycrystals. Int J Plastic 127:102653
25.
Zurück zum Zitat Greeley D, Yaghoobi M, Pagan D, Sundararaghavan V, Allison J (2019) Using synchrotron radiation to improve understanding of deformation of polycrystalline metals by measuring, modelling and publishing 4D information. IOP Conf Ser: Mater Sci Eng 580:012017 Greeley D, Yaghoobi M, Pagan D, Sundararaghavan V, Allison J (2019) Using synchrotron radiation to improve understanding of deformation of polycrystalline metals by measuring, modelling and publishing 4D information. IOP Conf Ser: Mater Sci Eng 580:012017
26.
Zurück zum Zitat Ganesan S, Yaghoobi M, Githens A, Chen Z, Daly S, Allison JE, Sundararaghavan V (2021) The effects of heat treatment on the response of WE43 Mg alloy: crystal plasticity finite element simulation and SEM-DIC experiment. Int J Plast 137:102917 Ganesan S, Yaghoobi M, Githens A, Chen Z, Daly S, Allison JE, Sundararaghavan V (2021) The effects of heat treatment on the response of WE43 Mg alloy: crystal plasticity finite element simulation and SEM-DIC experiment. Int J Plast 137:102917
28.
Zurück zum Zitat Yaghoobi M, Chen Z, Murphy-Leonard AD, Sundararaghavan V, Daly S, Allison JE (2022) Deformation twinning and detwinning in extruded Mg-4Al: in-situ experiment and crystal plasticity simulation. Int J Plast 155:103345 Yaghoobi M, Chen Z, Murphy-Leonard AD, Sundararaghavan V, Daly S, Allison JE (2022) Deformation twinning and detwinning in extruded Mg-4Al: in-situ experiment and crystal plasticity simulation. Int J Plast 155:103345
30.
Zurück zum Zitat Stopka KS, Yaghoobi M, Allison JE, McDowell DL (2021) Effects of boundary conditions on microstructure-sensitive fatigue crystal plasticity analysis. Integr Mater Manuf Innov 10(3):393–412 Stopka KS, Yaghoobi M, Allison JE, McDowell DL (2021) Effects of boundary conditions on microstructure-sensitive fatigue crystal plasticity analysis. Integr Mater Manuf Innov 10(3):393–412
31.
Zurück zum Zitat Stopka KS, Yaghoobi M, Allison JE, McDowell DL (2022) Simulated effects of sample size and grain neighborhood on the modeling of extreme value fatigue response. Acta Mater 224:117524 Stopka KS, Yaghoobi M, Allison JE, McDowell DL (2022) Simulated effects of sample size and grain neighborhood on the modeling of extreme value fatigue response. Acta Mater 224:117524
32.
Zurück zum Zitat Lakshmanan A, Yaghoobi M, Stopka KS, Sundararaghavan V (2022) Crystal plasticity finite element modeling of grain size and morphology effects on yield strength and extreme value fatigue response. J Market Res Technol 19:3337–3354 Lakshmanan A, Yaghoobi M, Stopka KS, Sundararaghavan V (2022) Crystal plasticity finite element modeling of grain size and morphology effects on yield strength and extreme value fatigue response. J Market Res Technol 19:3337–3354
33.
Zurück zum Zitat Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX–free and open source software toolbox. Trans Tech Publ 160:63–68 Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX–free and open source software toolbox. Trans Tech Publ 160:63–68
34.
Zurück zum Zitat Yaghoobi M, Voyiadjis GZ, Sundararaghavan V (2021) Crystal plasticity simulation of magnesium and its alloys: a review of recent advances. Crystals 11(4):435 Yaghoobi M, Voyiadjis GZ, Sundararaghavan V (2021) Crystal plasticity simulation of magnesium and its alloys: a review of recent advances. Crystals 11(4):435
35.
Zurück zum Zitat Tomé CN, Lebensohn RA, Kocks UF (1991) A model for texture development dominated by deformation twinning: application to zirconium alloys. Acta Metall Mater 39(11):2667–2680 Tomé CN, Lebensohn RA, Kocks UF (1991) A model for texture development dominated by deformation twinning: application to zirconium alloys. Acta Metall Mater 39(11):2667–2680
36.
Zurück zum Zitat Groeber MA, Jackson MA (2014) DREAM. 3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3(1):56–72 Groeber MA, Jackson MA (2014) DREAM. 3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3(1):56–72
37.
Zurück zum Zitat Anand L, Kothari M (1996) A computational procedure for rate-independent crystal plasticity. J Mech Phys Solids 44(4):525–558 Anand L, Kothari M (1996) A computational procedure for rate-independent crystal plasticity. J Mech Phys Solids 44(4):525–558
38.
Zurück zum Zitat Voyiadjis G, Yaghoobi M (2019) Size effects in plasticity: from macro to nano. Academic Press, Cambridge Voyiadjis G, Yaghoobi M (2019) Size effects in plasticity: from macro to nano. Academic Press, Cambridge
39.
Zurück zum Zitat Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge
40.
Zurück zum Zitat Bronkhorst CA, Kalidindi SR, Anand L (1992) Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals, philosophical transactions of the royal society of London. Series A: Phys Eng Sci 341(1662):443–477 Bronkhorst CA, Kalidindi SR, Anand L (1992) Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals, philosophical transactions of the royal society of London. Series A: Phys Eng Sci 341(1662):443–477
41.
Zurück zum Zitat Murphy-Leonard AD, Pagan DC, Beaudoin A, Miller MP, Allison JE (2019) Quantification of cyclic twinning-detwinning behavior during low-cycle fatigue of pure magnesium using high energy X-ray diffraction. Int J Fatigue 125:314–323 Murphy-Leonard AD, Pagan DC, Beaudoin A, Miller MP, Allison JE (2019) Quantification of cyclic twinning-detwinning behavior during low-cycle fatigue of pure magnesium using high energy X-ray diffraction. Int J Fatigue 125:314–323
42.
Zurück zum Zitat Qiao H, Agnew SR, Wu PD (2015) Modeling twinning and detwinning behavior of Mg alloy ZK60A during monotonic and cyclic loading. Int J Plast 65:61–84 Qiao H, Agnew SR, Wu PD (2015) Modeling twinning and detwinning behavior of Mg alloy ZK60A during monotonic and cyclic loading. Int J Plast 65:61–84
43.
Zurück zum Zitat Wu L (2009) Mechanical behavior and the role of deformation twinning in wrought magnesium alloys investigated using neutron and synchrotron x-ray diffraction. PhD dissertation, University of Tennessee, Knoxville Wu L (2009) Mechanical behavior and the role of deformation twinning in wrought magnesium alloys investigated using neutron and synchrotron x-ray diffraction. PhD dissertation, University of Tennessee, Knoxville
44.
Zurück zum Zitat Wang H, Wu PD, Tomé CN, Wang J (2012) A constitutive model of twinning and detwinning for hexagonal close packed polycrystals. Mater Sci Eng, A 555:93–98 Wang H, Wu PD, Tomé CN, Wang J (2012) A constitutive model of twinning and detwinning for hexagonal close packed polycrystals. Mater Sci Eng, A 555:93–98
45.
Zurück zum Zitat Arcari A (2010) Enhanced strain-based fatigue methodology for high strength aluminum alloys. PhD dissertation, Virginia Tech Arcari A (2010) Enhanced strain-based fatigue methodology for high strength aluminum alloys. PhD dissertation, Virginia Tech
46.
Zurück zum Zitat Bozek JE, Hochhalter JD, Veilleux MG, Liu M, Heber G, Sintay SD, Rollett AD, Littlewood DJ, Maniatty AM, Weiland H, Christ RJ, Payne J, Welsh G, Harlow DG, Wawrzynek PA, Ingraffea AR (2008) A geometric approach to modeling microstructurally small fatigue crack formation: I. Probabilistic simulation of constituent particle cracking in AA 7075–T651. Modell Simulat Mater Sci Eng 16(6):065007 Bozek JE, Hochhalter JD, Veilleux MG, Liu M, Heber G, Sintay SD, Rollett AD, Littlewood DJ, Maniatty AM, Weiland H, Christ RJ, Payne J, Welsh G, Harlow DG, Wawrzynek PA, Ingraffea AR (2008) A geometric approach to modeling microstructurally small fatigue crack formation: I. Probabilistic simulation of constituent particle cracking in AA 7075–T651. Modell Simulat Mater Sci Eng 16(6):065007
49.
Zurück zum Zitat Chollet F (2016) Building autoencoders in keras, The Keras Blog 14 Chollet F (2016) Building autoencoders in keras, The Keras Blog 14
50.
Zurück zum Zitat Zhang J, Joshi SP (2012) Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J Mech Phys Solids 60(5):945–972 Zhang J, Joshi SP (2012) Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J Mech Phys Solids 60(5):945–972
Metadaten
Titel
PRISMS-Plasticity TM: An Open-Source Rapid Texture Evolution Analysis Pipeline
verfasst von
Mohammadreza Yaghoobi
John E. Allison
Veera Sundararaghavan
Publikationsdatum
28.09.2022
Verlag
Springer International Publishing
Erschienen in
Integrating Materials and Manufacturing Innovation / Ausgabe 4/2022
Print ISSN: 2193-9764
Elektronische ISSN: 2193-9772
DOI
https://doi.org/10.1007/s40192-022-00275-2

Weitere Artikel der Ausgabe 4/2022

Integrating Materials and Manufacturing Innovation 4/2022 Zur Ausgabe

Thematic Section: First World Congress on Artificial Intelligence in Materials & Manufacturing 2022

Compound Knowledge Graph-Enabled AI Assistant for Accelerated Materials Discovery

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.