Skip to main content
Erschienen in: Journal of Iron and Steel Research International 9/2020

17.07.2020 | Original Paper

Prediction model for mechanical properties of hot-rolled strips by deep learning

verfasst von: Wei-gang Li, Lu Xie, Yun-tao Zhao, Zi-xiang Li, Wen-bo Wang

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 9/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The prediction of the mechanical properties of hot-rolled strips is a very complex, highly dimensional and nonlinear problem, and the published models might lack reliability, practicability and generalization. Thus, a new model was proposed for predicting the mechanical properties of hot-rolled strips by deep learning. First, the one-dimensional numerical data were transformed into two-dimensional data for expressing the complex interaction between the influencing factors. Subsequently, a new convolutional network was proposed to establish the prediction model of tensile strength of hot-rolled strips, and an improved inception module was introduced into this network to abstract features from different scales. Many comparative experiments were carried out to find the optimal network structure and its hyperparameters. Finally, the prediction experiments were carried out on different models to evaluate the performance of the new convolutional network, which includes the stepwise regression, ridge regression, support vector machine, random forest, shallow neural network, Bayesian neural network, deep feed-forward network and improved LeNet-5 convolutional neural network. The results show that the proposed convolutional network has better prediction accuracy of the mechanical properties of hot-rolled strips compared with other models.
Literatur
[1]
Zurück zum Zitat S.M. Azimi, D. Britz, M. Engstler, M. Fritz, F. Mücklich, Sci. Rep. 8 (2018) 2128.CrossRef S.M. Azimi, D. Britz, M. Engstler, M. Fritz, F. Mücklich, Sci. Rep. 8 (2018) 2128.CrossRef
[2]
Zurück zum Zitat W.G. Li, W. Yang, Y.T. Zhao, G. Xu, X.H. Liu, J. Iron Steel Res. Int. 26 (2019) 230–241.CrossRef W.G. Li, W. Yang, Y.T. Zhao, G. Xu, X.H. Liu, J. Iron Steel Res. Int. 26 (2019) 230–241.CrossRef
[3]
Zurück zum Zitat W.G. Li, W. Yang, Y.T. Zhao, H.F. Hu, J. Iron Steel Res. Int. 30 (2018) 302–308. W.G. Li, W. Yang, Y.T. Zhao, H.F. Hu, J. Iron Steel Res. Int. 30 (2018) 302–308.
[4]
Zurück zum Zitat G. Khalaj, T. Azimzadegan, M. Khoeini, M. Etaat, Neural Comput. Appl. 23 (2013) 2301–2308.CrossRef G. Khalaj, T. Azimzadegan, M. Khoeini, M. Etaat, Neural Comput. Appl. 23 (2013) 2301–2308.CrossRef
[5]
[6]
Zurück zum Zitat S.W. Wu, G.M. Cao, X.G. Zhou, N.A. Shi, Z.Y. Liu, ISIJ Int. 57 (2017) 1213–1220.CrossRef S.W. Wu, G.M. Cao, X.G. Zhou, N.A. Shi, Z.Y. Liu, ISIJ Int. 57 (2017) 1213–1220.CrossRef
[7]
Zurück zum Zitat S.W. Wu, J.K. Ren, X.G. Zhou, G.M. Cao, Z.Y. Liu, J. Yang, Trans. Indian Inst. Met. 72 (2019) 1277-1288.CrossRef S.W. Wu, J.K. Ren, X.G. Zhou, G.M. Cao, Z.Y. Liu, J. Yang, Trans. Indian Inst. Met. 72 (2019) 1277-1288.CrossRef
[8]
Zurück zum Zitat S.W. Wu, Z.Y. Liu, X.G. Zhou, N.A. Shi, J. Iron Steel Res. Int. 28 (2016) 1–4. S.W. Wu, Z.Y. Liu, X.G. Zhou, N.A. Shi, J. Iron Steel Res. Int. 28 (2016) 1–4.
[9]
Zurück zum Zitat Y.H. Zhao, Y. Weng, N.Q. Peng, G.B. Tang, Z.D. Liu, J. Iron Steel Res. Int. 20 (2013) No. 7, 9–15.CrossRef Y.H. Zhao, Y. Weng, N.Q. Peng, G.B. Tang, Z.D. Liu, J. Iron Steel Res. Int. 20 (2013) No. 7, 9–15.CrossRef
[10]
Zurück zum Zitat A. Noroozi, M. Ayaz, N.B. Mostafa Arab, D. Mirahmadi Khaki, Metall. Res. Technol. 110 (2013) 359–371. A. Noroozi, M. Ayaz, N.B. Mostafa Arab, D. Mirahmadi Khaki, Metall. Res. Technol. 110 (2013) 359–371.
[11]
Zurück zum Zitat L. Čiripová, E. Hryha, E. Dudrová, A. Výrostková, Mater. Des. 35 (2012) 619–625.CrossRef L. Čiripová, E. Hryha, E. Dudrová, A. Výrostková, Mater. Des. 35 (2012) 619–625.CrossRef
[12]
Zurück zum Zitat D. Šimek, A. Oswald, R. Schmidtchen, M. Motylenko, G. Lehmann, D. Rafaja, Steel Res. Int. 85 (2014) 1369–1378.CrossRef D. Šimek, A. Oswald, R. Schmidtchen, M. Motylenko, G. Lehmann, D. Rafaja, Steel Res. Int. 85 (2014) 1369–1378.CrossRef
[13]
[14]
Zurück zum Zitat C.Z. Zhang, B.M. Gong, C.Y. Deng, D.P. Wang, Mater. Sci. Eng. A 685 (2017) 310–316.CrossRef C.Z. Zhang, B.M. Gong, C.Y. Deng, D.P. Wang, Mater. Sci. Eng. A 685 (2017) 310–316.CrossRef
[15]
Zurück zum Zitat M. Alibeyki, H. Mirzadeh, M. Najafi, A. Kalhor, J. Mater. Eng. Perform. 26 (2017) 2683–2688.CrossRef M. Alibeyki, H. Mirzadeh, M. Najafi, A. Kalhor, J. Mater. Eng. Perform. 26 (2017) 2683–2688.CrossRef
[16]
[17]
Zurück zum Zitat O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.H. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, F.F. Li, Int. J. Comput. Vision 115 (2015) 211-252.MathSciNetCrossRef O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.H. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, F.F. Li, Int. J. Comput. Vision 115 (2015) 211-252.MathSciNetCrossRef
[18]
Zurück zum Zitat A. Krizhevsky, I. Sutskever, G.E. Hinton, in: P. Bartlett (Eds.), NIPS. Conference and Workshop on Neural Information Processing Systems, Neural Information Processing Systems Foundation, Inc., Lake Tahoe, USA, 2012, pp. 1106–1114. A. Krizhevsky, I. Sutskever, G.E. Hinton, in: P. Bartlett (Eds.), NIPS. Conference and Workshop on Neural Information Processing Systems, Neural Information Processing Systems Foundation, Inc., Lake Tahoe, USA, 2012, pp. 1106–1114.
[19]
Zurück zum Zitat T. Hu, M. Yang, W.Q. Yang, A.S. Li, Int. J. Mach. Learn. Cyb. 10 (2019) 1909–1924.CrossRef T. Hu, M. Yang, W.Q. Yang, A.S. Li, Int. J. Mach. Learn. Cyb. 10 (2019) 1909–1924.CrossRef
[20]
Zurück zum Zitat M. Abadi, in: M. Abadi (Eds.), ICFP. The 21st ACM SIGPLAN International Conference on Functional Programming, Association for Computing Machinery, New York, USA, 2016. M. Abadi, in: M. Abadi (Eds.), ICFP. The 21st ACM SIGPLAN International Conference on Functional Programming, Association for Computing Machinery, New York, USA, 2016.
[21]
Zurück zum Zitat W. Yang, W.G. Li, Y.T. Zhao, B. Yan, W. Wang, Iron and Steel 53 (2018) No. 3, 44–49. W. Yang, W.G. Li, Y.T. Zhao, B. Yan, W. Wang, Iron and Steel 53 (2018) No. 3, 44–49.
[22]
Zurück zum Zitat N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, J. Mach. Learn Res. 15 (2014) 1929–1958.MathSciNet N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, J. Mach. Learn Res. 15 (2014) 1929–1958.MathSciNet
Metadaten
Titel
Prediction model for mechanical properties of hot-rolled strips by deep learning
verfasst von
Wei-gang Li
Lu Xie
Yun-tao Zhao
Zi-xiang Li
Wen-bo Wang
Publikationsdatum
17.07.2020
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 9/2020
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00450-9

Weitere Artikel der Ausgabe 9/2020

Journal of Iron and Steel Research International 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.