Skip to main content
Erschienen in: Progress in Additive Manufacturing 3/2021

04.05.2021 | Review Article

A comprehensive review on additive manufacturing of medical devices

verfasst von: Leonardo Rosa Ribeiro da Silva, Wisley Falco Sales, Felipe dos Anjos Rodrigues Campos, José Aécio Gomes de Sousa, Rahul Davis, Abhishek Singh, Reginaldo Teixeira Coelho, Bhaskar Borgohain

Erschienen in: Progress in Additive Manufacturing | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The trend of growth and aging of population worldwide will pose new challenges in health care, which will require faster solutions addressed to specific pacient needs. In this regard, additive manufacturing (AM) is a group of promising technologies capable of delivering custom biomedical parts of high complexity in reduced lead time. Although it has emerged commercially in the 1980s as a rapid prototyping and modeling technique, it is now applied to production of a wide range of shapes with various possible materials. In this work, the technological aspects of each type of AM process were reviewed according to their advantages, limitations and potential or current applications for the production of medical devices. Direct comparisons of resolution, price and printing speed made possible to identify the most important niche for each AM process in health care sciences. In one hand, the many variables involved make these processes difficult to model and control, but in the other hand, they allow fine tuning of the microstructure to produce purposeful anisotropy, porosity and varying chemical composition, which may be desired in many medical devices. In addition, since the AM technologies have different working principles and feedstock requirements, the historic concept and classification of biomaterials were also assessed in view of their application for tissue engineering, implantable devices and surgery equipment among other uses. The discussion of materials and manufacturing methods was based on several research works and commercial products, which show a extremely fast developing field with a broad range of current and future possibilities in terms of biomedical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nations U (2019) World Population Prospects 2019, Volume II: Demographic Profiles Department of Economic and Social Affairs, Population Division. Nations U (2019) World Population Prospects 2019, Volume II: Demographic Profiles Department of Economic and Social Affairs, Population Division.
3.
Zurück zum Zitat Yelin E, Weinstein S, King T (2014) The burden of musculoskeletal diseases in the United States, 3rd edn. United States Bone and Joint Initiative, Rosemont Yelin E, Weinstein S, King T (2014) The burden of musculoskeletal diseases in the United States, 3rd edn. United States Bone and Joint Initiative, Rosemont
6.
Zurück zum Zitat Devgan S, Sidhu SS (2019) Evolution of surface modification trends in bone related biomaterials: a review. Mater Chem Phys 233:68–78CrossRef Devgan S, Sidhu SS (2019) Evolution of surface modification trends in bone related biomaterials: a review. Mater Chem Phys 233:68–78CrossRef
8.
Zurück zum Zitat Hirakawa K, Jacobs JJ, Urban R, Saito T (2004) Mechanisms of failure of total hip replacements: lessons learned from retrieval studies. Clin Orthop Relat Res 420:10–17CrossRef Hirakawa K, Jacobs JJ, Urban R, Saito T (2004) Mechanisms of failure of total hip replacements: lessons learned from retrieval studies. Clin Orthop Relat Res 420:10–17CrossRef
9.
Zurück zum Zitat Kim A, Kim A, Kim Y, Kim YE, Kim H-J, Jeon B (2019) Musculoskeletal problems in PD patients have no association with socioeconomic status. J Clin Neurosci 70:229–233CrossRef Kim A, Kim A, Kim Y, Kim YE, Kim H-J, Jeon B (2019) Musculoskeletal problems in PD patients have no association with socioeconomic status. J Clin Neurosci 70:229–233CrossRef
11.
Zurück zum Zitat Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A (2018) Additive manufacturing of biomaterials. Prog Mater Sci 93:45–111CrossRef Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A (2018) Additive manufacturing of biomaterials. Prog Mater Sci 93:45–111CrossRef
12.
Zurück zum Zitat Guo H-C, Wang Y, Dai J, Ren C-W, Li J-H, Lai Y-Q (2018) Application of 3D printing in the surgical planning of hypertrophic obstructive cardiomyopathy and physician-patient communication: a preliminary study. J Thorac Dis 10:867CrossRef Guo H-C, Wang Y, Dai J, Ren C-W, Li J-H, Lai Y-Q (2018) Application of 3D printing in the surgical planning of hypertrophic obstructive cardiomyopathy and physician-patient communication: a preliminary study. J Thorac Dis 10:867CrossRef
13.
Zurück zum Zitat Batteux C, Haidar M, Bonnet D (2019) 3D-printed models for surgical planning in complex congenital heart diseases: a systematic review. Front Pediatr 7:23CrossRef Batteux C, Haidar M, Bonnet D (2019) 3D-printed models for surgical planning in complex congenital heart diseases: a systematic review. Front Pediatr 7:23CrossRef
14.
Zurück zum Zitat Mahamood R, Akinlabi ET, Shukla M, Pityana S (2014) Revolutionary additive manufacturing: an overview. Lasers Eng 27(3):161–178 Mahamood R, Akinlabi ET, Shukla M, Pityana S (2014) Revolutionary additive manufacturing: an overview. Lasers Eng 27(3):161–178
15.
Zurück zum Zitat Zhou W, Li D, Chen Z, Chen S (2010) Direct fabrication of an integral ceramic mould by stereolithography. Proc Inst Mech Eng Part B J Eng Manuf 224:237–243CrossRef Zhou W, Li D, Chen Z, Chen S (2010) Direct fabrication of an integral ceramic mould by stereolithography. Proc Inst Mech Eng Part B J Eng Manuf 224:237–243CrossRef
16.
Zurück zum Zitat Miller R (2014) Additive manufacturing (3D printing): Past, present and future. Ind Heat 82:39–43 Miller R (2014) Additive manufacturing (3D printing): Past, present and future. Ind Heat 82:39–43
18.
Zurück zum Zitat Paolini A, Kollmannsberger S, Rank E (2019) Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Addit Manuf 30:100894 Paolini A, Kollmannsberger S, Rank E (2019) Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Addit Manuf 30:100894
19.
Zurück zum Zitat Standard A (2012) ISO/ASTM 52900: 2015 Additive manufacturing-General principles-terminology. ASTM F2792–10e1 Standard A (2012) ISO/ASTM 52900: 2015 Additive manufacturing-General principles-terminology. ASTM F2792–10e1
20.
Zurück zum Zitat Li D, Soar R (2007) Temperature measurements of monolithic 3003 samples during ultrasonic consolidation process. Rapid Manufacturing Research Group, Loughborough University, Loughborough, pp 1–11 Li D, Soar R (2007) Temperature measurements of monolithic 3003 samples during ultrasonic consolidation process. Rapid Manufacturing Research Group, Loughborough University, Loughborough, pp 1–11
22.
Zurück zum Zitat Ford S (2014) Additive manufacturing technology: potential implications for U.S. manufacturing competitiveness. J Int Commerce Econ 2014(9):1–35 Ford S (2014) Additive manufacturing technology: potential implications for U.S. manufacturing competitiveness. J Int Commerce Econ 2014(9):1–35
33.
Zurück zum Zitat Morgan JA, Prentiss JM (2014) An analysis of item identification for additive manufacturing (3-D printing) within the Naval supply chain. Dissertation, Naval Postgraduate School, Monterey, CA, United States. Available via https://calhoun.nps.edu/handle/10945/44623. Accessed 29 April 2021 Morgan JA, Prentiss JM (2014) An analysis of item identification for additive manufacturing (3-D printing) within the Naval supply chain. Dissertation, Naval Postgraduate School, Monterey, CA, United States. Available via https://​calhoun.​nps.​edu/​handle/​10945/​44623. Accessed 29 April 2021
36.
Zurück zum Zitat Ransikarbum K, Pitakaso R, Kim N (2020) A Decision-Support Model for Additive Manufacturing Scheduling Using an Integrative Analytic Hierarchy Process and Multi-Objective Optimization. Applied Sciences, 10(15):5159:1–16. https://doi.org/10.3390/app10155159 Ransikarbum K, Pitakaso R, Kim N (2020) A Decision-Support Model for Additive Manufacturing Scheduling Using an Integrative Analytic Hierarchy Process and Multi-Objective Optimization. Applied Sciences, 10(15):5159:1–16. https://​doi.​org/​10.​3390/​app10155159
39.
Zurück zum Zitat Sohrabpoor H, Negi S, Shaiesteh H, Ahad I, Brabazon D (2018) Optimizing selective laser sintering process by grey relational analysis and soft computing techniques. Optik 174:185–194CrossRef Sohrabpoor H, Negi S, Shaiesteh H, Ahad I, Brabazon D (2018) Optimizing selective laser sintering process by grey relational analysis and soft computing techniques. Optik 174:185–194CrossRef
40.
Zurück zum Zitat Ziaee M, Crane NB (2019) Binder jetting: a review of process, materials, and methods. Addit Manuf 28:781–801 Ziaee M, Crane NB (2019) Binder jetting: a review of process, materials, and methods. Addit Manuf 28:781–801
41.
Zurück zum Zitat Waris E, Ashammakhi N, Lehtimäki M, Tulamo R-M, Kellomäki M, Törmälä P, Konttinen YT (2008) The use of biodegradable scaffold as an alternative to silicone implant arthroplasty for small joint reconstruction: an experimental study in minipigs. Biomaterials 29:683–691CrossRef Waris E, Ashammakhi N, Lehtimäki M, Tulamo R-M, Kellomäki M, Törmälä P, Konttinen YT (2008) The use of biodegradable scaffold as an alternative to silicone implant arthroplasty for small joint reconstruction: an experimental study in minipigs. Biomaterials 29:683–691CrossRef
42.
Zurück zum Zitat Cunico MWM (2019) 3D printers and additive manufacturing: the rise of the industry 4.0, 1st edn. Concep3D Pesquisas Científicas, Curitiba Cunico MWM (2019) 3D printers and additive manufacturing: the rise of the industry 4.0, 1st edn. Concep3D Pesquisas Científicas, Curitiba
44.
Zurück zum Zitat Arif M, Kumar S, Varadarajan K, Cantwell W (2018) Performance of biocompatible PEEK processed by fused deposition additive manufacturing. Mater Des 146:249–259CrossRef Arif M, Kumar S, Varadarajan K, Cantwell W (2018) Performance of biocompatible PEEK processed by fused deposition additive manufacturing. Mater Des 146:249–259CrossRef
45.
Zurück zum Zitat Singh S, Prakash C, Ramakrishna S (2019) 3D printing of polyether-ether-ketone for biomedical applications. Eur Polymer J 114:234–248CrossRef Singh S, Prakash C, Ramakrishna S (2019) 3D printing of polyether-ether-ketone for biomedical applications. Eur Polymer J 114:234–248CrossRef
46.
Zurück zum Zitat Polacek M, Nyegaard CP, Høien F (2020) Day-case opening wedge high tibial osteotomy with intraosseous PEEK implant. Arthrosc Sports Med Rehabil 2:e145–e151CrossRef Polacek M, Nyegaard CP, Høien F (2020) Day-case opening wedge high tibial osteotomy with intraosseous PEEK implant. Arthrosc Sports Med Rehabil 2:e145–e151CrossRef
47.
Zurück zum Zitat Kolb W, Guhlmann H, Windisch C, Marx F, Koller H, Kolb K (2010) Fixation of periprosthetic femur fractures above total knee arthroplasty with the less invasive stabilization system: a midterm follow-up study. J Trauma Acute Care Surg 69:670–676CrossRef Kolb W, Guhlmann H, Windisch C, Marx F, Koller H, Kolb K (2010) Fixation of periprosthetic femur fractures above total knee arthroplasty with the less invasive stabilization system: a midterm follow-up study. J Trauma Acute Care Surg 69:670–676CrossRef
48.
Zurück zum Zitat Cowie RM, Briscoe A, Fisher J, Jennings LM (2016) PEEK-OPTIMATM as an alternative to cobalt chrome in the femoral component of total knee replacement: a preliminary study. Proc Inst Mech Eng [H] 230:1008–1015CrossRef Cowie RM, Briscoe A, Fisher J, Jennings LM (2016) PEEK-OPTIMATM as an alternative to cobalt chrome in the femoral component of total knee replacement: a preliminary study. Proc Inst Mech Eng [H] 230:1008–1015CrossRef
49.
Zurück zum Zitat de Ciurana J, Serenóa L, Vallès È (2013) Selecting process parameters in RepRap additive manufacturing system for PLA scaffolds manufacture. Proc Cirp 5:152–157CrossRef de Ciurana J, Serenóa L, Vallès È (2013) Selecting process parameters in RepRap additive manufacturing system for PLA scaffolds manufacture. Proc Cirp 5:152–157CrossRef
50.
Zurück zum Zitat Rabionet M, Guerra AJ, Puig T, Ciurana J (2018) 3D-printed tubular scaffolds for vascular tissue engineering. Proc Cirp 68:352–357CrossRef Rabionet M, Guerra AJ, Puig T, Ciurana J (2018) 3D-printed tubular scaffolds for vascular tissue engineering. Proc Cirp 68:352–357CrossRef
51.
Zurück zum Zitat Almeida HA, Bartolo PJ (2014) Design of tissue engineering scaffolds based on hyperbolic surfaces: Structural numerical evaluation. Med Eng Phys 36:1033–1040CrossRef Almeida HA, Bartolo PJ (2014) Design of tissue engineering scaffolds based on hyperbolic surfaces: Structural numerical evaluation. Med Eng Phys 36:1033–1040CrossRef
52.
Zurück zum Zitat Almeida HA, Bártolo PJ (2013) Topological optimisation of scaffolds for tissue engineering. Proc Eng 59:298–306CrossRef Almeida HA, Bártolo PJ (2013) Topological optimisation of scaffolds for tissue engineering. Proc Eng 59:298–306CrossRef
53.
Zurück zum Zitat Duan P, Pan Z, Cao L, Gao J, Yao H, Liu X, Guo R, Liang X, Dong J, Ding J (2019) Restoration of osteochondral defects by implanting bilayered poly (lactide-co-glycolide) porous scaffolds in rabbit joints for 12 and 24 weeks. J Orthop Transl 19:68–80 Duan P, Pan Z, Cao L, Gao J, Yao H, Liu X, Guo R, Liang X, Dong J, Ding J (2019) Restoration of osteochondral defects by implanting bilayered poly (lactide-co-glycolide) porous scaffolds in rabbit joints for 12 and 24 weeks. J Orthop Transl 19:68–80
54.
Zurück zum Zitat Zheng Y, Han Q, Li D, Sheng F, Song Z, Wang J (2021) Promotion of tendon growth into implant through pore-size design of a Ti-6Al-4V porous scaffold prepared by 3D printing. Mater Des 197:109219CrossRef Zheng Y, Han Q, Li D, Sheng F, Song Z, Wang J (2021) Promotion of tendon growth into implant through pore-size design of a Ti-6Al-4V porous scaffold prepared by 3D printing. Mater Des 197:109219CrossRef
55.
Zurück zum Zitat Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K (2017) Biodegradable ceramic-polymer composites for biomedical applications: a review. Mater Sci Eng C 71:1175–1191CrossRef Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K (2017) Biodegradable ceramic-polymer composites for biomedical applications: a review. Mater Sci Eng C 71:1175–1191CrossRef
56.
Zurück zum Zitat Domingos M, Gloria A, Coelho J, Bartolo P, Ciurana J (2017) Three-dimensional printed bone scaffolds: the role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells. Proc Inst Mech Eng [H] 231:555–564CrossRef Domingos M, Gloria A, Coelho J, Bartolo P, Ciurana J (2017) Three-dimensional printed bone scaffolds: the role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells. Proc Inst Mech Eng [H] 231:555–564CrossRef
57.
Zurück zum Zitat Rabionet M, Polonio E, Guerra AJ, Martin J, Puig T, Ciurana J (2018) Design of a scaffold parameter selection system with additive manufacturing for a biomedical cell culture. Materials 11:1427CrossRef Rabionet M, Polonio E, Guerra AJ, Martin J, Puig T, Ciurana J (2018) Design of a scaffold parameter selection system with additive manufacturing for a biomedical cell culture. Materials 11:1427CrossRef
58.
Zurück zum Zitat Rabionet M, Puig T, Ciurana J (2020) Manufacture of PCL scaffolds through electrospinning technology to accommodate Triple Negative Breast Cancer cells culture. Proc CIRP 89:98–103CrossRef Rabionet M, Puig T, Ciurana J (2020) Manufacture of PCL scaffolds through electrospinning technology to accommodate Triple Negative Breast Cancer cells culture. Proc CIRP 89:98–103CrossRef
59.
Zurück zum Zitat Guerra A, Roca A, de Ciurana J (2017) A novel 3D additive manufacturing machine to biodegradable stents. Proc Manuf 13:718–723 Guerra A, Roca A, de Ciurana J (2017) A novel 3D additive manufacturing machine to biodegradable stents. Proc Manuf 13:718–723
60.
Zurück zum Zitat Guerra AJ, Ciurana J (2018) 3D-printed bioabsordable polycaprolactone stent: the effect of process parameters on its physical features. Mater Des 137:430–437CrossRef Guerra AJ, Ciurana J (2018) 3D-printed bioabsordable polycaprolactone stent: the effect of process parameters on its physical features. Mater Des 137:430–437CrossRef
61.
Zurück zum Zitat Guerra AJ, Ciurana JD (2019) Three-dimensional tubular printing of bioabsorbable stents: the effects process parameters have on in vitro degradation. 3 D Print Addit Manuf 6:50–56CrossRef Guerra AJ, Ciurana JD (2019) Three-dimensional tubular printing of bioabsorbable stents: the effects process parameters have on in vitro degradation. 3 D Print Addit Manuf 6:50–56CrossRef
62.
Zurück zum Zitat McMahon S, Bertollo N, O’Cearbhaill ED, Salber J, Pierucci L, Duffy P, Dürig T, Bi V, Wang W (2018) Bio-resorbable polymer stents: a review of material progress and prospects. Prog Polym Sci 83:79–96CrossRef McMahon S, Bertollo N, O’Cearbhaill ED, Salber J, Pierucci L, Duffy P, Dürig T, Bi V, Wang W (2018) Bio-resorbable polymer stents: a review of material progress and prospects. Prog Polym Sci 83:79–96CrossRef
63.
Zurück zum Zitat Kodama H (1981) Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev Sci Instrum 52:1770–1773CrossRef Kodama H (1981) Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev Sci Instrum 52:1770–1773CrossRef
65.
Zurück zum Zitat Wu H, Cheng Y, Liu W, He R, Zhou M, Wu S, Song X, Chen Y (2016) Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography. Ceram Int 42:17290–17294CrossRef Wu H, Cheng Y, Liu W, He R, Zhou M, Wu S, Song X, Chen Y (2016) Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography. Ceram Int 42:17290–17294CrossRef
68.
69.
Zurück zum Zitat Varma MV, Kandasubramanian B, Ibrahim SM (2020) 3D printed scaffolds for biomedical applications. Mater Chem Phys 255:123642CrossRef Varma MV, Kandasubramanian B, Ibrahim SM (2020) 3D printed scaffolds for biomedical applications. Mater Chem Phys 255:123642CrossRef
70.
Zurück zum Zitat Zhou T, Zhang L, Yao Q, Ma Y, Hou C, Sun B, Shao C, Gao P, Chen H (2020) SLA 3D printing of high quality spine shaped β-TCP bioceramics for the hard tissue repair applications. Ceram Int 46:7609–7614CrossRef Zhou T, Zhang L, Yao Q, Ma Y, Hou C, Sun B, Shao C, Gao P, Chen H (2020) SLA 3D printing of high quality spine shaped β-TCP bioceramics for the hard tissue repair applications. Ceram Int 46:7609–7614CrossRef
71.
72.
Zurück zum Zitat Chartrain NA, Williams CB, Whittington AR (2018) A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater 74:90–111CrossRef Chartrain NA, Williams CB, Whittington AR (2018) A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater 74:90–111CrossRef
73.
Zurück zum Zitat Szymczyk-Ziółkowska P, Łabowska MB, Detyna J, Michalak I, Gruber P (2020) A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybern Biomed Eng 40:624–638CrossRef Szymczyk-Ziółkowska P, Łabowska MB, Detyna J, Michalak I, Gruber P (2020) A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybern Biomed Eng 40:624–638CrossRef
74.
Zurück zum Zitat Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB, Sultan MT, Lee OJ, Lee JS, Yoon S-i (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 9:1–14 Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB, Sultan MT, Lee OJ, Lee JS, Yoon S-i (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 9:1–14
75.
Zurück zum Zitat Wong KV, Hernandez A (2012) A review of additive manufacturing. In: ISRN Mechanical Engineering 2012 Wong KV, Hernandez A (2012) A review of additive manufacturing. In: ISRN Mechanical Engineering 2012
77.
Zurück zum Zitat Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R (2019) 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci 106:100578CrossRef Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R (2019) 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci 106:100578CrossRef
78.
Zurück zum Zitat Pupo Y, Monroy KP, Ciurana J (2015) Influence of process parameters on surface quality of CoCrMo produced by selective laser melting. Int J Adv Manuf Technol 80:985–995CrossRef Pupo Y, Monroy KP, Ciurana J (2015) Influence of process parameters on surface quality of CoCrMo produced by selective laser melting. Int J Adv Manuf Technol 80:985–995CrossRef
79.
Zurück zum Zitat Ciurana J, Hernandez L, Delgado J (2013) Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material. Int J Adv Manuf Technol 68:1103–1110CrossRef Ciurana J, Hernandez L, Delgado J (2013) Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material. Int J Adv Manuf Technol 68:1103–1110CrossRef
80.
Zurück zum Zitat Delgado J, Ciurana J, Rodríguez CA (2012) Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60:601–610CrossRef Delgado J, Ciurana J, Rodríguez CA (2012) Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60:601–610CrossRef
81.
Zurück zum Zitat Cunico MWM (2015) Impressoras 3D: O novo meio Produtivo, 1st edn. Concep3D Pesquisas Científicas, Curitiba Cunico MWM (2015) Impressoras 3D: O novo meio Produtivo, 1st edn. Concep3D Pesquisas Científicas, Curitiba
82.
Zurück zum Zitat Bartolo P, Kruth J-P, Silva J, Levy G, Malshe A, Rajurkar K, Mitsuishi M, Ciurana J, Leu M (2012) Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann 61:635–655CrossRef Bartolo P, Kruth J-P, Silva J, Levy G, Malshe A, Rajurkar K, Mitsuishi M, Ciurana J, Leu M (2012) Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann 61:635–655CrossRef
84.
Zurück zum Zitat Hryha E, Shvab R, Bram M, Bitzer M, Nyborg L (2016) Surface chemical state of Ti powders and its alloys: effect of storage conditions and alloy composition. Appl Surf Sci 388:294–303CrossRef Hryha E, Shvab R, Bram M, Bitzer M, Nyborg L (2016) Surface chemical state of Ti powders and its alloys: effect of storage conditions and alloy composition. Appl Surf Sci 388:294–303CrossRef
85.
Zurück zum Zitat Horstkotte R, Heinrich F, Prümmer M, Arntz K, Bergs T (2021) Generation and evaluation of automation concepts of additive process chains with Laser Powder Bed Fusion (L-PBF). Procedia CIRP 96:97–102CrossRef Horstkotte R, Heinrich F, Prümmer M, Arntz K, Bergs T (2021) Generation and evaluation of automation concepts of additive process chains with Laser Powder Bed Fusion (L-PBF). Procedia CIRP 96:97–102CrossRef
88.
Zurück zum Zitat Dallago M, Zanini F, Carmignato S, Pasini D, Benedetti M (2018) Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices. Proc Struct Integr 13:161–167 Dallago M, Zanini F, Carmignato S, Pasini D, Benedetti M (2018) Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices. Proc Struct Integr 13:161–167
91.
Zurück zum Zitat Johnson AJ, Harwin SF, Krackow KA, Mont MA (2011) Alignment in total knee arthroplasty: where have we come from and where are we going? Surg Technol Int 21:183–188 Johnson AJ, Harwin SF, Krackow KA, Mont MA (2011) Alignment in total knee arthroplasty: where have we come from and where are we going? Surg Technol Int 21:183–188
92.
Zurück zum Zitat Song X, Feih S, Zhai W, Sun C-N, Li F, Maiti R, Wei J, Yang Y, Oancea V, Brandt LR (2020) Advances in additive manufacturing process simulation: residual stresses and distortion predictions in complex metallic components. Mater Des 193:108779CrossRef Song X, Feih S, Zhai W, Sun C-N, Li F, Maiti R, Wei J, Yang Y, Oancea V, Brandt LR (2020) Advances in additive manufacturing process simulation: residual stresses and distortion predictions in complex metallic components. Mater Des 193:108779CrossRef
93.
Zurück zum Zitat Almeida HA, Costa AF, Ramos C, Torres C, Minondo M, Bártolo PJ, Nunes A, Kemmoku D, da Silva JVL (2019) Additive manufacturing systems for medical applications: case studies. In: Pei E, Monzón M, Bernard A (eds) Additive manufacturing—developments in training and education, 1st edn. Springer, Cham. p 187–209. https://doi.org/10.1007/978-3-319-76084-1_13https://doi.org/10.1007/978-3-319-76084-1_13 Almeida HA, Costa AF, Ramos C, Torres C, Minondo M, Bártolo PJ, Nunes A, Kemmoku D, da Silva JVL (2019) Additive manufacturing systems for medical applications: case studies. In: Pei E, Monzón M, Bernard A (eds) Additive manufacturing—developments in training and education, 1st edn. Springer, Cham. p 187–209. https://​doi.​org/​10.​1007/​978-3-319-76084-1_​13https://doi.org/10.1007/978-3-319-76084-1_13
95.
Zurück zum Zitat Attar H, Bermingham M, Ehtemam-Haghighi S, Dehghan-Manshadi A, Kent D, Dargusch M (2019) Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application. Mater Sci Eng, A 760:339–345CrossRef Attar H, Bermingham M, Ehtemam-Haghighi S, Dehghan-Manshadi A, Kent D, Dargusch M (2019) Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application. Mater Sci Eng, A 760:339–345CrossRef
96.
Zurück zum Zitat Buciumeanu M, Bagheri A, Shamsaei N, Thompson S, Silva F, Henriques B (2018) Tribocorrosion behavior of additive manufactured Ti-6Al-4V biomedical alloy. Tribol Int 119:381–388CrossRef Buciumeanu M, Bagheri A, Shamsaei N, Thompson S, Silva F, Henriques B (2018) Tribocorrosion behavior of additive manufactured Ti-6Al-4V biomedical alloy. Tribol Int 119:381–388CrossRef
97.
Zurück zum Zitat Harun W, Manam N, Kamariah M, Sharif S, Zulkifly A, Ahmad I, Miura H (2018) A review of powdered additive manufacturing techniques for Ti-6Al-4V biomedical applications. Powder Technol 331:74–97CrossRef Harun W, Manam N, Kamariah M, Sharif S, Zulkifly A, Ahmad I, Miura H (2018) A review of powdered additive manufacturing techniques for Ti-6Al-4V biomedical applications. Powder Technol 331:74–97CrossRef
98.
Zurück zum Zitat Bandyopadhyay A, Dittrick S, Gualtieri T, Wu J, Bose S (2016) Calcium phosphate–titanium composites for articulating surfaces of load-bearing implants. J Mech Behav Biomed Mater 57:280–288CrossRef Bandyopadhyay A, Dittrick S, Gualtieri T, Wu J, Bose S (2016) Calcium phosphate–titanium composites for articulating surfaces of load-bearing implants. J Mech Behav Biomed Mater 57:280–288CrossRef
100.
Zurück zum Zitat Hong D, Chou D-T, Velikokhatnyi OI, Roy A, Lee B, Swink I, Issaev I, Kuhn HA, Kumta PN (2016) Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater 45:375–386CrossRef Hong D, Chou D-T, Velikokhatnyi OI, Roy A, Lee B, Swink I, Issaev I, Kuhn HA, Kumta PN (2016) Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater 45:375–386CrossRef
101.
Zurück zum Zitat Seidenstuecker M, Kerr L, Bernstein A, Mayr HO, Suedkamp NP, Gadow R, Krieg P, Hernandez Latorre S, Thomann R, Syrowatka F, Esslinger S (2017) 3D Powder printed bioglass and β-tricalcium phosphate bone scaffolds. Materials (Basel, Switzerland). https://doi.org/10.3390/ma11010013CrossRef Seidenstuecker M, Kerr L, Bernstein A, Mayr HO, Suedkamp NP, Gadow R, Krieg P, Hernandez Latorre S, Thomann R, Syrowatka F, Esslinger S (2017) 3D Powder printed bioglass and β-tricalcium phosphate bone scaffolds. Materials (Basel, Switzerland). https://​doi.​org/​10.​3390/​ma11010013CrossRef
102.
Zurück zum Zitat Sun C, Tian X, Wang L, Liu Y, Wirth CM, Günster J, Li D, Jin Z (2017) Effect of particle size gradation on the performance of glass-ceramic 3D printing process. Ceram Int 43:578–584CrossRef Sun C, Tian X, Wang L, Liu Y, Wirth CM, Günster J, Li D, Jin Z (2017) Effect of particle size gradation on the performance of glass-ceramic 3D printing process. Ceram Int 43:578–584CrossRef
103.
Zurück zum Zitat De Melo BR, Salmoria G, Wirth C, Hotza D, Stares S, Günster J (2018) Manufacturing of SiO 2-coated β-TCP structures by 3D printing using a preceramic polymer as printing binder and silica source. J Ceram Sci Technol 9:37–42 De Melo BR, Salmoria G, Wirth C, Hotza D, Stares S, Günster J (2018) Manufacturing of SiO 2-coated β-TCP structures by 3D printing using a preceramic polymer as printing binder and silica source. J Ceram Sci Technol 9:37–42
104.
Zurück zum Zitat Shao H, Sun M, Zhang F, Liu A, He Y, Fu J, Yang X, Wang H, Gou Z (2018) Custom repair of mandibular bone defects with 3D printed bioceramic scaffolds. J Dent Res 97:68–76CrossRef Shao H, Sun M, Zhang F, Liu A, He Y, Fu J, Yang X, Wang H, Gou Z (2018) Custom repair of mandibular bone defects with 3D printed bioceramic scaffolds. J Dent Res 97:68–76CrossRef
105.
Zurück zum Zitat Wei Q, Wang Y, Li X, Yang M, Chai W, Wang K (2016) Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds. J Mech Behav Biomed Mater 57:190–200CrossRef Wei Q, Wang Y, Li X, Yang M, Chai W, Wang K (2016) Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds. J Mech Behav Biomed Mater 57:190–200CrossRef
106.
Zurück zum Zitat Wei Q, Wang Y, Chai W, Zhang Y, Chen X (2017) Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds. Ceram Int 43:13702–13709CrossRef Wei Q, Wang Y, Chai W, Zhang Y, Chen X (2017) Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds. Ceram Int 43:13702–13709CrossRef
111.
Zurück zum Zitat Kondo K, Harada N, Masuda H, Sugo N, Terazono S, Okonogi S, Sakaeyama Y, Fuchinoue Y, Ando S, Fukushima D, Nomoto J, Nemoto M (2016) A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures. Acta Neurochir 158:1213–1219. https://doi.org/10.1007/s00701-016-2781-9CrossRef Kondo K, Harada N, Masuda H, Sugo N, Terazono S, Okonogi S, Sakaeyama Y, Fuchinoue Y, Ando S, Fukushima D, Nomoto J, Nemoto M (2016) A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures. Acta Neurochir 158:1213–1219. https://​doi.​org/​10.​1007/​s00701-016-2781-9CrossRef
114.
Zurück zum Zitat MENDRICKY R, (2016) Accuracy analysis of additive technique for parts manufacturing. MM Sci J 2016:1502–1508 MENDRICKY R, (2016) Accuracy analysis of additive technique for parts manufacturing. MM Sci J 2016:1502–1508
118.
Zurück zum Zitat Camardella LT, de Vasconcellos VO, Breuning H (2017) Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases. Am J Orthod Dentofac Orthop 151:1178–1187CrossRef Camardella LT, de Vasconcellos VO, Breuning H (2017) Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases. Am J Orthod Dentofac Orthop 151:1178–1187CrossRef
119.
Zurück zum Zitat Kiefer O, Breitkreutz J (2020) Comparative investigations on key factors and print head designs for pharmaceutical inkjet printing. Int J Pharm 586:119561CrossRef Kiefer O, Breitkreutz J (2020) Comparative investigations on key factors and print head designs for pharmaceutical inkjet printing. Int J Pharm 586:119561CrossRef
124.
Zurück zum Zitat Ahangar P, Cooke ME, Weber MH, Rosenzweig DH (2019) Current biomedical applications of 3D printing and additive manufacturing. Appl Sci 9:1713CrossRef Ahangar P, Cooke ME, Weber MH, Rosenzweig DH (2019) Current biomedical applications of 3D printing and additive manufacturing. Appl Sci 9:1713CrossRef
125.
Zurück zum Zitat Pham DT, Gault RS (1998) A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 38:1257–1287CrossRef Pham DT, Gault RS (1998) A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 38:1257–1287CrossRef
127.
Zurück zum Zitat Mahesh M, Wong Y, Fuh J, Loh H (2004) Benchmarking for comparative evaluation of RP systems and processes. Rapid Prototyp J 10:123–135CrossRef Mahesh M, Wong Y, Fuh J, Loh H (2004) Benchmarking for comparative evaluation of RP systems and processes. Rapid Prototyp J 10:123–135CrossRef
128.
Zurück zum Zitat Paital SR, Dahotre NB (2009) Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater Sci Eng R Rep 66:1–70CrossRef Paital SR, Dahotre NB (2009) Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater Sci Eng R Rep 66:1–70CrossRef
130.
Zurück zum Zitat Di Prima M, Coburn J, Hwang D, Kelly J, Khairuzzaman A, Ricles L (2016) Additively manufactured medical products–the FDA perspective. 3D Print Med 2:1–6CrossRef Di Prima M, Coburn J, Hwang D, Kelly J, Khairuzzaman A, Ricles L (2016) Additively manufactured medical products–the FDA perspective. 3D Print Med 2:1–6CrossRef
133.
Zurück zum Zitat Singare S, Dichen L, Bingheng L, Yanpu L, Zhenyu G, Yaxiong L (2004) Design and fabrication of custom mandible titanium tray based on rapid prototyping. Med Eng Phys 26:671–676CrossRef Singare S, Dichen L, Bingheng L, Yanpu L, Zhenyu G, Yaxiong L (2004) Design and fabrication of custom mandible titanium tray based on rapid prototyping. Med Eng Phys 26:671–676CrossRef
137.
Zurück zum Zitat Ahn D-G, Lee J-Y, Yang D-Y (2006) Rapid prototyping and reverse engineering application for orthopedic surgery planning. J Mech Sci Technol 20:19CrossRef Ahn D-G, Lee J-Y, Yang D-Y (2006) Rapid prototyping and reverse engineering application for orthopedic surgery planning. J Mech Sci Technol 20:19CrossRef
138.
Zurück zum Zitat Ciurana J (2014) Designing, prototyping and manufacturing medical devices: an overview. Int J Comput Integr Manuf 27:901–918CrossRef Ciurana J (2014) Designing, prototyping and manufacturing medical devices: an overview. Int J Comput Integr Manuf 27:901–918CrossRef
139.
Zurück zum Zitat Bukač M, Čanić S, Tambača J, Wang Y (2019) Fluid–structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: A four stent computational study. Comput Methods Appl Mech Eng 350:679–700MathSciNetMATHCrossRef Bukač M, Čanić S, Tambača J, Wang Y (2019) Fluid–structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: A four stent computational study. Comput Methods Appl Mech Eng 350:679–700MathSciNetMATHCrossRef
140.
Zurück zum Zitat Guerra AJ, Farjas J, Ciurana J (2017) Fibre laser cutting of polycaprolactone sheet for stents manufacturing: a feasibility study. Opt Laser Technol 95:113–123CrossRef Guerra AJ, Farjas J, Ciurana J (2017) Fibre laser cutting of polycaprolactone sheet for stents manufacturing: a feasibility study. Opt Laser Technol 95:113–123CrossRef
142.
Zurück zum Zitat Tofail SA, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21:22–37CrossRef Tofail SA, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21:22–37CrossRef
144.
Zurück zum Zitat Poinern GEJ, Brundavanam S, Fawcett D (2012) Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am J Biomed Eng 2:218–240CrossRef Poinern GEJ, Brundavanam S, Fawcett D (2012) Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am J Biomed Eng 2:218–240CrossRef
145.
Zurück zum Zitat Hanawa T (2009) Materials for metallic stents. J Artif Organs 12:73–79CrossRef Hanawa T (2009) Materials for metallic stents. J Artif Organs 12:73–79CrossRef
146.
Zurück zum Zitat Davis JR (2003) Handbook of materials for medical devices, 1st edn. ASM International, Materials Park Davis JR (2003) Handbook of materials for medical devices, 1st edn. ASM International, Materials Park
147.
Zurück zum Zitat Borah J, Webster J (2006) Measurement techniques for eye movement. Encycl Med Dev Instrum 3:263–286 Borah J, Webster J (2006) Measurement techniques for eye movement. Encycl Med Dev Instrum 3:263–286
148.
Zurück zum Zitat Kadkhodapour J, Montazerian H, Darabi AC, Anaraki A, Ahmadi S, Zadpoor A, Schmauder S (2015) Failure mechanisms of additively manufactured porous biomaterials: effects of porosity and type of unit cell. J Mech Behav Biomed Mater 50:180–191CrossRef Kadkhodapour J, Montazerian H, Darabi AC, Anaraki A, Ahmadi S, Zadpoor A, Schmauder S (2015) Failure mechanisms of additively manufactured porous biomaterials: effects of porosity and type of unit cell. J Mech Behav Biomed Mater 50:180–191CrossRef
151.
Zurück zum Zitat Okazaki Y, Gotoh E (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26:11–21CrossRef Okazaki Y, Gotoh E (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26:11–21CrossRef
153.
Zurück zum Zitat Brockett CL, Harper P, Williams S, Isaac GH, Dwyer-Joyce RS, Jin Z, Fisher J (2008) The influence of clearance on friction, lubrication and squeaking in large diameter metal-on-metal hip replacements. J Mater Sci Mater Med 19:1575–1579CrossRef Brockett CL, Harper P, Williams S, Isaac GH, Dwyer-Joyce RS, Jin Z, Fisher J (2008) The influence of clearance on friction, lubrication and squeaking in large diameter metal-on-metal hip replacements. J Mater Sci Mater Med 19:1575–1579CrossRef
156.
Zurück zum Zitat Hin TS (2004) Introduction to biomatrerials engineering and processing-an overview. Eng Mater Biomed Appl, pp 1–16 Hin TS (2004) Introduction to biomatrerials engineering and processing-an overview. Eng Mater Biomed Appl, pp 1–16
157.
Zurück zum Zitat Rasouli R, Barhoum A, Uludag H (2018) A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomater Sci 6:1312–1338CrossRef Rasouli R, Barhoum A, Uludag H (2018) A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomater Sci 6:1312–1338CrossRef
158.
Zurück zum Zitat Lütjering G, Williams JC (2003) Titanium, 2, end. Springer, Clumbus, pp 17–156CrossRef Lütjering G, Williams JC (2003) Titanium, 2, end. Springer, Clumbus, pp 17–156CrossRef
161.
Zurück zum Zitat Santin M, Phillips GJ (2012) History of biomimetic, bioactive and bioresponsive biomaterials. In: Santin M, Phillips GJ (eds) Biomimetic, bioresponsive, and bioactive materials: an introduction to integrating materials with tissues, 1st edn. Wiley, Hoboken, p 1–34. https://doi.org/10.1002/9781118129906 Santin M, Phillips GJ (2012) History of biomimetic, bioactive and bioresponsive biomaterials. In: Santin M, Phillips GJ (eds) Biomimetic, bioresponsive, and bioactive materials: an introduction to integrating materials with tissues, 1st edn. Wiley, Hoboken, p 1–34. https://​doi.​org/​10.​1002/​9781118129906
162.
Zurück zum Zitat Haubenreich JE, Robinson FG, West KP, Frazer RQ (2005) Did we push dental ceramics too far? A brief history of ceramic dental implants. J Long-term Effects Med Implants 15 Haubenreich JE, Robinson FG, West KP, Frazer RQ (2005) Did we push dental ceramics too far? A brief history of ceramic dental implants. J Long-term Effects Med Implants 15
163.
Zurück zum Zitat Afzal A (2014) Implantable zirconia bioceramics for bone repair and replacement: a chronological review. Mater Express 4:1–12MathSciNetCrossRef Afzal A (2014) Implantable zirconia bioceramics for bone repair and replacement: a chronological review. Mater Express 4:1–12MathSciNetCrossRef
164.
Zurück zum Zitat Bohner M (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31:D37–D47CrossRef Bohner M (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31:D37–D47CrossRef
166.
Zurück zum Zitat Guerra AJ, Cano P, Rabionet M, Puig T, Ciurana J (2018) 3D-printed PCL/PLA composite stents: towards a new solution to cardiovascular problems. Materials 11:1679CrossRef Guerra AJ, Cano P, Rabionet M, Puig T, Ciurana J (2018) 3D-printed PCL/PLA composite stents: towards a new solution to cardiovascular problems. Materials 11:1679CrossRef
168.
Zurück zum Zitat Chiellini F, Ferri M, Morelli A, Dipaola L, Latini G (2013) Perspectives on alternatives to phthalate plasticized poly (vinyl chloride) in medical devices applications. Prog Polym Sci 38:1067–1088CrossRef Chiellini F, Ferri M, Morelli A, Dipaola L, Latini G (2013) Perspectives on alternatives to phthalate plasticized poly (vinyl chloride) in medical devices applications. Prog Polym Sci 38:1067–1088CrossRef
169.
Zurück zum Zitat Nogueira N, Conde O, Minones M, Trillo J, Minones J Jr (2012) Characterization of poly (2-hydroxyethyl methacrylate)(PHEMA) contact lens using the Langmuir monolayer technique. J Colloid Interface Sci 385:202–210CrossRef Nogueira N, Conde O, Minones M, Trillo J, Minones J Jr (2012) Characterization of poly (2-hydroxyethyl methacrylate)(PHEMA) contact lens using the Langmuir monolayer technique. J Colloid Interface Sci 385:202–210CrossRef
171.
Zurück zum Zitat Habraken W, Wolke J, Jansen J (2007) Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:234–248CrossRef Habraken W, Wolke J, Jansen J (2007) Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:234–248CrossRef
173.
Zurück zum Zitat Katti KS (2004) Biomaterials in total joint replacement. Colloids Surf B 39:133–142CrossRef Katti KS (2004) Biomaterials in total joint replacement. Colloids Surf B 39:133–142CrossRef
174.
Zurück zum Zitat Niu G, Criswell T, Sapoznik E, Lee S, Soker S (2013) The influence of cross-linking methods on the mechanical and biocompatible properties of vascular scaffold. J Sci Appl Biomed 1:1–7 Niu G, Criswell T, Sapoznik E, Lee S, Soker S (2013) The influence of cross-linking methods on the mechanical and biocompatible properties of vascular scaffold. J Sci Appl Biomed 1:1–7
175.
Zurück zum Zitat Vanaei S, Parizi M, Salemizadehparizi F, Vanaei H (2021) An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng Regener 2:1–18 Vanaei S, Parizi M, Salemizadehparizi F, Vanaei H (2021) An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng Regener 2:1–18
177.
Zurück zum Zitat McCarthy RR, Ullah MW, Booth P, Pei E, Yang G (2019) The use of bacterial polysaccharides in bioprinting. Biotechnol Adv 37:107448CrossRef McCarthy RR, Ullah MW, Booth P, Pei E, Yang G (2019) The use of bacterial polysaccharides in bioprinting. Biotechnol Adv 37:107448CrossRef
181.
Zurück zum Zitat Wang J-Z, Xiong N-Y, Zhao L-Z, Hu J-T, Kong D-C, Yuan J-Y (2018) Review fantastic medical implications of 3D-printing in liver surgeries, liver regeneration, liver transplantation and drug hepatotoxicity testing: a review. Int J Surg 56:1–6CrossRef Wang J-Z, Xiong N-Y, Zhao L-Z, Hu J-T, Kong D-C, Yuan J-Y (2018) Review fantastic medical implications of 3D-printing in liver surgeries, liver regeneration, liver transplantation and drug hepatotoxicity testing: a review. Int J Surg 56:1–6CrossRef
187.
Zurück zum Zitat Velu R, Calais T, Jayakumar A, Raspall F (2020) A comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique. Materials 13:92CrossRef Velu R, Calais T, Jayakumar A, Raspall F (2020) A comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique. Materials 13:92CrossRef
193.
Zurück zum Zitat Mohammadi K, Movahhedy MR, Shishkovsky I, Hedayati R (2020) Hybrid anisotropic pentamode mechanical metamaterial produced by additive manufacturing technique. Appl Phys Lett 117:061901CrossRef Mohammadi K, Movahhedy MR, Shishkovsky I, Hedayati R (2020) Hybrid anisotropic pentamode mechanical metamaterial produced by additive manufacturing technique. Appl Phys Lett 117:061901CrossRef
195.
Zurück zum Zitat Wei Y-L, Yang Q-S, Ma L-H, Tao R, Shang J-J (2020) Design and analysis of 2D/3D negative hydration expansion Metamaterial driven by hydrogel. Mater Des 196:109084CrossRef Wei Y-L, Yang Q-S, Ma L-H, Tao R, Shang J-J (2020) Design and analysis of 2D/3D negative hydration expansion Metamaterial driven by hydrogel. Mater Des 196:109084CrossRef
198.
Zurück zum Zitat Yang K, Li J, de la Chapelle ML, Huang G, Wang Y, Zhang J, Xu D, Yao J, Yang X, Fu W (2021) A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification. Biosens Bioelectron 175:112874CrossRef Yang K, Li J, de la Chapelle ML, Huang G, Wang Y, Zhang J, Xu D, Yao J, Yang X, Fu W (2021) A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification. Biosens Bioelectron 175:112874CrossRef
199.
Zurück zum Zitat Palai G, Kisan S, Das A (2018) A proposal for bio-medical device to measure GUS in human blood using metamaterial. Optik 164:138–142CrossRef Palai G, Kisan S, Das A (2018) A proposal for bio-medical device to measure GUS in human blood using metamaterial. Optik 164:138–142CrossRef
200.
Zurück zum Zitat Kamal M, Ziyab A, Bartella A, Mitchell D, Al-Asfour A, Hölzle F, Kessler P, Lethaus B (2018) Volumetric comparison of autogenous bone and tissue-engineered bone replacement materials in alveolar cleft repair: a systematic review and meta-analysis. Br J Oral Maxillofac Surg 56:453–462CrossRef Kamal M, Ziyab A, Bartella A, Mitchell D, Al-Asfour A, Hölzle F, Kessler P, Lethaus B (2018) Volumetric comparison of autogenous bone and tissue-engineered bone replacement materials in alveolar cleft repair: a systematic review and meta-analysis. Br J Oral Maxillofac Surg 56:453–462CrossRef
201.
Zurück zum Zitat Cui L, Xiang S, Chen D, Fu R, Zhang X, Chen J, Wang X (2021) A novel tissue-engineered bone graft composed of silicon-substituted calcium phosphate, autogenous fine particulate bone powder and BMSCs promotes posterolateral spinal fusion in rabbits. J Orthop Transl 26:151–161 Cui L, Xiang S, Chen D, Fu R, Zhang X, Chen J, Wang X (2021) A novel tissue-engineered bone graft composed of silicon-substituted calcium phosphate, autogenous fine particulate bone powder and BMSCs promotes posterolateral spinal fusion in rabbits. J Orthop Transl 26:151–161
202.
Zurück zum Zitat Pelttari K, Rua LA, Mumme M, Manferdini C, Darwiche S, Khalil A, Buchner D, Lisignoli G, Occhetta P, von Rechenberg B (2020) Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects. Cytotherapy 22:S14CrossRef Pelttari K, Rua LA, Mumme M, Manferdini C, Darwiche S, Khalil A, Buchner D, Lisignoli G, Occhetta P, von Rechenberg B (2020) Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects. Cytotherapy 22:S14CrossRef
Metadaten
Titel
A comprehensive review on additive manufacturing of medical devices
verfasst von
Leonardo Rosa Ribeiro da Silva
Wisley Falco Sales
Felipe dos Anjos Rodrigues Campos
José Aécio Gomes de Sousa
Rahul Davis
Abhishek Singh
Reginaldo Teixeira Coelho
Bhaskar Borgohain
Publikationsdatum
04.05.2021
Verlag
Springer International Publishing
Erschienen in
Progress in Additive Manufacturing / Ausgabe 3/2021
Print ISSN: 2363-9512
Elektronische ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-021-00188-0

Weitere Artikel der Ausgabe 3/2021

Progress in Additive Manufacturing 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.